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Abstract. We use of two notions functionally convex (briefly, F–convex) and
functionally closed (briefly, F–closed) in functional analysis and obtain more re-
sults. We show that if {Aα}α∈I is a family F–convex subsets with non empty
intersection of a Banach space X, then

∪
α∈I Aα is F–convex. Moreover, we in-

troduce new definition of notion F–convexiy.

1. Introduction

Convexity is an important tool in many fields of Mathematics, having applica-
tions in different areas. Various generalizations of the convexity were given in the
literature, including nearly convexity, closely convexity, convexlike, quasiconvex, ap-
proximately convex and so on. Furthermore, generalizing of convexity is a difficult
task. Several generalizations have appeared to be mere formal extensions of convex-
ity, most of which deal with invexity.

From now on, we suppose that all normed spaces and Banach spaces are real.

Definition 1.1. [6] In a normed space X, we say that K(⊆ X) is m- functionally
convex (briefly, m- F–convex) (form ∈ N) if for every bounded linear transformation
T ∈ B(X,Rm), the subset T (K) of Rm is convex. A 1- F–convex set is called F–
convex. A subset K of X is called permanently F–convex if K is m- F–convex, for
all m ∈ N.

It is easy to see that every convex set is permanently F–convex.

Proposition 1.2. Every m+ 1− F–convex set is m− F–convex.

Proof. For every T ∈ B(X,Rm), we define S : X −→ Rm+1 by S(x) = (Tx, 0). Note
that, S ∈ B(X,Rm+1) and for every A ⊆ X, the set T (A) is convex if and only if
S(A) is convex. □
Proposition 1.3. [6] If T is a bounded linear mapping from a normed space X into
a normed space Y , and K is F–convex in X, then T (K) is F–convex in Y .

Corollary 1.4. [6] Let A,B be two F–convex subsets of a normed space X and λ be
a real number, then

A+B = {a+ b : a ∈ A, b ∈ B}, λA = {λ.a : a ∈ A}
are F–convex.

2010 Mathematics Subject Classification. Primary 26B15, 46B10, 46B22.
Key words and phrases. convex set; F–convex set.

[*]Corresponding author.
1



2 ESHAGHI GORDJI, MOAZZEN, RAEISI

Proposition 1.5. [6] Let A and B be F–convex subsets of a linear space X, which
have nonempty intersection. Then A ∪B is F–convex.

Definition 1.6. [6] Let X be a normed space and let A ⊆ X. A is functionally
closed (briefly, F–closed), if f(A) is closed for all f ∈ X∗.

Note that every compact set is F–closed. Also, every closed subset of real num-
bers R is F–closed. In X = R2, the set A = {(x, y) : x, y ≥ 0} is (non-compact)
F–closed whereas, the set A = Z × Z is closed but it is not F–closed (by taking
f(x, y) = x +

√
2y, the set f(A) is not closed in R). By taking A = {(x, y) : 1 ≤

x2 + y2 ≤ 4} a nonconvex F–closed and F– convex set is obtained. Also, the set
B = {(x, y) : x ∈ [0, π

2
), y ≥ tan(x)} is a closed convex set which is not F–closed.

On the other hand, A = {(x, y) : 1 < x2 + y2 ≤ 4} is a non-compact and F–closed
set. The two last examples show that weakly closed( weakly compact) and F–closed
sets are different.

Remark 1.7. Note that we can not reduce definition of F–convexity to a basis of
X∗, in the sence that a set in X is F–convex whenever its image under elements of
a basis is convex. For instance, by taking the Euclidean space R2 and the set

A = {(0, α) : α ∈ R−Q ∩ [−
√
2, 1]} ∪ {(β, 1) : β ∈ R−Q ∩ [0,

√
2]}

∪ {(r,−
√
2) : r ∈ Q ∩ [0,

√
2]} ∪ {(

√
2, s) : s ∈ Q ∩ {[−

√
2, 1]}

∪ {(0, 1), (0,
√
2), (

√
2,−

√
2), (

√
2, 1)}

px(x, y) = x and py(x, y) = y, projections on axis, is a base for X = R2 and

Px(A) = [0, 1] also, py(A) = [−
√
2, 1] but f(x, y) = x + y is an element of X∗ and

f(A) is not convex.

