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Abstract 

This paper evidences how the factors including the non-normal error distribution, 

constraints of the residuals, sample size, the multi-collinear values of independent 

variables and autocorrelation coefficient have impact on the distributions of the errors 

and the residuals to explain that the residuals become more centralized as normal 

distribution when linear requirement have more constraints on residuals from the linear 

regression analysis method, but less linear requirement cause that the shape of error 

distribution are more clearly shown on residuals. The paper finds out that if the errors 

are normal distribution, then the residuals are also normal distribution, but if the errors 

are U-quadratic distribution, then the residuals are the mixture of the error distribution 

and normal distribution because of the interaction of linear requirement and sample size. 

Thus, the increasing constraints on the residual from more independent variables causes 

the residuals become normal distribution and cannot be a good estimator of the errors 

which are non-normal distribution. Only the sample size is larger enough to eliminate 

the effect of linear requirement and multi-collinearity, the residuals can be viewed as 

an estimator of the errors. 
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1. INTRODUCTION 

The paper focuses on why the business studies always use linear regression model 

but the engineering and quality management fields do not rely on the linear regression 

model when the researchers found out that the residual distribution is not the same as 

the error distribution, that obeyed the result of Box and Peirce (1970) who supposed 

that the residuals have a good fit should be the true errors and can be regarded as 

estimator of the errors in autoregressive process. The residuals that are viewed as a 

good estimator of the errors such as Durbin-Watson test statistic (Durbin and Watson, 

1950,1951) and LaGrange Multiplier test statistic (Berusch and Pagan, 1980) in the 

linear regression model with the autoregressive error process.  

In general, residuals are viewed as the highest representation of errors and are 

combined as estimator that is used to estimate the properties of errors such as serial 

correlation of errors or the error’s distribution. In the literature, Yule (1921) was the 

pioneer to discuss the problem of serial correlation, then Roos (1936) provided the basic 

solutions about how independent variables are independent by the use of choosing 

lagged time and how the trend and fluctuation can be grabbed. Box and Pierce (1970) 

also investigated that residual autocorrelation can be approximated to the linear 

transformation of error autocorrelation and possess a normal distribution. Therefore, 

the residuals’ distribution plays an important role that linear regression model argues 

cogently residuals can be used to test the distribution of error which is assumed at first. 

For example, errors follows normal distribution if residuals are tested as normal 

distribution. However, the time series data might have non-normal error distribution 

which contracts with one of assumptions in the linear regression model, and have 

autoregressive error procedure which contracts with the assumption of linear regression 

model which is independent errors with each other. 

In fact, the paper intends to explain that the distributions of the residuals are away 

from the distributions of the errors by using a probability simulation approach, that is 

running computer simulation with random number table from uniform distribution with 

0 and 1, from three parts to investigate that (1) if the errors are distributed as normality, 

then the residuals are also normal distribution; (2) if the errors are non-normal 

distribution, then the residuals are also non-normal distribution, and (3) if the sample 

size becomes larger, then the residuals distribution is approached to the errors 

distribution, that is the law of large number gradually has the influence on the 

distributions of the residuals. The second part is based in an example of the U-quadratic 

distributed errors. If augment of Box and Pierce were right, then the residuals should 

be U-quadratic distribution, but not normal distribution. However, the calculated 

residuals are represented as normal distribution and are contracted with Box and Pierce 

(1970). The paper discovers from the results of computer simulation that the normality 



of the residuals results from the number of independent variables which decides the 

constraints of the residuals, 0εX ˆT , with 1 plus the number of independent variables. 

The constraints of the residuals, 0εX ˆT  is called as linear requirement of linear 

regression models and its number of constraints is the same as the degree of freedom 

Lee (2014a, b, c). The third part shows that how the change of the residual distribution 

with fixed number of independent variables and U-quadratic error distribution when the 

sample sizes become larger. 

The paper is structured as follows. Section 2 describes the model setting and 

simulation procedure. Section 3 results the three cases that the error is normal 

distribution, the error is U-quadratic distribution, and the sample size is changed. 

Section 4 concludes.     

