$L - Q - FUZZY QUOTIENT \zeta - GROUP$

Mourad Oqla Massa'deh¹, Hazem''Moh'd said'' Hatamleh²

¹Associate Professor, Department of Applied Science, Ajloun College, Al – Balqa' Applied University – Jordan Moradoqla2000@yahoo.com

²Associate Professor, Department of Applied Science, Ajloun College, Al – Balqa' Applied University – Jordan

Abstract :

In this paper, we define a new algebraic structure of L - Q- fuzzy sub ζ – groups and L - Q – fuzzy quotient ζ – groups and discussed some properties. We also defined $\zeta - Q$ - homomorphism over L - Q – fuzzy quotient ζ – groups. Some related results have been derived.

Key Words: L – Fuzzy subset, L – Q – Fuzzy subset, ζ – Q – Homomorphism, L – Q – fuzzy Sub ζ – groups, L – Q – fuzzy quotient ζ – groups.

Mathematics Subject classification: 04A72; 03E72; 03F55; 20N25.

1. Introduction

Zadeh [12] introduced the notion of a fuzzy subset of a set X as a function from X into [0, 1]. Goguen in [5] replaced the lattice [0, 1] by a complete lattice L and studied L – fuzzy subsets. Rosenfeld [1] used this concept and developed some results in fuzzy group theory. Solairaju and Nagarajan [2, 3] introduced and defined a new algebraic structure of Q – fuzzy groups. Saibaba [4] introduced the concept of L – fuzzy sub ζ – groups and L – fuzzy ζ – ideal of ζ – groups. Sundrerrajan et al [11] studied the concepts of anti Q – L – fuzzy ζ – group, we invite the reader to consult the cited work [6, 7, 8, 9, 10] a non gathers. Here in this paper we introduce the notion of L – Q – fuzzy quotient ζ – groups and there define ζ – Q – homomorphism over L – Q – fuzzy quotient ζ – groups.

2. Preliminaries

- **2.1 Definition:**[5] A post (L, \leq) is called a lattice if supremum of a, b and infimum of
- a, b exist for all a, $b \in L$.
- **2.2 Definition:** A lattice ordered group (ζgroup) is a system $G = (G, +, \leq)$ where
 - 1. (G, +) is a group
 - 2. (G, \leq) is a lattice
 - 3. The inclusion is invariant under all translations $x \le y \Rightarrow a + x + b \le a + y + b$ for all $a, b \in G$.
- **2.3 Definition:**[5] Let X be a non empty set $L = (L, \leq)$ be a lattice with least element 0 and greatest element 1. An L fuzzy subset μ of X is a function $\mu : X \rightarrow L$.
- **2.4 Definition:** Let X be a non empty set $L = (L, \leq)$ be a lattice with least element 0 and greatest element 1 and Q be a non empty set . A L - Q – fuzzy subset μ of X is a function $\mu : X \times Q \rightarrow L$.
- **2.5 Definition:** An L Q fuzzy subset μ of G is said to be an L Q fuzzy sub ζ group (LQFS ζ G) of G if for any x, y \in G. 1. μ (xy, q) \geq min{ μ (x, q), μ (y, q)} 2. μ (x⁻¹, q) = μ (x, q)
 - 3. μ (x \vee y, q) \ge min{ μ (x, q), μ (y, q)}
 - 4. μ (x \wedge y, q) \geq min{ μ (x, q), μ (y, q)}.
- **2.6 Theorem:** If μ is an L Q fuzzy sub ζ group of G, then $\mu(x, q) \le \mu(e, q)$ for $x \in G$ and e is the identity element in G.
- 2.7 Theorem: Let μ be an L − Q − fuzzy sub ζ − group of G, then H = {x ∈G, q ∈ Q; μ(x, q) = μ(e, q)} is either empty or a sub ζ − group of G.
 Proof:

