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Abstract

This study introduces a cointegration test based on an asymmetric exponential smooth transition

autoregressive (AESTAR) error correction model (ECM). The proposed model based on the unit root

test by Sollis (2009) employs a wild bootstrap to test for cointegration. The test has time-varying and

asymmetric adjustments and is robust to heteroskedastic variances such as stochastic volatility. A

Monte Carlo simulation provides evidence that the proposed test has appropriate sizes and sufficient

power under stochastic volatility. The model is applied to the relationship between the oil price and

economic activity, demonstrating that the proposed test supports the presence of the error correction

term. This contrasts with conventional tests, which do not support this term. The empirical results

indicate the usefulness of the proposed test.
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1 Introduction

The crude oil price is an important factor in economic activity. Researchers often use error correction

models (ECM) to analyze the relationship between the crude oil price and economic activity. An ECM

usually assumes linear adjustment. This means that the error correction mechanism is stable in the

long run. However, the crude oil price and economic activity have asymmetric properties, as noted by

Hamilton (1983), Mork (1989), Çatik and Önder (2013), and Ramos and Veiga (2013), among others.

These results indicate that researchers should introduce asymmetry when using an ECM.

As a model with asymmetric adjustment, Enders and Siklos (2001) propose threshold cointegration

tests that have an abrupt regime shift of adjustment. Their tests are based on asymptotic tests and

their critical values depend on the number of variables, the deterministic terms, and the transition

variables. Additionally, asymptotic cointegration tests tend to overreject the null hypothesis of no

cointegration under heteroskedastic variances. Maki (2013) reports that cointegration tests allowing

nonlinearity have severe size distortions in the presence of stochastic volatility, generalized autoregres-

sive conditional heteroskedasticity (GARCH), and variance breaks. Such heteroskedastic variances

often appear when we investigate energy variables. For example, Vo (2009) and Vo (2011) analyze the

stochastic volatility of oil prices. Accordingly, we have to consider heteroskedastic variances when we

analyze oil prices and economic activity using an ECM with asymmetry.

This study proposes testing for the null of no cointegration against the alternative of cointegration

using an ECM test, allowing for asymmetry and heteroskedasticity. We also apply it to the rela-

tionship between the crude oil price and economic activity. Here, we employ an asymmetric smooth

transition autoregressive (AESTAR) model introduced by Sollis (2009). As pointed out by Teräsvirta

and Anderson (1992) and Skalin and Teräsvirta (2002), smooth transition models are useful because

many economic agents behave differently. As a result, the economy has time-varying and asymmetric

smooth regime shifts. Kapetanios et al. (2006), Kiliç (2011), and Maki (2015) introduce time-varying

ESTAR-ECM. The ESTAR model has a persistent process near equilibrium, but has a strong con-

vergence when an equilibrium error is sufficiently far from equilibrium. ESTAR models have only
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time-varying properties, which are useful when investigating the relationships among economic vari-

ables in the presence of various costs. However, using an AESTAR model enables us to build a model

with both time-varying and asymmetry. Kiliç (2011) also developed an asymmetric error correction

model using a logistic smooth transition function, with a test based on asymptotic sup-type tests.

This study introduces a test using a wild bootstrap. The wild bootstrap developed by Liu (1988) can

replicate resampling that does not depend on the pattern of heteroskedastic variances. In addition, the

test does not need critical values that correspond to the number of variables, the deterministic terms,

and the transition variables. Therefore, the proposed test can accurately investigate asymmetric error

correction under stochastic volatilities.

Monte Carlo simulations demonstrate that the proposed test has appropriate size and sufficient

power when compared with conventional tests under stochastic volatilities. This implies that the

proposed test leads to reliable results. Then, by applying the model to the relationship between the

crude oil price and economic activity, we provide evidence that the proposed test supports the presence

of the error correction term, whereas conventional tests do not support this term. The empirical results

indicate that the asymmetric error correction mechanism affects the short-run dynamics of economic

activity.