 

2. MODEL 

Consider a linear regression model with k independent variables and T sample sizes, 

as 

𝐘
(𝑇×1)

= 𝐗
(𝑇×𝑘)
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on the conditions of     0,0 T  εXε EE and the first-order autoregressive procedure is 

𝜀𝑡+1 = 𝜌𝜀𝑡 + 𝜇𝑡 , 

where 𝑡 = 1,2, … , 𝑇 − 1 and |𝜌| < 1. The estimators are  

  YXXXβ
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  and βXY ˆˆ  ,  

then the residuals are  
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and linear requirement are 0εX ˆT  where εYY ˆˆ   (Baltagi 2011). 

When 
i

Ŷ  is normal distribution, the regression coefficient point estimators also are 

normal distribution and 
i
̂  is normal distribution, Ŷ approximates to normal 

distribution, if k is enough large (The linear combination of independent variables). The 

probability distribution of Ŷ  is transferred from the error probability distribution and 

the estimated condition of independent variable coefficient, then the mean-square-error 

(MSE) is 

𝑀𝑆𝐸 = (𝒀 − 𝑿𝜷̂)
𝑇
(𝒀 − 𝑿𝜷̂) 

that is from 𝐸(𝜺̂) = 0  and 𝐸(𝜺̂𝜺̂𝑇) = (𝑿𝑇𝑿)−1 ×𝑀𝑆𝐸 . Thus, there are two main 

factors that affect the probability distribution of the residuals, one is the assumption of 

the error distribution, the other is the linear requirement of 0εX ˆT , which has k+1 



constraints. Besides, the above sample size, multi-collinear values of independent 

variables and autocorrelation coefficient affect the distribution of the residuals. 

However, the distribution of the residuals in the above model is difficult to formula, the 

paper only use computer simulation to evidence how the factors affect the relation 

between the errors and the residuals.  

2.1. The simulator method 

The sampling distribution of test statistic might be existed or non-existed, especially, 

some sampling distribution of test statistic cannot be transferred by the traditional 

mathematical method such calculus method or Monte Carlo method. The concept of 

Monte Carlo method is good simulation method and the continuous type data cannot be 

done in computer program. Thus, this simulation method is not suitable for this paper 

because the probability theory has been created by the basic concept of probability 

simulator and then the distribution functions of continuous random variables can be 

transferred from uniform distribution with parameters of 0 and 1, U(0,1). This 

simulation method may be useful in these situations, but the probability distribution 

simulator is not created now and this simulated skill is not easy now. Thus, the paper 

runs computer simulation with a software program that can works any probability 

distribution transformation, generates the data and computing the coefficients and 

images.1 The computer simulation is from the steps as follows. 

(1) generating data from random number table of U(0,1). Each value of U-quadratic 

distribution can be gotten when the value is from the inverse function of U-

quadratic distribution.  

(2) Collecting the values that number is match number of error, of course, the values 

follow independently identically distributed U-quadratic distribution. That is the 

set values as t  from the serial correlation model where  
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    When the   is known, the 
1t

  is be found.  

(3) The residuals is followed the point estimated requirements of linear model. 

     ,, . . . ,1,. . . . ,,110 TtXXY ttkktt    

    If number and value of independent variables are known, the k ˆ,...,ˆ,ˆ
10 can be 

                                                      
1 The software program is named as “White model I” that can be download from http://goo.gl/oUDpsp. 

The distributions of the Tth error and residual, the distributions of sum of the errors and residuals can be 

simulated by the software. The simulation technology is from C.C.C. Ltd. 

(http://psccc.com.tw/en/product). And the U-quadratic distribution formula can reference at 

http://psccc.com.tw/uploads/files/probability/1/Chapter_one_02.pdf. 

http://goo.gl/oUDpsp
http://psccc.com.tw/en/product
http://psccc.com.tw/uploads/files/probability/1/Chapter_one_02.pdf


estimated. 0εX ˆT  will be ruling the ε̂ . The simulator is obeyed the linear 

model method and created the residual values ( ε̂ ). 

 

Thus, the paper is following the simulation process that is included as 

  Step 1: Giving the intercept and slope value and the data set of independent variables. 

  Step 2: Using the simulation method to get the error data set from probability 

distribution which sample size is T.  

  Step 3: According the linear model and computing the data set of dependent variable. 

εXβY  . 

  Step 4: Calculating the point estimator values of regression coefficient and getting 

the estimated values of dependent variable. βXY ˆˆ  . 