If no element satisfies this condition, then H is empty. If x, y satisfy this condition, then μ (xy ⁻¹, q) \geq min{ μ (x, q), μ (y ⁻¹, q)} = min{ μ (e, q), μ (e, q)}= μ (e, q) and μ (e, q) $\geq \mu$ (xy ⁻¹, q), since μ is an L – Q – fuzzy sub ζ – group of G hence μ (e, q) = μ (xy ⁻¹, q) thus xy ⁻¹ \in H, let x, y \in H then μ (x, q) = μ (e, q) and μ (y, q) = μ (e, q). μ (x \vee y, q) \geq min{ μ (x, q), μ (y, q)} \geq min{ μ (e, q), μ (e, q), μ (e, q)}= μ (e, q) then μ (x \vee y, q) = μ (e, q) hence x \vee y \in H, also μ (x \wedge y, q) \geq min{ μ (x, q), μ (y, q)} \geq min{ μ (x, q), μ (y, q)} = μ (e, q) then μ (x \vee y, q) = μ (e, q) hence x \wedge y \in H, therefore H is sub ζ – group of an ζ – group G.

- **2.8 Definition:** An L Q fuzzy sub ζ group μ of G is called an L Q fuzzy normal sub ζ group (LQFNS ζ G) of G if for any x, y \in G μ (xyx⁻¹, q) $\geq \mu$ (y, q).
- **2.9 Theorem:** Let G be an ζ group and μ be an L Q fuzzy sub ζ group of G then the following conditions are equivalent.

1. μ is an L – Q – fuzzy normal sub ζ – group of G 2. μ (xyx ⁻¹, q) = μ (y, q) for all x, y \in G. 3. μ (xy, q) = μ (yx, q) for all x, y \in G.

2.10 Corollary: Let μ be an L - Q – fuzzy normal sub ζ – group of G, then $H = \{x \in G, q \in Q; \mu(x, q) = \mu(e, q)\}$ is either empty or a normal sub ζ – group of G. **Proof:**

By Theorem 2.7 H is a sub ζ – group of G, then for any $x \in G$ and $y \in H$ μ (xyx ⁻¹, q) = μ (y, q) = μ (e, q) since μ is an L – Q – fuzzy normal sub ζ – group of G and $y \in H$ hence xyx ⁻¹ \in H thus H is a normal sub ζ – group of G, therefore H is either empty or a normal sub ζ – group of G.

- **2.11 Lemma:** Let μ be an L Q fuzzy sub ζ group of G. Then $x\mu = y\mu$ if and only if $\mu(x^{-1}y, q) = \mu(y^{-1}x, q) = \mu(e, q)$ for all $x, y \in G$ and $q \in Q$. **Proof:** Straightforward.
- **2.12 Definition:** Let G_1 , G_2 be any two ζ groups. Then the function Ψ : $G_1 \rightarrow G_2$ is said to be ζQ homomorphism if for all x, $y \in G_1$
 - 1.. Ψ (xy, $\Psi(\mathbf{x},$ Ψ(y, q) = q) q) 2. Ψ (x \vee y, q) = max{ $\Psi(\mathbf{x},$ $\Psi(\mathbf{y},$ q), q)}
 - 3. Ψ (x \wedge y, q) = min{ $\Psi(x, q), \Psi(y, q)$ }.
- **2.13 Definition:** An L Q fuzzy subset μ of X is said to bare sup property if, for any subset A of X, if there exist $a_0 \in A$ such that $\mu(a_0, q) = \bigvee_{a \in A} \mu(a, q)$.
- **2.14 Definition:** Let Φ be a function from a set X into a set Y. An L Q fuzzy subset μ of X is called Φ invariant if $\Phi(x, q) = \Phi(y,q)$ then $\mu(x,q) = \mu(y,q)$ where x, y \in X and q \in Q.
- **2.15 Definition:** Let G_1 , G_2 be any two ζ groups. Then the function Ψ : $G_1 \rightarrow G_2$ is said to be ζQ isomorphism if for all x, $y \in G_1$ 1.. Ψ (xy, q) = $\Psi(x, q)$ $\Psi(y, q)$ 2. Ψ is bijection.