The rest of this paper is organized as follows. Section 2 introduces the test for the AESTAR-ECM

using a wild bootstrap. Section 3 presents the size and power properties of the proposed tests. Section

4 provides empirical applications to the relationship between the crude oil price and economic activity.

Finally, Section 5 concludes the paper.

2 Wild bootstrap test for the AESTAR-ECM

This study introduces a test for the AESTAR-ECM using a wild bootstrap. The AESTAR-ECM allows

for an asymmetric smooth transition adjustment toward the long-run equilibrium. We consider the

n×1 vector of observable I(1) variables zt = (yt,x
′
t)
′, where yt is a scalar value and xt = (x1t, · · · , xmt)

′

is an m × 1 vector. Following Kapetanios et al. (2006) and Kiliç (2011), who proposed ESTAR-

ECMs based on asymptotic theories, we analyze at most one conditional cointegration relationship
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between yt and x′
t. The proposed test considers the following AESTAR-ECM and the marginal vector

autoregressive (VAR) model for ∆xt:

∆yt = Gt(γ1, ut−d){St(γ2, ut−d)ρ1 + (1− St(γ2, ut−d))ρ2}ut−1 + ω′∆xt +Σp
i=1ψ

′
i∆zt−i + et, (1)

∆xt = Σp
i=1Γxi∆zt−i + ηt, (2)

where et and ηt are zero-mean errors, and ω, ψi, and Γxi are an m × 1 vector, n × 1 vector, and

m × n matrix, respectively. Then, ut = yt − β′xt is an error correction term, with β′ as the m × 1

cointegrating vector. We assume that an n × 1 vector zt is generated by zt = (yt,x
′
t)
′ = zt−1 + ϵt,

where ϵt are i.i.d. with mean zero, a positive definite variance-covariance matrix Σ, and E|ϵt|s < ∞

for some s > 4. Here, ρ1 and ρ2 are adjustment parameters of ECM. While a symmetric ECM has

ρ1 = ρ2, ρ1 ̸= ρ2 allows for an asymmetric ECM.

The transition functions Gt(γ1, ut−d) and St(γ2, ut−d) are given by

Gt(γ1, ut−d) = 1− exp(−γ1u2t−d), γ1 ≥ 0, (3)

St(γ2, ut−d) = [1 + exp(−γ2ut−d)]
−1, γ2 ≥ 0, (4)

where ut−d is a transition variable and d is a delay parameter. The AESTAR model with (3) and (4)

was developed by Sollis (2009), who proposed a null hypothesis of a unit root against the AESTAR

model. The AESTAR model has the properties of both an exponential function and a logistic function,

and Gt(γ1, ut−d) and St(γ2, ut−d) take values between zero and one. Here, Gt(γ1, ut−d) is near 1 when

γ1u
2
t−d is large, and near 0 when γ1u

2
t−d is small, and allows for a smooth transition adjustment for

the error correction mechanism. The long-run dynamics affect the short-run dynamics of ∆yt when

Gt(γ1, ut−d) is closer to one, but do not do so when Gt(γ1, ut−d) is closer to zero. The symmetric

ESTAR-ECM developed by Kapetanios et al. (2006) and Kiliç (2011) has ρ1 = ρ2 in (1). While

Kapetanios et al. (2006) used only ut−1 as the transition variable, Kiliç (2011) took into account ut−d

as the transition variable. In the model, St(γ2, ut−d) allows for the asymmetric adjustment of the ECM.

The value of St(γ2, ut−d) is close to one when ut−d > 0 and γ2ut−d is large, and is close to zero when

ut−d < 0 and γ2ut−d is small. The existence of St(γ2, ut−d) constitutes a logistic smooth transition
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between ρ1 and ρ2. The logistic smooth transition function nests a two-regime threshold autoregressive

(TAR) model, because St(γ2, ut−d) with γ2 = ∞ is an indicator function that takes only the value 0 or

1. From the properties of Gt(γ1, ut−d) and St(γ2, ut−d), the error correction mechanism works when

ρ1 < 0, ρ2 < 0, and Gt(γ1, ut−d) > 0, but does not work when ρ1 = ρ2 = 0 or Gt(γ1, ut−d) = 0.