  Step 5: Calculating the data set of residual. βXYε ˆˆ  . 

 

t
  is simulated by the Step 1 and 2 and 

t
̂  is simulated by the Step 1 to 5. 

t
  and 

t
̂  are all repeated 32768*2*1024 times and then produced 32768*2*1024 values to 

form the frequency distribution that can reach to the real 
t
  and 

t
̂  distributions. 

 

3. RESULTS 

3.1. The errors follow normal distribution   

The section 3.1 is on the condition that the distribution of the errors are normal 

distribution, 6 independent variables, 15 samples and the autocorrelation coefficient of 

the errors is zero, thus, the first column of Figure 1 is the distribution of the errors, 

which is normal distribution with standard normal distribution. Figure 1 of the paper 

illustrates the shape and coefficient of the 7th residual distribution where the coefficients 

of mean, skewness and kurtosis represents as normal distribution and as the same as the 

error distribution.   

 

f(W1),F(W1), W1=error(1) f(W17),F(W17) ,W17=residual(7) 

  
    Mathematical Mean:             0.00004 

    Variance         :             0.99995 

    S.D.             :            0.99997 

    Skewed Coef.     :            -0.00034 

    Kurtosis Coef.   :              3.00023 

    Mathematical Mean:            -0.00003 

    Variance         :             0.58319 

    S.D.             :            0.76367 

    Skewed Coef.     :            0.00002 

    Kurtosis Coef.   :              3.00068 

Figure 1. The errors and residuals distributions when the errors follow normal 



distribution 

 

The residuals can be viewed as the estimator of the errors because Figure 1 

guarantees the distribution of the residuals is the same as the distribution of the errors. 

Thus, Figure 1 evidences that the conclusion of Box and Pierce (1970) is correct when 

the errors are normal distribution. The reason is that as follows. The residuals are the 

combination of the errors in the linear regression model, that is   εββXYYε  ˆˆˆ , 

and the autoregressive procedure takes the errors toward the autocorrelation with each 

other without changing the property between the residuals and the errors, at the same 

time, the additive property of normal distribution has impact on the linear combination 

of the errors, thus, the residuals can show the normal distributed property of the errors. 

Another reason is that the mathematical formula of normal distribution includes sin and 

cos functions that is cycle functions, therefore, the residuals follow normal distribution 

when the errors’ distribution is normal distribution. On the other hand, if the error 

distribution has no property of sin and cos functions, such as logistic, uniform, U-

quadratic or exponential distribution, then the errors have no cycle property and might 

not be shaped as normal distribution, but other distributions. The paper can evidence 

the proposition below. 

 

Proposition 1.  

The residuals are normal distribution when the errors are normal distribution 

because the normal distribution with sin and cos function form has additive property. 

 

However, it is hard to promise that the errors are always normal distribution when 

the researchers do not have the population data. The samples should be tested to classify 

what distribution it follow.  

 

3.2. The errors follow U-quadratic distribution   

The paper gives an example of non-normal error distribution that the errors, 
t

 , were 

U-quadratic distribution, then the computer simulation offers evidence about the 

distributions of the errors and residuals on the condition of 6 independent variables, 15 

samples, the 1 lagged period, variance of error is 1 and the autocorrelation coefficient 

of the errors is zero. Lee (2014c) supposed that the values of independent variables have 

serious impact on the residuals, thus the paper simultaneously discusses the 

distributions of the residuals at two cases where the values of independent variables are 

separately with low and high multi-collinearlity in the linear regression model with the 

first-order autoregressive error procedure. The third column of Figure 2 presents the 

distribution of the first residual that is generated from the independent variables with 

the population correlation coefficient is 0.99. 



Figure 2 shows that the first column is the error distribution which is U-quadratic 

distribution, the second column is the distribution of the first residual with low multi-

collinearity and the third column is the distribution of the first residual with high multi-

collinearity. The distributions of the first residual in the second and third column is as 

similar as normal distribution while the distribution of the errors is U-quadratic 

distribution. The residual distributions in Figure 2 are different from the error 

distribution, thus, the residuals cannot be regarded as an estimator of the errors when 

the errors are non-normal distribution, moreover, the serial correlation test for 

autocorrelation of the errors is not suitable to use the mathematic combination of the 

residuals because the difference between the distributions of the errors and residuals. 

