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1.0 Introduction 2.0 Preliminaries
Theorems are paramount because of how they can In this section we give some supporting theorems
be applied in Mathematics. As such, a good the- and their proofs.
orem should contribute substantially to develop
new ideas. We want to introduce the single most 2.3 Theorem
important theorem in finite group theory; The Let G be a group. A nonempty subset H of G is a
Lagrange theorem. subgroup of G if and only if either of the following
The Lagrange theorem states that the order of any holds;
subgroup of a finite group divides the order of the a. For all a, b ∈ H, ab ∈ H and a−1 ∈ H.
group itself and is equal to the number of cosets of b. For all a, b ∈ H, ab−1 ∈ H.
the subgroup of the group. The Lagrange theorem Proof:
is critical in analysing groups and other concepts If H is a subgroup, (1) and (2) are obviously true.
in Mathematics and is very useful in connecting Conversely, suppose H satisfies (i). Then for any
group theory and number theory because many a ∈ H, a−1 ∈ H. Hence,e = aa−1 ∈ H. Therefore,
theorems in elementary number theory and their H is a subgroup. Next, suppose that H satisfies
proofs require advanced algebraic know-how. (ii). Let a, b ∈ H, Then e = bb−1 ∈ H. Hence
Mamidi Sai Akash [1], presented applications of b−1 = eb−1 ∈ H. Therefore a(b−1)−1 . Hence H is
Lagranges theorem in relation to the order of the a subgroup of G.
element in a finite group, the order of a group, the
converse of Lagranges theorem, and the Fermats 2.4 Theorem
little theorem. Every cyclic group is Abelian.
Domenico Cantone et al [3], reported on the com- Proof:
puterized verification of Lagranges theorem, car- The elements of cyclic groups are of the form ai.
ried out with the proof assistant ÆtnaNova/Referee. Commutativity amounts to proving that
The Lagrange theorem has many applications but aiaj = ajai.
these applications are not widely known in Math- aiaj = ai+j

ematics and hence make knowledge of the La- = aj+i addition of integers is commutative
grange theorem nominal and sometimes underap- = ajai

preciated.
This piece of work sees to give a methodological 2.5 Fundamental Theorem
presentation on the various applications of the Every subgroup of a cyclic group is cyclic.
Lagrange theorem and some numerical examples Proof: See [2] for proof.
are presented.
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2.6 Lagrange’s Theorem that j 6= k and 2 ≤ k ≤ p − 2 and jk ≡ 1(modp).
Let G be a finite group, and H any subgroup of Since there are 1

2
(p − 3) such pairs, multiplying

G. The order of G is a multiple of the order of H. them together yields (p − 2)! ≡ 1(modp). Then
Thus the order of H divides the order of G. (p − 1)(p − 2)! ≡ (−1)(1)(modp) ⇒ (p − 1)! ≡
Proof: −1(modp).
Suppose that G has order n and that H has order
m. We prove that m divides n. Since the cosets 2.9 Orbit-Stabilizer Theorem
of H partition G, each element of G lies in exactly If a group G acts on a set X, then the map;
one coset. Let the number of distinct cosets be α : G/Stab(x)→ Orb(x); gStab(x) 7→ g · x
k. Each coset has exactly m elements, the same is a bijection. When G a finite group, this shows
number as H. Thus, as each of the k cosets has m that , |G| = |OrbG(x)| · |StabG(x)|, for each x ∈ X.
elements, there are km elements in all. Therefore, Proof: See [4] for details.
n = km, and m divides n.

3.0 Main Result
2.7 Theorem In this section we present some applications of
If p is a prime and gcd(a, p) = 1, then ap−1 ≡ Lagrange’s theorem together with example to il-
1(modp). In the notation of modular arithmetic, lustrate the results.
this is expressed as, if a = 2 and p = 7, 27 = 128,
and 128− 2 = 7× 18 is an integer multiple of 7. 3.1 Groups and Subgroups
Proof: Let G be a group, where G = Z8 = {0, 1, 2, 3, 4, 5, 6, 7}
Let S = {a | ap ≡ a(modp)} for p prime and Then the order of G denoted |G| = 8. Let H be
a ∈ N . Then 0 ∈ S because 0p = 0 for a subgroup of G where H = {0, 2, 4, 6} Then the
all p so 0p ≡ 0(modp). Now assume k ∈ S order of H denoted |H| = 4. Hence by Lagranges
and kp ≡ k(modp).We want to show that for theorem |G| is a multiple of the |H|.
k+ 1 ∈ S,(k+ 1)p ≡ (k+ 1)(modp). By the Bino-

mial Theorem, (k+1)p = kp+1p+
∑p−1

j=1

(
p
j

)
kp−j 3.2 Cyclic group and Sub-cyclic group

≡ k + 1(modp). Let G = Z15 = {1, 2, 4, 7, 8, 11, 13, 14} be a cyclic
If gcd(a, p) = 1, then by cancellation ap ≡ group of order 8 with generator 7.
a(modp) implies ap−1 ≡ 1(modp).If a is nega- Let H = {1, 4, 7, 13} be a subcyclic group of the
tive,then a ≡ r(modp) for some r, where 0 ≤ r ≤ cyclic group generated by < 7 > of order 4.The
p− 1. Thus ap ≡ rp ≡ r ≡ a(modp). order of H divides the order of G.

2.8 Theorem On the other hand, let Z5 = {1, 2, 3, 4} be a cyclic
If p is prime, then (p− 1)! ≡ −1(modp). group of order 4 with generator 2.

