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ABSTRACT. We use of two notions functionally convex (briefly, F-convex) and
functionally closed (briefly, F—closed) in functional analysis and obtain more re-
sults. We show that if {A,}aer is a family F—convex subsets with non empty
intersection of a Banach space X, then Uae ; Ao is F—convex. Moreover, we in-
troduce new definition of notion F—convexiy.

1. INTRODUCTION

Convexity is an important tool in many fields of Mathematics, having applica-
tions in different areas. Various generalizations of the convexity were given in the
literature, including nearly convexity, closely convexity, convexlike, quasiconvex, ap-
proximately convex and so on. Furthermore, generalizing of convexity is a difficult
task. Several generalizations have appeared to be mere formal extensions of convex-
ity, most of which deal with invexity.

From now on, we suppose that all normed spaces and Banach spaces are real.

Definition 1.1. [6] In a normed space X, we say that K(C X) is m- functionally
convex (briefly, m- F—convex) (for m € N) if for every bounded linear transformation
T € B(X,R™), the subset T(K) of R™ is convex. A 1- F—convex set is called F—
convex. A subset K of X is called permanently F-convex if K is m- F-convex, for
all m € N.

It is easy to see that every convex set is permanently F—convex.

Proposition 1.2. Every m + 1— F-convex set is m— F—convez.

Proof. For every T € B(X,R™), we define S : X — R™! by S(z) = (Tz,0). Note
that, S € B(X,R™"!) and for every A C X, the set T(A) is convex if and only if
S(A) is convex. O

Proposition 1.3. [0] If T is a bounded linear mapping from a normed space X into
a normed space Y, and K is F-convezr in X, then T(K) is F—convezr in'Y .

Corollary 1.4. [6] Let A,B be two F-convex subsets of a normed space X and A be
a real number, then

A+B={a+b:acAbe B}, M={\a:aec A}
are F'—convez.
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Proposition 1.5. [0] Let A and B be F-conver subsets of a linear space X, which
have nonempty intersection. Then AU B is F—convexz.

Definition 1.6. [0] Let X be a normed space and let A C X. A is functionally
closed (briefly, F—closed), if f(A) is closed for all f € X*.

Note that every compact set is F—closed. Also, every closed subset of real num-
bers R is F-closed. In X = R?, the set A = {(z,y) : z,y > 0} is (non-compact)
F—closed whereas, the set A = Z x Z is closed but it is not F-closed (by taking
f(z,y) = =+ V/2y, the set f(A) is not closed in R). By taking A = {(z,y) : 1 <
z? + y* < 4} a nonconvex F-closed and F- convex set is obtained. Also, the set
B ={(z,y) : v €0,5),y > tan(r)} is a closed convex set which is not F-closed.
On the other hand, A = {(z,y) : 1 < z* + y* < 4} is a non-compact and F-closed
set. The two last examples show that weakly closed( weakly compact) and F-closed
sets are different.

Remark 1.7. Note that we can not reduce definition of F—convexity to a basis of
X*, in the sence that a set in X is F—convex whenever its image under elements of
a basis is convex. For instance, by taking the Euclidean space R? and the set

A={0,0):a e R—QN[-V2,1}U{(8,1): B R-QN[0,v2]}
U{(r,—v2): 7€ Qn[0,V2}U{(v2,5):s € QN {[-V2,1]}
U{(0,1),(0,v2),(v2,-v2), (V2, 1)}

pe(z,y) = x and p,(z,y) = y, projections on axis, is a base for X = R? and

P,(A) = [0,1] also, p,(A) = [-v/2,1] but f(z,y) = = + y is an element of X* and
f(A) is not convex.

In [6], we prove the following theorem, which help us to find a big class of F—convex
sets.

Theorem 1.8. [6] Every arcwise connected subset of a normed space X is F—conver.

Remark 1.9. The converse of the above theorem is not valid. Hence, by taking
S = {(x, sin(%) : 0 < x < 1}, the set S which is called the sine’s curve of topologist
is connected and so for any linear functional f € (R xR)*, the set f(.S) is an interval.
Thus, S is an F-convex set which is not arcwise connected.

2. MAIN RESULTS

In this section, we show, how construct new subset F—convex one of given ones.

Theorem 2.1. Let A, B be subsets of Banach space X. If A is F-conver and
A C B C A then, B is F—convex.

Proof. For every f € X*, we have f(A) C f(B) C f(A) € f(A). Hence, by
assumption, f(A) is an interval. This completes the proof. O

Remark 2.2. In contrary the case of convex sets, interior of an F-convex set,
necessarily is not F-convex. For instance, take X = R x R and let B = {(z,y) :
22 +y*> < 1}. Then if A is all elements surrounded by B and B + % is F-convex,
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but the interior of A is not F—convex. Since, by taking f as projection on z-axis we
have f(A°) = (—3,3) U (3, 2), which is not convex.

In the following, for a subset A of a Banach space X, a necessary and sufficient
condition for F-convexity is proved.

Theorem 2.3. Let X be a Banach space, A C X is F-convez if and only if
co(A) C m A+ Ker(f).

fexx
Remark 2.4. Note that in special case X = R, since every nonzero functional is one
to one so we have (V;cy. A+ Ker(f) = A. Thus A C R is F-convex iff co(4) C A.
Also, we have A C co(A). Then we obtain A C R is F—convex iff A is convex.