The researchers should first investigate the distribution of the data to classify what 

distribution the data is or they always obtain the result that the errors follow normal 

distribution from the residuals.   

 

f(W1),F(W1), W1=error(1) 
f(W11),F(W11) ,W11=residual(1) 

with low multi-collinearity 

f(W11),F(W11) ,W11=residual(1) 

with high multi-collinearity 

   
Mathematical Mean:             0.00071 

Variance         :             0.99998 

S.D.            :             0.99999 

Skewed Coef.    :            -0.00125 

Kurtosis Coef.    :             1.19053 

Mathematical Mean:             -0.00004 

Variance         :             0.07704 

S.D.             :             0.27757 

Skewed Coef.     :             0.00041 

Kurtosis Coef.    :              2.82251 

    Mathematical Mean:        -0.00005 

    Variance         :         0.58928 

    S.D.             :        0.76764 

    Skewed Coef.     :        -0.00003 

    Kurtosis Coef.   :          2.31065 

Figure 2. The error and residual distributions when error follows U-quadratic 

distribution (T=15) 

 

The most difference between Figure 1 and Figure 2 is the assumption of the error 

distribution, but the residuals are similar normal distribution in Figure 2. There must be 

some special factors that did not be discovered before and the factor is certainly not 

from the error distribution which has the property of sin and cos functions or the 

property of addition from normal distribution. Lee (2014b) discovered that the number 

of independent variables from 1 to 6 causes the residual distribution toward normal 

distribution in the linear regression model with autoregressive procedure, therefore, the 

paper supposes that the errors are not restricted but the residuals are restricted by the 

restriction of 0εX ˆT  which has k+1 constraints. This linear requirement of the 

residuals in linear regression model distorts the error distribution away from the original 



distribution to normal distribution.  

The linear requirement of the residuals can produce two forces out when the number 

of independent variables is k and sample size is T. The first part is sum of square in 

regression (SSR) whose degree of freedom is k. The second part is sum of square of 

error (SSE) whose degree of freedom is T-k-1. Two forces decide the shape of the 

residual distribution. When k becomes larger the residuals are restricted by more 

constraints just alike the linear combination of random variables. If the more random 

variables are added in the linear combination then the new random variable become 

toward to normal distribution. The residuals that are restricted by more constraints also 

represent the similar states so that the distribution of the residuals become similar to 

normal distribution.  

If consider the collinear values of independent variables, then collinear effect affects 

the convergence to normal distribution when the error distribution is U-quadratic 

distribution. The three columns of Figure 2 show the residuals with the convergence to 

normality will be weaken by the high multi-collinear values of independent variables 

when the number of independent variables is fixed. The coefficients of Figure 2 express 

the variance of the residuals,  ε̂S , and mean-square of error (MSE) rise up when the 

values of independent variables are from low to high multi-collinearity. The shape of 

distribution in third column of Figure 2 presents that the distribution of the first residual 

has a flat region around the mean of the first residual and has more left-skewness and 

less centralization. Thus, the high mutli-collinarity brings a big problem of the residuals, 

so the distribution of the first residual is not the same as the shape of the distribution in 

the second column of Figure 2.  

The multicollinearity of the independent variables results in that the calculation and 

the combination of the residuals are more complex, moreover, the variance and the 

distribution of the residuals is both disturbed by the collinearity when the errors follow 

non-normal distribution whose errors is asymmetric will cause that the residuals are 

slowed down the convergence to normality. The improvement of above problem is that 

the linear regression model adds more independent variables to accelerate the residuals’ 

convergence to normality because more and more independent variables can restrict the 

residuals then weak the collinear effect, meanwhile, the degree of freedom also falls 

down.2 

The paper proposes the second proposition as follows. 

                                                      
2 In fact, the multicollinear case of the computer simulation implies that only the number of independent 

variables is more than 20 and the degree of freedom is more than 2, then the residuals and coefficients 

of regression model with first-order autoregressive error process will have normal distributed point 

estimators when the low multicolliearity of independent variables exists and the errors follow 

independently identically distribution with symmetric at zero. 
 



 

Proposition 2.  

(1) The larger number of independent variables, k, brings to the faster 

convergence to normality on the residuals when the errors are non-normal 

distribution. 