In [6], we prove the following theorem, which help us to find a big class of F–convex
sets.

Theorem 1.8. [6] Every arcwise connected subset of a normed space X is F–convex.

Remark 1.9. The converse of the above theorem is not valid. Hence, by taking
S = {(x, sin( 1

x
) : 0 < x ≤ 1}, the set S which is called the sine’s curve of topologist

is connected and so for any linear functional f ∈ (R×R)∗, the set f(S) is an interval.
Thus, S is an F–convex set which is not arcwise connected.

2. Main Results

In this section, we show, how construct new subset F–convex one of given ones.

Theorem 2.1. Let A,B be subsets of Banach space X. If A is F–convex and
A ⊂ B ⊂ A then, B is F–convex.

Proof. For every f ∈ X∗, we have f(A) ⊆ f(B) ⊆ f(A) ⊆ f(A). Hence, by
assumption, f(A) is an interval. This completes the proof. □
Remark 2.2. In contrary the case of convex sets, interior of an F–convex set,
necessarily is not F–convex. For instance, take X = R × R and let B = {(x, y) :
x2 + y2 ≤ 1}. Then if A is all elements surrounded by B and B + 1

2
is F–convex,
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but the interior of A is not F–convex. Since, by taking f as projection on x-axis we
have f(A◦) = (−1

2
, 1
2
) ∪ (1

2
, 3
2
), which is not convex.

In the following, for a subset A of a Banach space X, a necessary and sufficient
condition for F–convexity is proved.

Theorem 2.3. Let X be a Banach space, A ⊆ X is F–convex if and only if

co(A) ⊆
∩

f∈X∗

A+Ker(f).

Remark 2.4. Note that in special case X = R, since every nonzero functional is one
to one so we have

∩
f∈X∗ A+Ker(f) = A. Thus A ⊆ R is F–convex iff co(A) ⊆ A.

Also, we have A ⊆ co(A). Then we obtain A ⊆ R is F–convex iff A is convex.

Let X be a vector space. A hyperplane in X (through x0 ∈ X) is a set of the form
H = x0 +Ker(f) ⊆ X, where f is a non-zero linear functional on X. Equivalently,
H = f−1(γ), where γ = f(x0). So, we have∩

f∈X∗

A+Ker(f) =
∩

f∈X∗

∪
a∈A

a+Ker(f) =
∩

f∈X∗

f−1(f(A)).

Hence, A ⊆ X is F–convex if and only if

co(A) ⊆
∩

f∈X∗

f−1(f(A)).

Lemma 2.5. [6] If A is a subset of a Banach space X, then∩
f∈X∗

f−1(f(A)) ⊆ co(A)

Corollary 2.6. [6] Let A be a F–closed subset of a Banach space X. Then A is
F–convex if and only if

co(A) =
∩

f∈X∗

f−1(f(A)).

Theorem 2.7. Let {Aα}α∈I be collection of F–convex subsets in Banach space X.
If

∩
α∈I Aα ̸= ϕ then,

∪
α∈I Aα is F–convex.

Proof. For each f ∈ X∗ and α ∈ I, we know, f(Aα) is an interval and
∩

α∈I f(Aα) ̸=
ϕ. Thus, f(

∪
α∈I Aα) =

∪
α∈I f(Aα) is convex. □

we know that, if {Aα}α∈I be a collection of connected subsets in X, A is connected
and A

∩
Aα ̸= ϕ for all α ∈ I, then A

∪(∪
α∈I Aα

)
is connected. Now, we have the

following theorem;

Theorem 2.8. Let {Aα}α∈I be a collection of F–convex subsets in Banach space X.
If A is F–convex and A

∩
Aα ̸= ϕ for evrey α ∈ I, then A

∪(∪
α∈I Aα

)
is F–convex.