The test for the null hypothesis of no cointegration against the alternative hypothesis of the

AESTAR-ECM focuses on the parameter γ1. The null and alternative hypotheses are as follows:

H0 : γ1 = 0, H1 : γ1 > 0. (5)

Here, ρ1, ρ2, and γ2 are nuisance parameters under the null hypothesis and are identified under the

alternative hypothesis. The solution of the identification problem is obtained using a first-order Taylor

series approximation around γ1 = 0 for (1). The approximation gives the equation

∆yt = ρ1γ1u
2
t−dut−1St(γ2, ut−d)+ ρ2γ1u

2
t−dut−1(1−St(γ2, ut−d))ρ2}+ω′∆xt+Σp

i=1ψ
′
i∆zt−i+ ẽt, (6)

where ẽt is an error term, including the remainder from the Taylor approximation. Note that γ2 in

(6) is still unidentified under the null hypothesis. Following Sollis (2009), we replace St(γ2, ut−d) with

S∗
t (γ2, ut−d) = St(γ2, ut−d)−0.5 and, further, take a Talyor approximation around γ2 = 0 for (6). The

result gives the equation

∆yt = ϕ1u
2
t−dut−1 + ϕ2u

3
t−dut−1 + ω′∆xt +Σp

i=1ψ
′
i∆zt−i + υt, (7)

where υt is an error term. The null hypothesis for γ1 is written as H0 : ϕ1 = ϕ2 = 0. We denote θ and

ht as θ = (ϕ1, ϕ2, ω
′, ψ′

1, · · · , ψ′
p)

′ and ht = (u2t−dut−1, u
3
t−dut−1,∆x′

t,∆z′t−1, · · · ,∆z′t−p)
′. The Wald

statistic for the hypothesis is given by

WAS =
1

σ̂2
ϕ̂′
[
R

( T∑
t=1

hth
′
t

)−1

R′
]−1

ϕ̂, (8)

where ϕ̂ = (ϕ̂1, ϕ̂2)
′ is the ordinary least squares (OLS) estimate of ϕ1 and ϕ2, σ̂

2 is the least squared

estimate of the residual variance for (7), and R is a 2× (2+m+np) matrix, such that Rθ̂ = ϕ̂. When

we test for cointegration, the cointegrating vector is usually unknown. For this reason, we use the

residual ût = yt − β̂′xt instead of ut.
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If researchers employ (8), they need asymptotic critical values to test using the AESTAR-ECM.

However, asymptotic critical values depend on the number of regressions and the type of deteministic

terms. More importantly, tests using asymptotic values are influenced by heteroskedastic variances,

even if we use the heteroskedasticity-consistent covariance matrix estimators (HCCME) proposed by

White (1980). Maki (2013) reports that asymptotic cointegration tests, particularly those allowing

nonlinearity, have severe size distortions in the presence of heteroskedastic variances, regardless of the

use of HCCME. Therefore, we do not use the asymptotic test, but instead apply test (8) using the wild

bootstrap. The test does not depend on the number of regressions, the type of deterministic terms,

and heteroskedastic variances. The resample using the wild bootstrap can preserve the properties of

unknown heteroskedastic variance in bootstrap samples. The algorithm of the test is as follows.

Step 1: We estimate (7) and obtain the residuals υ̂t. Using estimated parameters and the residuals,

we generate a new process under the null hypothesis of no cointegration

∆y∗t = ω̂′∆xt +Σp
i=1ψ̂

′
i∆zt−i + υ∗t , (9)

where υ∗t = ϵtυ̂t and ϵt is such that E(ϵt) = 0 and E(ϵ2t ) = 1. We use a Rademacher distribution, such

that ϵt = 1 and ϵt = −1, both with a probability of 0.5. The initial observations y∗0 and y∗1 are set to

zero and the sample value y1, respectively.