3. Some Results of L - Q - Fuzzy Quotient ζ – Group

3.1 Theorem: Let μ be an L - Q - fuzzy sub ζ - group of G with identity e. Let H = {x ∈ G, q ∈ Q; μ(x, q) = μ(e, q)}. Consider the map μ*: G / H → L defined by μ* (xh, q) = ∨ μ(xh, q) for all h ∈ H, x ∈ G and q ∈ Q. Then

H is a normal sub ζ - group of G.
The map μ* is well defined.
μ* is an L - Q - fuzzy sub ζ - group of G/ H.

Proof:

Since μ is an L - Q - fuzzy normal sub ζ – group of G 1. H = {x \in G, q \in Q; $\mu(x, q) = \mu(e, q)$ }let y \in H , x \in G and q \in Q then $\mu(y, q) = \mu(e, q)$, now $\mu(xyx^{-1}, q) = \mu(y, q) = \mu(e, q)$, since μ is an L - Q - fuzzy normal sub ζ – group of G, Hence xyx ⁻¹ \in H.

Let x, y \in H then $\mu(x, q) = \mu(e, q) = \mu(y, q)$

 $\mu (x \lor y, q) \ge \min\{ \mu(x, q), \mu(y, q)\} = \min\mu(e, q), \mu(e, q)\} = \mu(e, q)$ hence $\mu (x \lor y, q) \ge \mu(e, q)$, then $\mu (x \lor y, q) \mu(e, q)$ thus $x \lor y \in H$.

And μ (x \wedge y, q) \geq min{ μ (x, q), μ (y, q)}= min μ (e, q), μ (e, q)} = μ (e, q) hence μ (x \wedge y, q) \geq μ (e, q), then μ (x \wedge y, q) μ (e, q) thus x \wedge y \in H. Therefore H is a normal sub ζ – group of G.

2. Consider the map μ^* : G / H \rightarrow L defined by μ^* (xh, q) = $\vee \mu$ (xh, q) for all $h \in H$, $x \in G$ and $q \in Q$ then xy $^{-1} \in k$ that is, μ (xy $^{-1}$, q) = μ (e, q) thus μ (xh, q) = μ (yh, q) and hence μ^* (xh, q) = μ^* (yh, q) therefore, the map μ^* is well – defined.

 $\begin{array}{lll} 3. \ (i)\mu^{*} \ (xh \ yk \ , \ q) = \mu^{*} \ (xyh, \ q) = \lor \ \mu(xyh, \ q) \ for \ all \ h \ \in \ H \ , \ x, \ y \ \in \ G \ and \\ q & \in \quad Q. \end{array}$

 $\geq \vee \min\{\mu(xh_1, q), \mu(yh_2, q)\}; h_1, h_2 \in H$ $\geq \min\{\vee\mu(xh_1, q), \vee\mu(yh_2, q)\}; h_1, h_2 \in H$ $\geq \min\{\mu^*(xh, q), \mu^*(yh, q)\}$

(ii) $\mu^* ((xh)^{-1}, q) = \mu^* (x^{-1}h, q) = \vee \mu(x^{-1}h, q)$ for all $h \in H$, $x \in G$ and $q \in Q$. $= \vee \mu(x h, q) = \mu^* (x h, q)$.