Let X be a vector space. A hyperplane in X (through xy € X) is a set of the form
xo+ Ker(f) C X, where f is a non-zero linear functional on X. Equivalently,
F7(~), where v = f(zg). So, we have

m A+ Ker(f) = ﬂ Ua—i—Ker(f): ﬂ FHS(A)).

fexx fEX* acA fexx

H =
H:

Hence, A C X is F—convex if and only if

co(A) € () F7H(f(A)).

fex=

Lemma 2.5. [6] If A is a subset of a Banach space X, then

() /(F(4) S eo(4)

fex=

Corollary 2.6. [6] Let A be a F-closed subset of a Banach space X. Then A is
F-convex if and only if

w(A) = () fH(f(A).

fex=

Theorem 2.7. Let {As}acr be collection of F—conver subsets in Banach space X .
If Naer Aa # ¢ then, U,ep Aa is F-conver.

Proof. For each f € X* and a € I, we know, f(A,) is an interval and ()., f(Aa) #
¢. Thus, f(U,e; Aa) = Uper f(Aq) is convex. O
we know that, if { A, }aer be a collection of connected subsets in X, A is connected

and A Aa # ¢ for all @ € I, then A (U,e; Aa) is connected. Now, we have the

following theorem;

Theorem 2.8. Let {An}acr be a collection of F-convex subsets in Banach space X .
If A is F-convex and A( Ao # ¢ for evrey a € I, then A (Uael Aa) is F-conver.

Proof. For evrey f € X* and all a € I, f(A,) and f(A) are intervals such that

F(A) N f(As) # ¢. Therefore, f(AU (UperAa)) = Uner f(Aa) U f(A) is interval
for evrey f € X*. So, AU (U,e; Aa) is F—convex. O
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We know that, if {A,},en be a collection of connected subsets in X such that
AnNAnp # ¢ foralln € N, then | J,, . An is connected. Now, we have the following
theorem;

Theorem 2.9. Let {A,}nen be a collection of F-convex subsets in Banach space X .
If Ay N Apy # ¢ for evrey n € N, then |, o An is F-convex.

Proof. For evrey f € X* and all n € N, f(A,,) is interval and f(A,) N f(Ans1) # .
Therefore, f({U,en An) = Unen f(An) is interval for evrey f € X*. So, |J,cn A is
F—convex. OJ

Let A be a subset of linear space X. We define an equivalence relation on A as:
x ~ y if and only if both lie in a F-convex subset of A. the relation ~ actually is an
equivalence relation. For transitivity, note that if x ~ y and y ~ z then there are
weakly convex subsets A and B such that z,y € A and y, 2z € B. Now, proposition
1.5 asserts that AU B is F—convex subset of X and so z ~ z.

A
Definition 2.10. Let A be a subset of linear space X. Let — = {A,}aes be the

set of all equivalence classes. For each o € I, A, is called F—convex component of

A.

Theorem 2.11. Let A be a subset of linear space X. The F-convex components
of A are disjoint F—convex subsets of A whose their union is A, such that any non
empty F-convex subset of A contains only one of them.

Proof. Being equivalence classes, the F—convex component of A are disjoint and
their union is A. Each F—convex subset of A contains only one of them. For if, A
intersects the components A;, A, of A say, in points x1, x5 respectively, then x; ~ x,.
this means A; = A,. To show the F—convex component B is F—convex, choose a
point x of B. For each y € B, we know that z; ~ x5, so there is a F—convex
subset A, containing x,y. By the result just proved A, C A. thus, B = Uy€ A Ay
Since subsets A, are F-convex and the point z is in their intersection, by 2.7 B is
F-—convex. 0

Remark 2.12. Let A be a subset of linear space X. A is F—convex if and only if it
has one F—convex component.

Theorem 2.13. Let (X, ||.||:) be norm linear spaces, then A; C X; are F-convex if
and only if, [, A; is F-convex in [[_, X; equepted by the norm

n 1
2
@z, @l = { D il }
=1

Proof. We Know that

(H Xi)" = @i X[

i=1
So, for every g € ([[_, Xi)* there are uniqe f; € X/,i = 1,2,--- ,n such that,
g=>1", fi- Now we have

n

Q(H A;) = Z fi(Aq).

1=
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Since, every A; is F—convex so, f;(A;) and their sum is an interval. Conversly, for
every f; € X, taking g=0+0+---+ f; +---+0, we have f(A4;) = g(J], Ai) so,
A; is F—convex. ]

Theorem 2.14. Let Y be a subspace of the norm linear space X. If A C Y is
F—convex then, A is F-convex in X.

Proof. Let Y be a subspace of X. There exists subspace Y+ of X such that X =
Y @ Y+, Thus, for evrey f € X* we have, fly € Y*. Now, if A is F-convex in Y,
Therefore, f(A) = fly(A) + f(Y1). By assumption, f|y(A) is F—convex also, since
Y is a subspace, so Y+ is F-convex in X. Thus, By using 1.4 f(A) is F-convex in
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