Step 2: We regress y∗t on xt and obtain the residual. The error correction term based on the bootstrap

sample is given by

û∗t = y∗t − β̂′bxt, (10)

where β̂′b is the estimate of the cointegration vector in the bootstrap sample. We use the residuals as

the error correction term for the bootstrap. When the long-run equilibrium has a constant (or both a

constant and a trend), the demeaned (or demeaned and detrended) residuals are employed.

Step 3: We use the generated bootstrap sample and have the following regression:

∆y∗t = ϕ1bu
∗2
t−du

∗
t−1 + ϕ2bu

∗3
t−du

∗
t−1 + ω′

b∆xt +Σp
i=1ψ

′
bi∆zt−i + ζt, (11)

where ζt is an error term.
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Step 4: We compute the test statistic (8) in (11), and denote it with the bootstrap sample as W b
AS .

Step 5: We repeat the bootstrap iteration from Step 1 to Step 4 a number of times. Finally, we

obtain the bootstrap p-value as follows:

Pb(WAS) =
1

B

B∑
j=1

1(W b
AS > WAS), (12)

where B is the number of bootstrap iterations and 1(·) is an indicator function, such that 1(·) is 1 if

(·) is true, and 0 otherwise. It is preferable to set the number bootstrap to more than 1,000.

3 Monte Carlo simulations

In this section, we present the size and power properties of the proposed test. We compare the

performance of the test with the tests of Engle and Granger (1987) and Kiliç (2011). The test of

Engle and Granger (1987) is a standard linear ECM and the test of Kiliç (2011) is an LSTAR-ECM.

We denote the tests of Engle and Granger (1987), Kiliç (2011), and the wild bootstrap test of (8) as

EG, KL, and ASWB, respectively. For comparison, we also evaluate the performances of EG and KL

using the HCCME, which are denoted as EG(W) and KL(W), respectively. All the tests employ the

demeaned model and assume there is no lag, for simplicity. The nominal size of the tests is set at

0.05, and sample sizes are considered for T = 200 and 400. For all the experiments, the number of

replications for the Monte Carlo simulations is 10,000 and the number of bootstrap replications for

the wild bootstrap test is 1,000.

We investigate the rejection frequency generated from:

∆yt = λ∆xt + u1t, (13)

∆xt = u2t, (14)

ut = yt − βxt, (15)

where λ = 1 and β = 1. The errors u1t and u2t are given byu1t
u2t

 ∼ i.i.d.N

σ21 0

0 σ22

 , (16)
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where σ22 = 1. Then, σ21 is set to 1 for the case of homoskedastic variance with a normal error. We

consider three types of stochastic volatilities for σ21: stochastic volatility, markov switching stochastic

volatility, and threshold stochastic volatility. The crude oil price and economic variables have those

stochastic volatilities (e.g., Smith, 2002; So and Choi, 2008; Vo, 2009, 2011; and Chen, et al., 2013).

Therefore, it is important to evaluate rejection frequencies under stochastic volatilities.

The u1t for stochastic volatility (SV) is generated from

u1t = κt exp(ht/2), (17)

ht = δht−1 + ξt, (18)

where κt ∼ i.i.d.N(0, 1), and we set ξt to ξt ∼ i.i.d.N(0, 0.25). Then, SV1 and SV2 have the parameters

δ = 0.95 and 0.7, respectively.

For markov switching volatility (MSV), ht is given by

ht = δ0ht−1St + δ1ht−1(1− St) + ξt, (19)

where St is a random variable that takes a value of 0 or 1, and δ0 and δ1 are set to 0.95 and 0.7,

respectively. The value of St depends on the transition probabilities, such as P (St+1 = 0|St = 0) = p00

and P (St+1 = 1|St = 1) = p11. When the transition probabilities P (St+1 = 0|St = 1) = p10 =

1 − p00 and P (St+1 = 1|St = 0) = p01 = 1 − p11 are high, ht have frequent switches between

δ0 and δ1. Conversely, low p10 and p01 lead to persistent switches between δ0 and δ1. For the

transition probabilities, MSV1 and MSV2 have parameters p00 = p11 = 0.98 for persistent switches,

and p00 = p11 = 0.7 for frequent switches.