 $\begin{aligned} (iii)\mu^* (xh \lor yk , q) &= \mu^* ((x \lor y)h, q) = \lor \mu((x \lor y)h, q) \text{ for all } h \in H , x, \\ y \in G \text{ and } q \in Q. \\ &\ge \lor \min\{\mu(xh_1, q) , \mu(yh_2, q)\}; h_1, h_2 \in H \\ &\ge \min\{\lor \mu(xh_1, q) , \lor \mu(yh_2, q)\}; h_1, h_2 \in H \end{aligned}$

 $\geq \min\{\mu^{*}(xh, q), \mu^{*}(yh, q)\}$

$$\begin{split} &\geq \vee \min\{\mu(xh_1, q) , \mu(yh_2, q)\}; h_1, h_2 \in H \\ &\geq \min\{\vee\mu(xh_1, q) , \vee\mu(yh_2, q)\}; h_1, h_2 \in H \\ &\geq \min\{\mu^*(xh, q) , \mu^*(yh, q)\} \end{split} \\ &\text{Hence } \mu^* \text{ is an } L - Q - \text{fuzzy sub } \zeta - \text{group of } G/H. \end{split}$$

3.2 Definition: Let μ be an L - Q – fuzzy sub ζ – group of G with identity e. Let $H = \{x \in G, q \in Q; \mu(x, q) = \mu(e, q)\}$. Consider the map $\mu^* : G / H \rightarrow L$ defined by

 μ^* (xh, q) = $\vee \mu$ (xh, q) for all $h \in H$, $x \in G$ and $q \in Q$. Then, the L - Q - fuzzy sub ζ – group μ^* of G is called an L - Q – fuzzy quotient ζ – group of μ by H.

3.3 Remark:(1) μ^* is not L – Q – fuzzy normal quotient ζ – group of G/H.

- (2) Consider the map $\mu^* : G / H \to L$ defined by $\mu^* (xh, q) = \lor \mu(xh, q)$ for all $h \in H$, $x \in G$ and $q \in Q$. Then, μ^* is an L Q fuzzy normal quotient ζ group of G/ H.
- **3.4 Theorem:** If μ^* is an L Q fuzzy quotient ζ group of G/ H, then $\mu^*(xh, q) \le \mu^*(eh, q)$.

Proof:

Let $x \in G$, $\mu^{*}(eh, q) = \mu^{*}(xx^{-1}h, q)$ $\geq \min\{\mu^{*}(xh, q), \mu^{*}(x^{-1}h, q)\}$ $= \mu^{*}(xh, q)$

3.5 Theorem: μ^* is an L – Q – fuzzy quotient ζ – group of G/ H iff for all x, $y \in G$ 1. $\mu^*(xhy^{-1}h, q) \ge \min\{\mu^*(xh, q), \mu^*(yh, q)\}$ 2. $\mu^*(xk \lor yk, q) \ge \min\{\mu^*(xh, q), \mu^*(yh, q)\}$ 3. $\mu^*(xk \land yk, q) \ge \min\{\mu^*(xh, q), \mu^*(yh, q)\}$.

Proof:

 $(\implies) \mu^{*}(xhy^{-1}h, q) \ge \min\{ \mu^{*}(xh, q), \mu^{*}(y^{-1}h, q) \} \\\ge \min\{ \mu^{*}(xh, q), \mu^{*}(yh, q) \}$

As, μ^* is an L - Q – fuzzy quotient ζ – group of G/ H, then (2), (3) are hold (\Leftarrow) If (1) hold then $\mu^*(x^{-1}h, q) = \mu^*(e x^{-1}h, q) \ge \min\{ \mu^*(eh, q), \mu^*(x^{-1}h, q) \}$ = min{ $\mu^*(eh, q), \mu^*(x h, q)$ } = $\mu^*(x h, q)$, therefore $\mu^*(x^{-1}h, q) \ge \mu^*(xh, q)$ for all $x \in G$. Hence $\mu^*((x^{-1})^{-1}h, q) \ge \mu^*(x^{-1}h, q)$ and $\mu^*(x^{-1}h, q) \le \mu^*(xh, q)$ thus $\mu^*(x^{-1}h, q) = \mu^*(xh, q)$ for all $x \in G$.