(2) The higher multi-collinear values of independent variables brings to the 

slower convergence to normality on the residuals. 

(3) The high multi-collinear values and small number of independent variables 

cause that the distribution of the residuals is not normal distribution nor the 

error distribution, but mixture of the error distribution and normal 

distribution by the constraints of the residuals.  

 

The multi-collinear property and the constraints on the residuals have opposite force 

to simultaneously disturb the distribution of the residuals which becomes a mixed 

distribution between normal distribution and the error distribution. However, there is 

one factor that the sample size, T, in the internal constraints of linear regression model 

that have two forces out, is fixed and is not discussed. 

 

3.3. Sample size is changed 

The sample size effect plays very important role in time series models that can 

represent the law of large number, then the residuals might be regarded as a good 

estimator of the errors. The simulation case only change the sample size from 9 to 107 

on the condition of 6 independent variables, population variance is 1, zero 

autocorrelation coefficient, and the values of independent variables are from the front 

T of data set and the simulated setting is followed section 3.2. The residuals can 

gradually reveal the property of the errors when the sample sizes are increasing from 9 

to 107. Without loss of generation, the paper only shows the shapes and coefficients of 

distributions of 0.5 ∗ 𝑇𝑡ℎ residual in Figure 3 and Table 1 that is in Appendix A.  

 

T=14, the 7th residual T=60, the 30th residual 

  
    Mathematical Mean:             -0.00003     Mathematical Mean:              0.00014 



    Variance         :              0.50400 

    S.D.             :              0.70993 

    Skewed Coef.     :             -0.00030 

    Kurtosis Coef.   :              2.47090 

 

    Variance         :              0.86864 

    S.D.             :              0.93201 

    Skewed Coef.     :             -0.00019 

    Kurtosis Coef.   :              1.63269 

 

Figure 3. the 0.5Tth residual’s distribution 

 

Figure 3 explores the distributions of the 0.5 ∗ 𝑇𝑡ℎ residual at T=14 and 60. The 

second column of Figure 3 has less regular shape of distribution than the first column 

at T=14, meanwhile, the 30th residual at T=60 gets the shape of distribution more toward 

U-quadratic distribution than distribution of the 7th residual at T=14. Figure 3 clearly 

shows that the large sample sizes cause the 0.5Tth residual toward the error distribution. 

Thus, the sample size effect can delimitate the effect of linear requirement on residuals, 

at the same time, can let the distribution of the residuals represent more property of the 

errors. The coefficients in Table 1 show that the 0.5 ∗ 𝑇𝑡ℎ residual has around zero 

means and skewed coefficients, and larger variances and falling down kurtosis when 

the sample sizes are from 9 to 107. In comparison of the first column in Figure 2, the 

coefficients in Table 1 are approaching to the coefficients in the first column of Figure 

2, especially variances and kurtosis coefficients, when the sample sizes are increasing. 

The coefficients that are changed with the different sample sizes also shows the 

distribution of the residuals can be an estimator of the errors if the sample size effect is 

larger enough than the effect of constraints on the residuals. The interaction between 

the sample size and linear requirement causes the different shape and coefficients of 

distribution of the 0.5 ∗ 𝑇𝑡ℎ residual. The residuals become more centralized when the 

linear requirement has more constraints, nevertheless, the residuals are affected by the 

error distribution and are more likely to the error distribution when the number of 

constraints are not larger enough. In other words, the residuals’ distribution is vastly 

different to the errors’ distribution because the residuals are affected by linear 

requirement of linear regression models, the error distribution, sample sizes and the 

values of independent variables. It is general assumption that the errors are normal 

distribution which is symmetric distribution, meanwhile, the residuals can be an 

estimator of the errors by the residuals are normal distribution when k+1 constraints 

are more than 20, T is from 23 to 23+(k-19) and a little or no multi-collinearity. 

 

3.4. Autocorrelation coefficient of the errors is 0.7 

The above statements are on the condition of zero autocorrelation of the errors, 

however, nonzero autocorrelation cases are usually seen in the data. The paper 

discusses the case that the autocorrelation coefficient of the errors is 0.7 and other 

conditions are the same as section 3.2. There is also two cases of low and high 

multicollinear values of independent variables. The paper shows the shapes and 

coefficients of distribution of first and 15th errors and residuals in Figure 4 and Figure 

5.  