For threshold stochastic volatility (TSV), ht is replaced by

TSV1 : ht = δ0ht−11{ut−1 > 0}+ δ1ht−11{ut−1 ≤ 0}+ ξt (20)

TSV2 : ht = (µ0 + δ0ht−1)1{ut−1 > 0}+ (µ1 + δ1ht−1)1{ut−1 ≤ 0}+ ξt, (21)

where 1{·} is the indicator function and its value depends on whether {·} is true. While TSV1 has

shifts only between δ0 and δ1, TSV2 also has shifts between constant parameters µ0 and µ1 in addition

to δ0 and δ1. We set (δ0, δ1) and (µ0, µ1) to (δ0, δ1) = (0.95, 0.7) and (µ0, µ1) = (−0.5,−1).
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The rejection frequencies of the tests to compare empirical sizes are presented in Table 1. The

tests other than KL(W) perform well for homoskedastic variance. The rejection frequencies of EG,

EG(W), KL, and ASWB are close to the nominal size, 0.05. In addition, KL(W) slightly overrejects

the null hypothesis. In the presence of stochastic volatilities, EG and KL tend to have size distortions.

When the error has SV1, the rejection frequencies of EG and KL are more than 0.1. The overrejection

decreases for SV2. This implies that the persistence of stochastic volatility affects the empirical sizes

of the asymptotic tests. Although EG(W) and KL(W) perform better than EG and KL do, they also

have slight size distortions for SV1 or SV2. Unlike the asymptotic tests, ASWB is not influenced by

stochastic volatility. The rejection frequencies of ASWB for both SV1 and SV2 are close to 0.05.

EG and KL also have size distortions when the volatility is generated by MSSV and TSV. Compared

with the results between MSSV1 and MSSV2, the distortions of EG and KL for MSSV1 are larger

than those for MSSV2. The persistent switches lead to overrejections for asymptotic tests and spurious

cointegration. While EG(W) has small underrejections for MSSV and TSV, KL(W) has acceptable

empirical sizes, particularly for T = 400. The empirical size of ASWB does not depend on the type of

volatility and ASWB performs better, regardless of the sample size. The size comparison reveals that

ASWB leads to a reliable result.

Tables 2 and 3 illustrate the power comparison. While Table 2 presents the results under cointe-

gration with a normal error, Table 3 reports the results under cointegration with SV1. For the data

generated process (DGP) with an error correction term, (13) is replaced by

∆yt = λ∆xt +Gt(γ1, ut−1){St(γ2, ut−1)ρ1 + (1− St(γ2, ut−1))ρ2}ut−1 + u1t, (22)

where Gt(·) and St(·) are given by

Gt(γ1, ut−1) = 1− exp(−γ1u2t−1) (23)

St(γ2, ut−1) = [1 + exp(−γ2ut−1)]
−1. (24)

We set adjustment parameters ρ1 and ρ2 to (ρ1, ρ2) = {(−0.15,−0.05) and (−0.5,−0.05)}. Here,

(ρ1, ρ2) = (−0.5,−0.05) has stronger asymmetry than (ρ1, ρ2) = (−0.15,−0.05). The smoothness
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parameters for Gt and St have four types: (γ1, γ2) ={(0.01, 1), (0.01, 10), (0.1, 1), and (0.1, 10)}.

Then, γ1 and γ2 determine the speed of the smooth transition of Gt and St, respectively. Larger γ1

and γ2 make the model approximately linear.

