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Abstract

The third unsolved problem that Landau announced in 1912 at the fifth International Congress of Mathematicians at Cambridge, is Legendre's conjecture. It states that:


There is always at least one prime number between two consecutive squares N² 

and (N + 1)² for any integer N>0.

In the present article, an elementary proof of this conjecture is given by creating and solving the D conjecture, a modified version of Sierpiński's conjecture that originally states that:


For any integer N>1, there is always at least one prime number in each line of a 

N by N matrix filled up from left to right and from bottom to top with the N² integers 
from 1 to N².

While proving the D conjecture, Sierpiński's S conjecture is also proved, as well as Oppermann's conjecture which states that:


For any integer N>1 the relation: π(N²+N) > π(N²) > π(N²-N) is always true, where π(x)
is the prime counting function. 
It's the upper part of this conjecture that proves Legendre's.

Finally, as applications, pm+1 - pm = O(pm1/2) , Andrica's and Brocard's conjectures are proved.
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1 Introduction

The unsolved Sierpiński's S conjecture (1958) [1] states that:


For any integer N>1, there is always at least one prime number in each line of a N by N matrix filled up from left to right and from bottom to top with the N² integers from 1 to N².

Let's then write Sierpiński's matrix in figure 1:
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Figure 1. Sierpiński's matrix S(N)

In this figure, with the definitions of the conjectures mentioned in the introduction, one can see that all the lines of the matrix S(N) correspond to Sierpiński's conjecture and that the top line only corresponds to the lower part of Oppermann's conjecture [2].

Considering only the integers N>1, we can see that for N=2 and N=3, Sierpiński's matrices are:
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Figure 2. Sierpiński's matrix S(2)
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Figure 3. Sierpiński's matrix S(3)

and we can check that Sierpiński's conjecture is verified by these two matrices. But these ones do not show any kind of recursivity.

Now, let's define a new matrix that we name D(N) and in which we introduce some recursivity with the help of the recursive relation:

(N+1)² = N²+(2N+1)

In order to do that, we simply add to Sierpiński's S(N) matrix, two lines upwards with the 2N numbers immediately greater than N² and then, one column rightwards filled up with zeros except the number (N+1)² at its top, as follows:
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Figure 4. Matrix D(N) (from column C1 to column C(N+1) )
This ties three independent conjectures into one matrix. With this model, matrix D(N+1) is:
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Figure 5. Matrix D(N+1)

Using figure 4 to replace numbers up to (N+1)² of figure 5, this last one can now be written :
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Figure 6. New matrix D(N+1)

Now, let's modify Sierpiński's conjecture in order to create conjecture D which states that:


For any integer N>1, there is always at least one prime number in each line of a matrix 
D(N), filled in according to the model in figure 4.

We will now prove this conjecture by induction.

2 Proof
2.1 Step 1 : N=2 and N=3

We can easily check that conjecture D is verified when N=2 and 3:
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Figure 7. Matrix D(2)
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Figure 8. Matrix D(3)

and we can check that conjecture D is verified by these two matrices which show a beginning of recursivity that we will use in the next step.

2.2 Step 2 : From N to N+1

Now, we suppose that conjecture D is verified for a value N>3 and we will prove that it is still true for N+1.

2.2.1 Step 2a : Extension of matrix D(N+1) of figure 6

By using recursively the principle used to transform matrix D(N+1) of figure 5 into the new matrix D(N+1) of figure 6, we get at the end of the process, from any N>2 down to N=2 :
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Figure 9. Matrix D(N+1) of figure 6 recursively transformed

2.2.2 Step 2b : Conditional proof of Oppermann's conjecture

If we suppose that conjecture D is true for matrix D(N), it means that Sierpiński's, Oppermann's and Legendre's conjectures are true for N, and particularly, it means that both lines N and N+1 of matrix D(N) of figure 4 contain at least one prime number. As line parts CD and EF of these two lines are parts of Oppermann's conjecture for N and become respectively parts of lines N and N+1 of matrix D(N+1) of figure 6, these lines also contain at least one prime number. Oppermann's conjecture, which is already verified for N=2 and N=3 in matrices D(2) and D(3) of figures 7 and 8, is therefore proved for D(N+1), conditionally to the validity of conjecture D for matrix D(N).

Noticing that Oppermann's conjecture (just conditionally proved), applies to lines N to N+4 of matrix D(N+1) of figure 6, these five lines therefore contain, still conditionally, at least one prime number.

2.2.3 Step 2c : Conditional proof of Sierpiński's conjecture

Still because Oppermann's conjecture is conditionally proved, it also applies to all the lines of matrix D(N+1) of figure 9 except line 1, but as this line 1 always contains the prime number 2 when N>1, we can therefore conclude that in matrix D(N+1) of figure 9, and still conditionally, all lines contain at least one prime number.

Now, we will do the reverse operation that we did to get figure 9 from figure 6, operation that was exactly to expand the N lines of the N by N matrix of Sierpiński into 2N lines for which we have just shown that each of them contains at least one prime number. We can therefore say that this reverse operation consists, ignoring zeros, to integrate the first N lines of figure 9, each of them containing at least one prime number, into the N lines N+1 to 2N of figure 9, each of them also containing at least one prime number. At the end of this process, the N prime numbers of the first N lines of figure 9 have been integrated into the N lines N+1 to 2N of figure 9 which, at the start of the process, contained already at least one prime number. Therefore, in the new matrix D(N+1) of figure 6, the number of prime numbers by line varies from at least 1 in line N (which remains unchanged in the process) to exactly π(N) in line 1. This proves Sierpiński's conjecture for matrix D(N+1), conditionally to the validity of conjecture D for matrix D(N).