Now, by (1) replace y by y⁻¹ then $\mu^{*}(xy h, q) = \mu^{*}(x(y^{-1})^{-1} h, q)$ $\geq \min\{ \mu^{*}(xh, q), \mu^{*}(y^{-1}h, q) \}$ $= \min\{ \mu^{*}(xh, q), \mu^{*}(yh, q) \} \text{ for all } x, y \in G.$

Also $\mu^* (xk \lor yk, q) \ge \min\{ \mu^*(xh, q), \mu^*(yh, q) \}$ and $\mu^* (xk \land yk, q) \ge \min\{ \mu^*(xh, q), \mu^*(yh, q) \}$. Therefore μ^* is an L - Q – fuzzy quotient ζ – group of G/ H.

- **3.6 Theorem:** If μ^* , λ^* are two L Q fuzzy quotient ζ group of G/ H then their intersection is an L Q fuzzy quotient ζ group of G/ H.
- **3.7 Corollary:** The intersection of any collection of L Q fuzzy quotient ζ group of G/ H is an L Q fuzzy quotient ζ group of G/ H.
- **3.8 Theorem:** Let G_1 , G_2 be any two ζ groups, $\Psi : G_1 \rightarrow G_2$ be an ζQ epimorphism and $\mu^* : G_1 / H \rightarrow L$ be an L - Q – fuzzy quotient ζ – group of G_1 / H . Then $\Psi(\mu^*)$ is an L - Q – fuzzy quotient ζ – group of G_2 / H , if μ^* has a sup property and μ^* is Ψ - invariant and $\Psi(\mu^*) = (\Psi(\mu))^*$.

Proof:

1.
$$\Psi(\mu^*)(\Psi(x)\Psi(y)h, q) = \Psi(\mu^*)(\Psi(xy)h, q)$$

= $\mu^*(xyh, q)$

$$\geq \min\{ \mu^{*}(xh, q), \mu^{*}(yh, q) \}$$

$$\geq \min\{ \Psi(\mu^{*}) (\Psi(x)h, q), \Psi(\mu^{*}) (\Psi(y)h, q) \}$$

$$2.\Psi(\mu^{*})((\Psi(x))^{-1}h, q) = \Psi(\mu^{*})(\Psi(x^{-1})h, q)$$

$$= \mu^{*}(x^{-1}h, q)$$

$$= \mu^{*}(xh, q)$$

$$= \Psi(\mu^{*})(\Psi(x) \wedge \Psi(y)h, q) = \Psi(\mu^{*})(\Psi(x \vee y)h, q)$$

$$\geq \min\{ \mu^{*}(xh, q), \mu^{*}(yh, q) \}$$

$$\geq \min\{ \Psi(\mu^{*}) (\Psi(x)h, q), \Psi(\mu^{*}) (\Psi(y)h, q) \}$$

$$4.\Psi(\mu^{*})(\Psi(x) \wedge \Psi(y)h, q) = \Psi(\mu^{*})(\Psi(x \wedge y)h, q)$$

$$= \mu^{*}((x \wedge y)h, q)$$

$$\geq \min\{ \mu^{*}(xh, q), \mu^{*}(yh, q) \}$$

$$\geq \min\{ \Psi(\mu^{*}) (\Psi(x)h, q), \Psi(\mu^{*}) (\Psi(y)h, q) \}$$

Hence $\Psi(\mu^{*})$ is an L - Q - fuzzy quotient ζ - group of G 2/ H.