In Table 2, the powers of EG(W) and KL(W) are higher than those of EG and KL because EG(W)

and KL(W) overreject the null hypothesis, particularly for T = 200, as illustrated by Table 2. It can

be observed that ASWB outperforms the other tests when the speed of the smooth transition is slow

for (ρ1, ρ2) = (−0.15,−0.05). This tendency becomes clear for (ρ1, ρ2) = (−0.5,−0.05). For example,

when the error correction term has the parameters (ρ1, ρ2) = (−0.5,−0.05) and (γ1, γ2) = (0.01, 10)

and the sample size is T = 400, the powers of EG, EG(W), KL, KL(W), and ASAB are 0.398, 0.361,

0.341, 0.357, and 0.524, respectively. However, we cannot observe different power among the tests for

(ρ1, ρ2) = (−0.15,−0.05) and (γ1, γ2) = {(0.1, 1) and (0.01, 10). These results indicate that ASWB

is superior to the other tests when the error correction term is asymmetrical and has a slow smooth

transition.

When the error has SV1, as presented in Table 3, EG and KL have higher powers. This is clearly

because EG and KL overreject the null hypothesis under SV1 and has size distortions. In contrast,

EG(W) and KL(W) are inferior to the other tests. The inferior performances are caused by under-

rejecting the null hypothesis reported in Table 1. We observe that the power of ASWB is lower than

those of EG and KL, but higher than those of EG(W) and KL(W). More importantly, ASWB does not

have overrejections and underrejections, even in the presence of heteroskedastic variances. Therefore,

ASWB leads to reliable results.

4 Application to the relationship between the oil price and economic
activity

The crude oil price plays an important role in economic activity. Many studies, including Hamilton

(1983), Mork (1989), Çatik and Önder (2013), and Ramos and Veiga (2013) have shown that the

impact of the crude oil price on economic activity is asymmetric. We explore this by applying ASWB

to the relationship between the oil price and economic activity. We use the crude oil price as the
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variable xt in (1) and four economic indexes as the variable yt in (1). The four economic indexes

are the beverage index, industrial production index, agricultural index, and metal price index. The

asymmetric response of oil prices to these variables is discussed by, for example, Meyer and Cramon-

Taubadel (2004), Hammoudeh and Fattouh (2010), and Ibrahima and Chancharoenchaib (2014). The

monthly data obtained from the International Monetary Fund consist of 408 observations from January

1980 to December 2013. The series codes for the crude oil price, beverage index, industrial production

index, agricultural index, and metal price index in the IMF data are POILAPSP Index, PBEVE Index,

PINDU Index, PRAWM Index, and PMETA Index, respectively. All the tests include aPo constant

and a trend as deterministic terms. The lag lengths are selected by the Akaike information criterion

(AIC). Although we do not present the results of the unit root tests of the variables, the standard

tests including Dickey-Fuller type tests provide evidence of I(1).

Table 4 presents the empirical results of the cointegration tests. The p-values were obtained by

our simulation. We determined the delay parameter d of KL, KL(W), and ASWB as d to minimize

the p-values from d = 1 to d = 12. The p-values of EG and EG(W) are larger than 0.1, and none

reject the null hypothesis. We can see different results for KL and KL(W). The p-values of KL are

less than 0.05 or 0.1, except for the agricultural index. Then, KL rejects the null hypothesis of no

cointegration for the other three indexes. However, the p-values of KL(W) are larger than those of

KL. Thus, KL(W) rejects the null hypothesis for the industrial production index and the metal price

index only at the 10% significance level. As illustrated in Section 3, KL has size distortions in the

presence of heteroskedastic variances, which are reduced by KL(W). Accordingly, it appears that the

difference between KL and KL(W) is caused by heteroskedastic variances. The p-values of ASWB are

less than 0.05 and ASWB strongly rejects the null hypothesis. ASWB has better empirical sizes, even

in the presence of heteroskedastic variances. Accordingly, the empirical results of ASWB are reliable

and provide evidence that the relationship between the crude oil price and economic activity has a

asymmetric error correction mechanism.