 

the 1st error 
the 1st residual 

Low multicollinearity 

the 1st residual 

High multicollinearity 

   
    Mathematical Mean:    0.00006 

    Variance         :    0.99999 

    S.D.             :    0.99999 

    Skewed Coef.     :   -0.00012 

    Kurtosis Coef.   :     1.19049 

    Mathematical Mean:   -0.00004 

    Variance         :    0.52980 

    S.D.             :    0.72787 

    Skewed Coef.     :   -0.00005 

    Kurtosis Coef.   :     2.17951 

     Mathematical Mean:  -0.00005 

    Variance         :   0.25373 

    S.D.             :    0.50372 

    Skewed Coef.     :   -0.00013 

    Kurtosis Coef.   :    2.62116 

Figure 4. The first error and residual distributions when error follows U-quadratic 

distribution and autocorrelation coefficient is 0.7 

 

The distribution of the first error is U-quadratic distribution, but the first residuals 

that are affected by the degree of multicollinearity show different shapes of the 

distribution of the residuals in Figure 4. The distributions of the first residuals cannot 

represent the property of the first error and the more multicollinear values of 

independent variables make more centralized distributions of the first residuals. 

Figure 4 explores another very important point that the coefficients cannot show out. 

The coefficients are similar to each other among three columns, but the population 

distribution of the first column and sampling distributions of the second and third 

columns have completely different shapes with each other. In the other hand, the 

coefficients judgment might highlight a questionable results that is used to pass the 

hypothesis testing when the researchers only investigate the means and variances of the 

residuals. Comparing to the three columns, the linear requirement and multi-collinearity 

keep aside push to the first residual become more centralization. The higher multi-

collinear values of independent variables induce more centralized residuals.   

The paper also runs the distributions of the 15th error and residuals which are divided 

into two parts including low and high multicollinearity in Figure 5.3 The distribution 

of the 15th error is not the same as U-quadratic distribution, but more centralized alike 

normal distribution because of the nonzero autocorrelation coefficient, meanwhile, the 

distributions of the 15th residual are more similar to the distribution of the 15th error in 

Figure 5 than the first residual in Figure 4. The means and variances at the first and 

third columns in Figure 5 highlight that the 15th residual is very similar to the 15th error, 

however, the diagrams and kurtosis coefficients shows that there is a vast different 

                                                      
3 The case with -0.7 autocorrelation coefficient is in Appendix B.  



between the 15th residual and the 15th error. 

 

the 15th error 
the 15th residual 

Low multicollinearity 

the 15th residual 

High multicollinearity 

   
    Mathematical Mean:   -0.00008 

    Variance         :    0.99992 

    S.D.             :   0.99996 

    Skewed Coef.     :   0.00025 

    Kurtosis Coef.   :    2.38056 

    Mathematical Mean:   -0.00003 

    Variance         :    0.60125 

    S.D.             :    0.77540 

    Skewed Coef.     :   -0.00008 

    Kurtosis Coef.   :     2.56853 

    Mathematical Mean:    0.00004 

    Variance         :    0.83748 

    S.D.             :   0.91514 

    Skewed Coef.     :   0.00026 

    Kurtosis Coef.   :     2.61272 

Figure 5. The 15th error and residual distributions when error follows U-quadratic 

distribution and autocorrelation coefficient is 0.7 

 

With comparison between Figure 4 and Figure 5, the coefficients of the errors show 

the similar coefficients, except for kurtosis coefficients. The diagrams of the first 

column from Figure 4 to Figure 5 are from U-quadratic shape to opposite of U-quadratic 

shape because of the non-zero autocorrelation coefficient. The diagrams of low 

multicollinear residuals are bulging from the first residual to the 15th residual, while the 

diagrams of high mulitcollinear residuals are similar. This highlights that the nonzero 

autocorrelation coefficient and multicollinearity interact on the residuals. The higher 

multicollinearity will decrease the effect of autocorrelation coefficient on the residuals. 