Let H = {1, 2, 4} be a subcyclic group of the cyclic
Lemma: Let d = gcd(a,m). If d | b , then group generated by < 2 > of order 2.
ax ≡ b(modm) has exactly d solutions (modm). Then by lagrange’s theorem, the order of G is a

multiple of the order of H.
Proof: If p = 2 then (2 − 1)! = 1 ≡ −1(mod2)
and if p = 3 then (3− 1)! = 2 ≡ −1(mod3) .Thus 3.3 Fermats Little theorem In Relation to
assume p is a prime greater than 3. Since (p − Lagrange’s theorem.
1) ≡ −1(modp) it suffices to show that (p− 2)! ≡ Now we look at Fermats Little theorem in relation
1(modp).By Lemma above, for each j such that to Lagrange theorem; by theorem 2.7 we know
1 ≤ j ≤ p− 1 there exists an integer k such that that ap−1 ≡ 1(modp) where p is a prime element.
1 ≤ k ≤ p − 1 such that jk ≡ 1(modp).If k = j , ⇒ ap−1 − 1 ≡ 0(modp) where p divides ap−1 − 1.
then j2 ≡ 1(modp) so j = 1 or j = p − 1.Thus if
2 ≤ j ≤ p− 2, then there exists an integer k such Let p = 7 and a = 2.
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Then 26− 1 = (2× 2× 2× 2× 2× 2)− 1 = 64− 1 whereas OrbG(x) and StabG(x) are the subgroups.
= 63, which is divisible by 7. It is easy to see that;
Let (p− 1) be our group G with order |G|.
Since p = 7⇒ (p−1) = 6 which has the elements i) OrbG((1 2)) = {(1 2), (2 3), (1 3)} and
{1, 2, 3, 4, 5, 6}. |OrbG((1 2))| = 3. Also, StabG((1 2)) = {e, (1 2)}
Let a be the subgroup with the order of H defined and |StabG((1 2))| = 2. Hence by Orbit−Stabilizer
as {a0, a1, a2, ..., ap−1} = {20, 21, 22, ..., 26} theorem, |G| = |OrbG((1 2))| · |StabG((1 2))| =
= {1, 2, 4}. Hence |H| = 3. 3× 2 = 6.
By Lagranges theorem, |H| divides |G|. Hence by Lagrange’s theorem, |G| is a multiple of

both |OrbG((1 2))| and |StabG((1 2))|.
3.4 Wilsons Theorem
Let us consider the Wilsons theorem which is ii) OrbG((1 2 3)) = {(1 2 3), (1 3 2)} and
a consequence of Fermats little theorem. Using |OrbG((1 2 3))| = 2. Also, StabG((1 2 3)) =
theorem 2.8, we illustrate some examples; {e, (1 2 3), (1 3 2)} and |StabG((1 2 3))| = 3.

Therefore by the theorem, |G| = |OrbG((1 2 3))| ·
Example I |StabG((1 2 3))| = 2× 3 = 6.
Let p = 5, where p is a prime. Consider the ele- Hence by Lagrange’s theorem, both |OrbG((1 2 3))|
ments of Z∗

5 = {1, 2, 3, 4} where Z∗
5 is a subgroup and |StabG((1 2 3))| divide |G|.

H of order 4.
Then by the theorem; (p− 1)! ≡ −1(modp). 4.0 Conclusion
⇒ p|(p− 1)! + 1. But (p− 1)! + 1 has 24 elements In this piece of work we have been able to give
given by Z∗

25 = {1, 2, 3, 4..., 24}. a methodological representation on some appli-
Representing q by 25, q > p, where q is the group cations of Lagrange’s theorem whereas practical
G of order 24 and H is a subgroup of G of order 4, illustrations have been exhibited using these appli-
hence the order of H divides the order of G. This cations which shows that the order of a subgroup
confirms the Lagrange’s theorem. divides the order of a group.

Example II Reference
Let p = 7, where p is prime. We know that the [1]Mamidi Sai Akash(2015). Applications Of La-
elements of Z∗

7 are six given by {1, 2, 3, 4, 5, 6}. grange’s Theorem In Group Theory, Volume 3,
Let H be a subgroup representing Z∗

6 . PageNo.1150-1153,ISSN : 2320-7167.
By theorem 2.8, (p − 1)! + 1 has 721 elements. .[2] W. Keith Nicholson(2007). Introduction to ab-
Hence Z∗

q = Z∗
721 has 720 elements which repre- stract algebra 3/E: A John Wiley and sons,Inc.,

sents the group G. Publication.
Applying the Lagrange’s theorem, the order of G .[3] Domenico Cantone et al(2009). A certifica-
is a multiple of the order of H. tion of Lagranges theorem with the proof assistant

ÆtnaNova/Referee.
3.5 Orbit-Stabilizer Theorem .[4] T.K Carne(2012).Geometry and Groups, PageNo.
We now look at the Orbit-Stabilizer Theorem in 5, https : //www.dpmms.cam.ac.uk/ tkc
relation to the Lagrange’s theorem. Using theo- /GeometryandGroups/GeometryandGroups.pdf
rem 2.9, we show some examples;

Examples:
Consider a group G = S3 = {e, (1 2), (1 3), (2 3),
(1 2 3), (1 3 2)} and let it act on itself by con-
jugation. By the theorem 2.9 we know that,
|G| = |OrbG(x)| · |StabG(x)|, where G is the group
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