2.2.4 Step 2d : Proof of conjecture D

As we have seen that, conditionally to the validity of conjecture D for matrix D(N), lines N to N+4 of the new matrix D(N+1) of figure 6 contain at least one prime number according to the conditionally proved Oppermann's conjecture, and that lines 1 to N of this new matrix D(N+1) contain at least one prime number according to the conditionally proved Sierpiński's conjecture, we can therefore conclude that all lines of the new matrix D(N+1) of figure 6 contain at least one prime number. Conjecture D is therefore unconditionally proved.

2.2.5 Step 2e : Unconditional proofs of Oppermann's and Sierpiński's conjectures

Oppermann's and Sierpiński's conjectures which were only proved conditionally to the validity of conjecture D for matrix D(N) are now unconditionally proved, as conjecture D has been unconditionally proved in step 2d.

2.2.6 Step 2f : Proof of Legendre's conjecture

Finally, as Oppermann's conjecture has been unconditionally proved in step 2e, Legendre's conjecture is also unconditionally proved (and can be improved to two primes between N² and (N+1)²).

3 Applications

The above four proved conjectures make possible other proofs of conjectures. Three of these are given hereafter.

3.1 Conjecture dm = pm+1 - pm = O(pm1/2) 

Proof - As Oppermann's and Sierpiński's conjectures have been proved, we can therefore say that in lines 1 to N+1 of the following extended matrix S(N), there is always at least one prime number:
N+1

N²+1
...
...
High Oppermann’s Conj.
pm+1 
N²+N
 

N

pm
...
...
Low Oppermann’s Conj.
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... 
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L4

3N+1
...
...
...
...
...
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4N-1
4N 

L3
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...
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...
...
...
...
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3N 

L2
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...
...
...
...
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...
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2N 

L1

1
...
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...
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Figure 10. Extended Sierpiński’s matrix S(N) up to line N+1
As all numbers of the column on the right are composite, for any couple of lines N and N+1, the maximum possible distance dm between two consecutive prime numbers pm and pm+1  is:





dm = pm+1 - pm ≤ (N-1)+(N-1) = 2N-2


(3.1)
Verifying this on lines (3,4) and (N,N+1), we get respectively:

dm = pm+1 - pm ≤ (4N-1)-(2N+1) = 2N-2

dm = pm+1 - pm ≤ (N²+N-1)-(N²-N+1) = 2N-2

As for lines N and N+1, Oppermann's proved conjecture implies that:

(N-1)² < N²-N < pm < N² < pm+1 < N²+N < (N+1)²

we also have, taking only the positive square roots:





(N-1) < pm1/2 < N < pm+11/2 < (N+1)



(3.2)
which shows that:





pm+11/2 - pm1/2 < (N+1)-(N-1) = 2



(3.3)
But as (3.2) contains:






N < pm+11/2





3.4)
and as (3.3) can also be written:





pm+11/2 < pm1/2 + 2





(3.5)
from relations (3.1), (3.4) and (3.5) applied in that order, we get:

dm = pm+1 - pm ≤ 2N-2 < 2 pm+11/2 - 2 < 2 (pm1/2 + 2 ) - 2

or :






dm = pm+1 - pm < 2 pm1/2 + 2



(3.6)
which proves the limit searched for by Hoheisel [3] and others since 1930:






dm = pm+1 - pm = O(pm1/2)



(3.7)
where O( ) is the big O of Landau's notation. 

3.2 Andrica's conjecture
This conjecture states that for any m>0:

pm+11/2 - pm1/2 < 1

Proof - As  pm+1 - pm > 0 , with relation (3.3) we have:






0 < pm+11/2 - pm1/2 < 2




(3.8)
which gives, by division by pm1/2:





0 < (pm+11/2 - pm1/2) / pm1/2 < 2 / pm1/2



(3.9)
As, from Euclid’s result on the infinitely many primes, when m tends to infinity, we have:

2 / pm1/2 → 0
which, when integrated to (3.9), gives:





0 < (pm+11/2 - pm1/2) / pm1/2 < 2 / pm1/2 → 0


(3.10)
it implies that when m tends to infinity:






lim m → ∞ (pm+11/2 - pm1/2) = 0



(3.11)
Finally, as the quantity pm+11/2 - pm1/2 reaches a maximum of 111/2 - 71/2 = 0,67... < 1  for m=4 before tending to zero as proved above in (3.11), this proves Andrica's conjecture.

3.3 Brocard's conjecture (1904)
This conjecture states that for m ≥ 2 :






π (pm+1²) - π (pm²) ≥ 4




(3.12)
Proof - As the minimum distance between two primes is dmin = pm+1 - pm = 2 for the case of twin primes and that, for any N, we have:

(N+1) - (N-1) = 2






(N+1)² - (N-1)² = 4N




(3.13)
it is thus possible to consider the minimum case of twin primes where, for N even:

pm+1 = (N+1)

pm = (N-1)

and from (3.13):
pm+1² - pm² = 4N

Sierpiński's matrix S(N) extended up to line N+7 for an even N between twin primes, can then be written:
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...
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Legendre's proved Conj.
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Sierpiński.'s proved Conj.
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...
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Figure 11. Sierpiński's matrix S(N) extended up to line N+7 for twin primes

where “(par.” figures the apex of the parabola of horizontal axis: y = (N ± x1/2)².

As the square numbers (N-3)², (N-2)², (N-1)² = pm², (N+1)² = pm+1², (N+2)², and (N+3)² in the above matrix obtained for the minimum distance of twin primes, are on a parabola of horizontal axis, and as the already proved Sierpiński's and Legendre's conjectures provide at least one prime number per line, there is always at least 4 prime numbers between any pm² and pm+1². This proves Brocard's conjecture.
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