Proof. For evrey f ∈ X∗ and all α ∈ I, f(Aα) and f(A) are intervals such that
f(A) ∩ f(Aα) ̸= ϕ. Therefore, f(A

∪(∪
α∈I Aα

)
) =

∪
α∈I f(Aα)

∪
f(A) is interval

for evrey f ∈ X∗. So, A
∪(∪

α∈I Aα

)
is F–convex. □
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We know that, if {An}n∈N be a collection of connected subsets in X such that
An∩An+1 ̸= ϕ for all n ∈ N, then

∪
n∈NAn is connected. Now, we have the following

theorem;

Theorem 2.9. Let {An}n∈N be a collection of F–convex subsets in Banach space X.
If An ∩ An+1 ̸= ϕ for evrey n ∈ N, then

∪
n∈N An is F–convex.

Proof. For evrey f ∈ X∗ and all n ∈ N, f(An) is interval and f(An)∩ f(An+1) ̸= ϕ.
Therefore, f(

∪
n∈NAn) =

∪
n∈N f(An) is interval for evrey f ∈ X∗. So,

∪
n∈N An is

F–convex. □
Let A be a subset of linear space X. We define an equivalence relation on A as:

x ∼ y if and only if both lie in a F–convex subset of A. the relation ∼ actually is an
equivalence relation. For transitivity, note that if x ∼ y and y ∼ z then there are
weakly convex subsets A and B such that x, y ∈ A and y, z ∈ B. Now, proposition
1.5 asserts that A ∪B is F–convex subset of X and so x ∼ z.

Definition 2.10. Let A be a subset of linear space X. Let
A

∼
= {Aα}α∈I be the

set of all equivalence classes. For each α ∈ I, Aα is called F–convex component of
A.

Theorem 2.11. Let A be a subset of linear space X. The F–convex components
of A are disjoint F–convex subsets of A whose their union is A, such that any non
empty F–convex subset of A contains only one of them.

Proof. Being equivalence classes, the F–convex component of A are disjoint and
their union is A. Each F–convex subset of A contains only one of them. For if, A
intersects the components A1, A2 of A say, in points x1, x2 respectively, then x1 ∼ x2.
this means A1 = A2. To show the F–convex component B is F–convex, choose a
point x of B. For each y ∈ B, we know that x1 ∼ x2, so there is a F–convex
subset Ay containing x, y. By the result just proved Ay ⊂ A. thus, B =

∪
y∈AAy.

Since subsets Ay are F–convex and the point x is in their intersection, by 2.7 B is
F–convex. □
Remark 2.12. Let A be a subset of linear space X. A is F–convex if and only if it
has one F–convex component.

Theorem 2.13. Let (Xi, ∥.∥i) be norm linear spaces, then Ai ⊂ Xi are F–convex if
and only if,

∏n
i=1Ai is F–convex in

∏n
i=1 Xi equepted by the norm

∥(x1, x2, · · · , xn)∥ =
{ n∑

i=1

∥xi∥2i
} 1

2

.

Proof. We Know that

(
n∏

i=1

Xi)
∗ = ⊕n

i=1X
∗
i .

So, for every g ∈ (
∏n

i=1Xi)
∗ there are uniqe fi ∈ X∗

i , i = 1, 2, · · · , n such that,
g =

∑n
i=1 fi. Now we have

g(
n∏

i=1

Ai) =
n∑

i=1

fi(Ai).
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Since, every Ai is F–convex so, fi(Ai) and their sum is an interval. Conversly, for
every fi ∈ X∗

i , taking g = 0+ 0+ · · ·+ fi + · · ·+ 0, we have f(Ai) = g(
∏n

i=1Ai) so,
Ai is F–convex. □
Theorem 2.14. Let Y be a subspace of the norm linear space X. If A ⊂ Y is
F–convex then, A is F–convex in X.

Proof. Let Y be a subspace of X. There exists subspace Y ⊥ of X such that X =
Y ⊕ Y ⊥. Thus, for evrey f ∈ X∗ we have, f |Y ∈ Y ∗. Now, if A is F–convex in Y ,
Therefore, f(A) = f |Y (A) + f(Y ⊥). By assumption, f |Y (A) is F–convex also, since
Y ⊥ is a subspace, so Y ⊥ is F–convex in X. Thus, By using 1.4 f(A) is F–convex in
X. □
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