In order to further investigate the asymmetric error correction mechanism, we estimate the following
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model:

∆yt = Gt(γ1, ut−d){St(γ2, ut−d)ρ1 + (1− St(γ2, ut−d))ρ2}ut−1 + ω′∆xt +Σp
i=1ψ

′
i∆zt−i + et. (25)

Table 5 reports the estimation results. The smoothness parameters γ1 and γ2 are determined such

that the sum of squared residuals of (25) are minimized. It can be seen that the error correction terms

are asymmetric. For example, the error correction term between the crude oil price and the industrial

production index has adjustment parameters (ρ1, ρ2) = (−0.184,−0.276). This indicates that, while

the adjustment speed approaches -0.247 and the adjustment mechanism becomes faster if ut−9 is

negative and small, it approaches -0.184 if ut−9 is positive and large. In contrast, the error correction

mechanism almost never performs when ut−9 is near to zero, because Gt(γ1, ut−9) has a value near

to zero. These results indicate that the error correction mechanism depends on the size of a selected

transition variable, as well as its sign. As demonstrated by the Monte Carlo simulations, ASWB

performs better when an error correction term has strong asymmetry and a slow smooth transition.

The findings from Table 5 confirm that the relationship between the crude oil price and economic

activity has an asymmetric error correction mechanism.

5 Summary

This study introduced a cointegration test based on an asymmetric exponential smooth transition

autoregressive (AESTAR) error correction model (ECM). The proposed test employs a wild bootstrap

to test for cointegration in order to avoid size distortions in the presence of heteroskedastic variances.

From the properties, the developed test has time-varying and asymmetric adjustments, and is robust

to heteroskedastic variances such as stochastic volatility. In fact, the results from the Monte Carlo

simulation show that the proposed test has appropriate empirical size and sufficient power, with or

without stochastic volatility. When we investigated the impact of crude oil prices on economic activity,

the proposed test strongly supported the presence of the error correction term. The empirical results

provided evidence that the relationship between the crude oil price and economic activity has an

asymmetric smooth transition error correction mechanism. Thus, the proposed test is useful when
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analyzing a long-run relationship with an asymmetric smooth transition adjustment under stochastic

volatilities, as observed in economic variables such as commodity prices and asset prices.
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Table 1: Empirical sizes

EG EG(W) KL KL(W) ASWB

Normal
T = 200 0.053 0.058 0.052 0.075 0.049
T = 400 0.055 0.052 0.051 0.066 0.050
SV1

T = 200 0.111 0.025 0.142 0.049 0.048
T = 400 0.102 0.022 0.144 0.037 0.050
SV2

T = 200 0.057 0.049 0.062 0.065 0.053
T = 400 0.054 0.046 0.057 0.057 0.052
MSSV1
T = 200 0.084 0.037 0.105 0.051 0.037
T = 400 0.080 0.028 0.105 0.045 0.050
MSSV2
T = 200 0.067 0.040 0.081 0.059 0.049
T = 400 0.063 0.039 0.067 0.049 0.049
TSV1
T = 200 0.065 0.043 0.077 0.059 0.056
T = 400 0.058 0.038 0.066 0.052 0.054
TSV2
T = 200 0.068 0.041 0.075 0.058 0.049
T = 400 0.060 0.038 0.066 0.051 0.053
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Table 2: Powers under an normal error

EG EG(W) KL KL(W) ASWB

(ρ1, ρ2) = (−0.15,−0.05)
(γ1, γ2) = (0.01, 1)

T = 200 0.127 0.135 0.104 0.140 0.126
T = 400 0.256 0.242 0.215 0.249 0.307

(γ1, γ2) = (0.01, 10)
T = 200 0.120 0.128 0.103 0.137 0.125
T = 400 0.249 0.234 0.206 0.228 0.312

(γ1, γ2) = (0.1, 1)
T = 200 0.337 0.339 0.292 0.348 0.359
T = 400 0.903 0.872 0.862 0.863 0.843