 

4. CONCLUSIONS 

The purpose of this paper supposes an explanation why the residuals cannot perfectly 

represent the errors. The paper evidences that the residuals that should be on some 

specific conditions can be viewed as an estimator of the errors which may not be 

necessary to be assumed as normal distribution because of the property of data. But if 

the errors are normal distribution, the residuals can be a good estimator of the errors 

because of the property of normal distribution.  

The paper also evidences how non-normal distribution, linear requirement, 

multicollinearity, sample size and autocorrelation coefficient affect the distributions of 

the errors and the residuals by computer simulation results. First, residuals are restricted 

but errors are not, hence, the values of the residuals are constrained by linear 

requirement that are from regression analysis, and causes the residuals are not perfectly 

representing errors. Second, the paper supposes that the linear requirement, sample 

sizes and the values of independent variables are interacted in the linear regression 



model. Thus, (1) the constraints of linear requirement are more enough then the 

residuals follow normal distribution whatever the error term is assumed when the 

sample sizes are fixed. (2) If the error term is assumed as normal distribution, then 

residuals follow normal distribution. (3) Larger sample sizes result in the residuals 

reveal the property of error term when the linear requirement is fixed. 
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Appendix A. 

Section 3.3 shows how the change of sample size affect the distribution of each residual. 

However, each different sample size case has T residuals, the paper shows the 

coefficients of the 0.5Tth residual whose 0.5Tth is half T. The coefficients of Table 1 

almost have the same means of the 0.5Tth residual and cannot let readers know what the 

difference among those distributions of the 0.5Tth residual from different sample sizes. 

Thus, the paper put the coefficients of the 0.5Tth residual in Appendix and the diagrams 

of distribution of the 0.5Tth residual in the main content. 

 