$$(\Psi(\mu))^{*} (yh, q) = \vee \Psi(\mu)(yh, q) \forall h \in H, y \in G_{2} \text{ and } q \in Q.$$

$$= \vee \Psi(\mu)(\Psi(x)h, q) \forall h \in H, x \in G_{1} \text{ and } q \in Q.$$

$$= \vee \mu(xh, q)$$

$$= \Psi(\mu^{*}) (\Psi(x)h, q)$$

3.9 Theorem: Let G_1 , G_2 be any two ζ – groups, Ψ : $G_1 \rightarrow G_2$ be an ζ – Qhomomorphism and λ^* : $G_2 / H \rightarrow L$ be an L - Q – fuzzy quotient ζ – group of G_2 / H . Then $\Psi^{-1}(\lambda^*)$ is an L - Q – fuzzy quotient ζ – group of G_1 / H and $\Psi^{-1}(\lambda^*) = (\Psi^{-1}(\lambda))^*$. **Proof:** 1. $\Psi^{-1}(\lambda^*)(xyh, q) = \lambda^* (\Psi(xy)h, q)$ $= \lambda^*(\Psi(x) \Psi(y) h, q)$ $\geq \min\{ \lambda^*(\Psi(x)h, q), \lambda^*(\Psi(y)h, q) \}$ $\geq \min\{ \Psi^{-1}(\lambda^*) (xh, q) = \lambda^* (\Psi(x^{-1})h, q)$ $= \lambda^*((\Psi(x))^{-1} h, q)$ $= \lambda^*((\Psi(x) h, q)$ $= \Psi^{-1}(\lambda^*) (xh, q)$. **3**. $\Psi^{-1}(\lambda^*)((x \lor y)h, q) = \lambda^*(\Psi(x \lor y)h, q)$ $= \lambda^*((\Psi(x) \lor y)h, q) = \lambda^*(\Psi(x \lor y)h, q)$

$$= \lambda^{*}((\Psi(x) \lor \Psi(y)) h, q)$$

$$\geq \min\{ \lambda^{*}(\Psi(x)h, q), \lambda^{*}(\Psi(y)h, q) \}$$

$$\geq \min\{ \Psi^{-1}(\lambda^{*}) (xh, q), \Psi^{-1}(\lambda^{*}) (yh, q) \}$$

$$\begin{split} 4.\Psi^{\text{-1}}(\lambda^*)((x \wedge y)h,q) &= \lambda^*(\Psi(x \wedge y)h,q) \\ &= \lambda^*((\Psi(x) \wedge \Psi(y)) \ h, q) \\ &\geq \min\{ \ \lambda^*(\Psi(x)h, q), \lambda \ ^*(\Psi(y)h, q) \} \\ &\geq \min\{ \ \Psi^{\text{-1}}(\lambda^*) \ (xh, q), \Psi^{\text{-1}}(\lambda^*) \ (yh, q) \} \\ \text{Hence } \Psi^{\text{-1}}(\lambda^*) \ \text{is an } L - Q - \text{fuzzy quotient } \zeta - \text{group of } G_1 / \text{ H.} \\ (\Psi^{\text{-1}}(\lambda))^* \ (xh, q) &= \lor \Psi^{\text{-1}}(\lambda)(xh, q) \ \forall \ h \in H \ , x \in G_1 \ \text{and } q \in Q. \\ &= \lor \lambda \ (\Psi(x)h, q) \ \forall \ h \in H \ , x \in G_1 \ \text{and } q \in Q. \\ &= \lambda^*(\Psi(x)h, q) \\ &= \Psi^{\text{-1}}(\lambda^*) \ (xh, q) \end{split}$$

3.10Theorem: Let G_1 , G_2 be any two ζ – groups, Ψ : $G_1 \rightarrow G_2$ be an ζ – Q homomorphism and λ be an L – Q fuzzy normal sub ζ – group of G₂ such that $\mu = \Psi^{-1}(\lambda)$, then $\Phi: G_1 / \mu \to G_2 / \lambda$ such that $\Phi(x\mu, q) = \Psi(x, q)\lambda$ for every x ∈ G_1 and q ∈ Q is an ζ _ Qisomorphism. **Proof:**