(γ1, γ2) = (0.1, 10)
T = 200 0.327 0.331 0.283 0.338 0.346
T = 400 0.905 0.873 0.850 0.858 0.836

(ρ1, ρ2) = (−0.5,−0.05)
(γ1, γ2) = (0.01, 1)

T = 200 0.160 0.162 0.150 0.181 0.190
T = 400 0.405 0.365 0.347 0.358 0.535

(γ1, γ2) = (0.01, 10)
T = 200 0.155 0.159 0.144 0.173 0.189
T = 400 0.398 0.361 0.344 0.357 0.524

(γ1, γ2) = (0.1, 1)
T = 200 0.591 0.550 0.574 0.575 0.694
T = 400 0.987 0.973 0.985 0.977 0.983

(γ1, γ2) = (0.1, 10)
T = 200 0.546 0.507 0.513 0.520 0.652
T = 400 0.983 0.966 0.980 0.971 0.979
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Table 3: Powers under stochastic volatility

EG EG(W) KL KL(W) ASWB

(ρ1, ρ2) = (−0.15,−0.05)
(γ1, γ2) = (0.01, 1)

T = 200 0.300 0.074 0.327 0.113 0.153
T = 400 0.654 0.151 0.658 0.189 0.378

(γ1, γ2) = (0.01, 10)
T = 200 0.302 0.075 0.332 0.118 0.152
T = 400 0.651 0.144 0.660 0.189 0.370

(γ1, γ2) = (0.1, 1)
T = 200 0.526 0.161 0.530 0.216 0.259
T = 400 0.893 0.363 0.907 0.469 0.503

(γ1, γ2) = (0.1, 10)
T = 200 0.523 0.165 0.525 0.222 0.261
T = 400 0.893 0.344 0.903 0.455 0.514

(ρ1, ρ2) = (−0.5,−0.05)
(γ1, γ2) = (0.01, 1)

T = 200 0.417 0.110 0.457 0.159 0.290
T = 400 0.798 0.239 0.799 0.314 0.604

(γ1, γ2) = (0.01, 10)
T = 200 0.420 0.109 0.454 0.164 0.291
T = 400 0.803 0.234 0.805 0.312 0.590

(γ1, γ2) = (0.1, 1)
T = 200 0.688 0.280 0.729 0.386 0.504
T = 400 0.933 0.508 0.954 0.690 0.732

(γ1, γ2) = (0.1, 10)
T = 200 0.676 0.265 0.710 0.362 0.490
T = 400 0.933 0.505 0.953 0.675 0.727
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Table 4: Empirical results

EG EG(W) KL KL (W) ASWB

Beverage index -3.208 -2.778 13.71 9.429 31.98
(0.148) (0.309) (0.081) (0.274) (0.000)

ut−d d = 1 d = 12 d = 9

Industrial production index -2.582 -1.978 17.36 14.02 25.54
(0.397) (0.696) (0.021) (0.062) (0.018)

ut−d d = 12 d = 12 d = 9

Agricultural index -2.965 -2.691 10.58 9.172 18.94
(0.225) (0.344) (0.187) (0.275) (0.029)

ut−d d = 7 d = 7 d = 7

Metal price index -2.042 -1.420 16.99 13.43 26.36
(0.660) (0.875) (0.020) (0.073) (0.042)

ut−d d = 1 d = 12 d = 12

The p−values are in the parentheses.

Table 5: AESTAR estimates

tv ρ1 ρ2 γ1 γ2

Beverage index ut−9 -0.186 -0.062 0.0004 3.816
(0.050) (0.039)

Industrial production index ut−9 -0.184 -0.276 0.0006 6.264
(0.055) (0.086)

Agricultural index ut−7 -0.148 -0.222 0.0007 7.001
(0.052) (0.091)

Metal price index ut−12 -0.088 -0.054 0.028 4.777
(0.028) (0.021)

tv is a transition variable determined in Table 4. The heteroskedastic-robust standard errors are in
the parentheses.
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