Table 1. The coefficients of the 0.5Tth residual in different sample sizes 



T 
The 0.5Tth 

residual 
Coefficients T 

The 0.5Tth 

residual 
Coefficients 

9 5 

Mathematical Mean:    0.00002 

    Variance :    0.12050 

    S.D.   :    0.34712 

    Skewed Coef.:    0.00008 

    Kurtosis Coef.:    2.61692 

    MAD    :    0.28164 

    Range  :    2.18595 

    Median :    0.10410 

    IQR    :   -1.09240 

10 5 

Mathematical Mean:  0.00010 

    Variance :    0.66584 

    S.D.   :    0.81599 

    Skewed Coef. :    0.00007 

    Kurtosis Coef. :    2.14263 

    MAD    :    0.69024 

    Range  :    4.36179 

    Median :    0.05433 

    IQR    :   -1.67194 

12 6 

Mathematical Mean:    0.00003 

    Variance :    0.41115 

    S.D.   :    0.64121 

    Skewed Coef. :   -0.00049 

    Kurtosis Coef. :    2.52345 

    MAD    :    0.52335 

    Range  :    4.03883 

    Median :   -0.59530 

    IQR    :   -0.01178 

14 7 

Mathematical Mean:   0.00003 

    Variance :    0.50400 

    S.D.   :    0.70993 

    Skewed Coef. :   -0.00030 

    Kurtosis Coef.:    2.47090 

    MAD    :    0.58384 

    Range  :    4.96694 

    Median :   -0.49846 

    IQR    :    0.60169 

15 1 

Mathematical Mean:   -0.00005 

    Variance :    0.33153 

    S.D.   :    0.57579 

    Skewed Coef. :-0.00019 

    Kurtosis Coef. : 2.70090 

    MAD    :    0.46598 

    Range  :    4.47935 

    Median :    0.08346 

    IQR    :   -0.49092 

16 8 

    Mathematical Mean:0.00015 

    Variance :    0.69658 

    S.D.   :    0.83462 

    Skewed Coef. :    0.00016 

    Kurtosis Coef.:    2.09787 

    MAD    :    0.71287 

    Range  :    5.26536 

    Median :    1.13480 

    IQR    :    1.81239 

18 9 

Mathematical Mean:  -0.00007 

    Variance :    0.67610 

    S.D.   :    0.82225 

    Skewed Coef. :   -0.00021 

    Kurtosis Coef. :    2.15551 

    MAD    :    0.69899 

    Range  :    5.76724 

    Median :    0.51382 

    IQR    :    0.72251 

20 10 

Mathematical Mean:-0.00001 

    Variance :    0.57802 

    S.D.   :    0.76028 

    Skewed Coef. :    0.00022 

    Kurtosis Coef. :    2.35887 

    MAD    :    0.63243 

    Range  :    5.39457 

    Median :   -0.87208 

    IQR    :   -0.44459 

30 15 

Mathematical Mean:   -0.00011 

    Variance :    0.74874 

    S.D.   :    0.86530 

    Skewed Coef. :    0.00018 

    Kurtosis Coef. :    1.97507 

    MAD    :    0.75134 

    Range  :    5.66672 

    Median :   -0.36794 

    IQR    :   -0.17231 

40 20 

Mathematical Mean:   -0.00011 

    Variance :    0.90912 

    S.D.   :    0.95348 

    Skewed Coef.:    0.00022 

    Kurtosis Coef.:    1.50373 

    MAD    :    0.88326 

    Range  :    4.90625 

    Median :   -0.30457 

    IQR    :   -0.51299 

80 40 

Mathematical Mean:    0.00004 

    Variance :    0.97787 

    S.D.   :    0.98888 

    Skewed Coef. :   -0.00034 

    Kurtosis Coef.:    1.26972 

    MAD    :    0.94699 

    Range  :    3.91584 

    Median :    0.88092 

    IQR    :   -2.35631 

107 50 

Mathematical Mean:    0.00028 

    Variance :    0.92229 

    S.D.   :    0.96036 

    Skewed Coef.:   -0.00034 

    Kurtosis Coef.:    1.46089 

    MAD    :    0.89520 

    Range  :    4.92764 

    Median :    1.02281 

    IQR    :   -0.48487 

 

Appendix B.  

The paper also simulates the situation that the autocorrelation of the errors is -0.7. 

The residuals have the smaller mean and variance and more negative skewness on the 

condition of high multicollinearity. 

 



the 1st error 
the 1st residual 

Low multicollinearity 

the 1st residual 

High multicollinearity 

   
    Mathematical Mean:   -0.00000 

    Variance         :    0.99996 

    S.D.             :    0.99998 

    Skewed Coef.     :    0.00008 

    Kurtosis Coef.   :     1.19052 

    Mathematical Mean:   -0.00005 

    Variance         :    0.92580 

    S.D.             :    0.96219 

    Skewed Coef.     :   -0.00003 

    Kurtosis Coef.   :     2.13261 

    Mathematical Mean:   -0.00016 

    Variance         :    0.49797 

    S.D.             :    0.70567 

    Skewed Coef.     :   -0.00069 

    Kurtosis Coef.   :     2.66838 

Figure B-1. The first error and residual distributions when error follows U-quadratic 

distribution and autocorrelation coefficient is -0.7 

 

Comparison of the autocorrelation coefficients of the errors that are 0.7 and -0.7, the 

means of the first error and the 15th error have less means when autocorrelation 

coefficient is -0.7. Second, the probability distribution of the first error in Figure B-1 is 

as the same as in the left side of Figure 4, so does the 15th error in Figure B-2 and Figure 

5. Third, the low multicollinearity situation shows that the first residual has larger 

variance and less centralization in Figure B-1 than in Figure 4. However, the 15th 

residual is more centralized in Figure B-2 than in Figure 5. Finally, the high 

multicollinearity situation explores that the first residual in Figure B-1 has larger 

variance and more centralization than in Figure 4. However, the 15th residual has 

smaller variance and less centralization in Figure B-2 than in Figure 5. 

 

the 15th error 
the 15th residual 

Low multicollinearity 

the 15th residual 

High multicollinearity 

   
    Mathematical Mean:   -0.00024 

    Variance         :    0.99998 

    S.D.             :    0.99999 

    Skewed Coef.     :    0.00036 

    Kurtosis Coef.   :     2.38057 

    Mathematical Mean:   -0.00012 

    Variance         :    1.08709 

    S.D.             :    1.04264 

    Skewed Coef.     :    0.00057 

    Kurtosis Coef.   :     2.68820 

    Mathematical Mean:   -0.00017 

    Variance         :    0.82336 

    S.D.             :    0.90739 

    Skewed Coef.     :    0.00021 

    Kurtosis Coef.   :     2.27220 

Figure B-2. The 15th error and residual distributions when error follows U-quadratic 

distribution and autocorrelation coefficient is -0.7 

 