Clearly Φ is onto as Ψ is onto

Let $x\mu$, $y\mu \in G_1 / \mu$, $\Phi(x\mu, q) = \Phi(y\mu, q)$ then $\Psi(x, q)\lambda = \Psi(y, q)\lambda$ and $\lambda(\Phi^{-1}(x)\Phi(y), q) = \lambda(\Phi^{-1}(y)\Phi(x), q) = \lambda(\Phi(e), q)$ hence $\lambda(\Phi(x^{-1}y), q) =$ $\lambda(\Phi(y^{-1}x), q) = \lambda(\Phi(e), q)$ then $x\mu = y\mu$ by 2.11 Lemma, therefore Φ is one – one. $\Phi((x\mu)(y\mu), q) = \Psi((xy)\mu, q) = \Psi(xy, q)\lambda = (\Psi(x, q). \Psi(x, q))\lambda =$ $(\Psi(x, q)\lambda). (\Psi(x, q) \lambda) = \Phi(x\mu, q) \Phi(y\mu, q).$ Now $\Phi((x\mu\lor y\mu), q) =$ $\Psi((x\lor y)\mu, q) = \Psi(x\lor y, q)\lambda = (\Psi(x, q)\lor \Psi(x, q))\lambda = (\Psi(x, q)\lambda)\lor (\Psi(x, q) \lambda)$ $= \Phi(x\mu, q) \lor \Phi(y\mu, q).$ And $\Phi((x\mu\land y\mu), q) = \Psi((x\land y)\mu, q) = \Psi(x\land y, q)\lambda =$ $(\Psi(x, q)\land \Psi(x, q))\lambda = (\Psi(x, q)\lambda)\land (\Psi(x, q) \lambda) = \Phi(x\mu, q) \land \Phi(y\mu, q)$ clearly Φ is an ζ – Q- homomorphism and hence Φ is an ζ – Qisomorphism.

References

- [1] A. Rosenfeld., Fuzzy Groups, J. Math . Anal . Appl. 35(1971) pp 512 517.
- [2] A. Solairaju and R. Nagarajan., A New Structure and Construction Of Q Fuzzy Groups, Advances In Fuzzy Mathematics. 4(2009) pp 23 – 29.
- [3] A. Solairaju and R. Nagarajan., Q Fuzzy Left R Subgroups of Near Rings w.r.t T - Norm, Antarctica Journal Of Mathematics. 5(2008) pp 59 – 63.
- [4] G. S. V. Saty A Saibaba., Fuzzy Lattice Ordered Groups, Southeast Asian Bulletin of Mathematics, 32(2008)pp 749 – 766.
- [5] J. A. Goguen, L Fuzzy Sets, J. Math. Anal. Appl. 18(1967)pp145 174.
- [6] K. Sunderrajan, A. Senthilkumar, Anti L Fuzzy Sub ζ- Group and its Level Sub ζ – Groups, International Journal of Engineering and Science Invention. 2(2013)pp21 – 26.

- [7] K. Sunderrajan, A. Senthilkumar, Generalized product of L Fuzzy Sub ζ Group, Antarctica Journal of Mathematics. 10(2013)pp 183 189.
- [8] K. Sunderrajan, A. Senthilkumar, L Fuzzy ζ Cosets of ζ Groups, International Journal of Engineering Associates.3(2014)pp 46 59.
- [9] K. Sunderrajan, A. Senthilkumar, Properties of L Fuzzy Normal Sub ζ Groups, General Mathematical Notes. 22(2014) pp 93 99.
- [10] K. Sunderrajan, A. Senthilkumar, Anti L Fuzzy Sub ζ Group and its Lower Level Sub ζ Groups, SSRG International Journal of Mathematics Trends and Technology. 10(2014)pp 25 27.
- [11] K. Sunderrajan, R. Muthuraj, M. S. Mathuraman and M. Sridharan, Some Characterization of Anti Q – L – Fuzzy ζ – Group, International Journal of Computer Applications. 6(2010)pp 35 – 47.
- [12] L. A. Zadeh, Fuzzy Sets, Information and Control. 8(1965)pp 338 363.