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Abstract

This paper establishes a number of new results on kurtosis of station-

ary processes as they play important roles in modelling and applications

in financial time series. Some examples from ARCH and GARCH mod-

els are added to illustrate the usefulness and applicability of these new

results.
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1 Introduction

Recent growing interest in financial econometrics has placed a strong empha-

sis on modelling financial volatilities using both linear and non-linear time se-

ries models. The family of autoregressive conditional heteroscedastic (ARCH)
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models ([5]) and its generalization to GARCH ([2]) have been developed due

to flexibility in various applications.

In certain applications of GARCH models to financial data, there is the

assumption that the series are conditionally normally distributed, perhaps

because the Gaussian (pseudo) likelihood approach is convenient in volatility

estimation. However, empirical evidence suggests that the normal GARCH

model is not always valid in practice since realizations of several financial

time series, including rates of foreign exchange or natural or log returns on

stocks, are heavy-tailed with significant leptokurtosis and sometimes time-

varying volatilities. Therefore kurtosis plays an important role in modelling

such financial data as heavy tailed distributions often can be seen in practice.

[6] consider the fourth moment for a family of GARCH (p, q) processes and [1]

extend these calculations to include stochastic volatility models.

Therefore, in section 2, we review a number of important results related to

kurtosis for later reference.

2 A Review of Kurtosis

Suppose that {Xt} is a mth order stationary time series with mean µ and the

rth central moment µr = E[(Xt − µ)r]. The kurtosis κ(X) of Xt is given by

κ(X) =
µ4

µ2
2

.

It is known that when the distribution of Xt is normal, then κ(X) = 3. A

distribution with κ > 3 is called heavy tailed or leptokurtic. It has been

identified that many financial time series are leptokurtic and the knowledge of

the excess kurtosis, K = κ(X) − 3 is important for further analysis.

Based on a sample of n observations, an estimator of κ(X) is given by

κ̂ =

∑n
t=1(Xt − X̄)4/n

[
∑n
t=1(Xt − X̄)2/n]2

,

where X̄ is the sample mean.
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When Xt are independent and identically distributed (iid) normal random

variables, [7] showed that

√
n(κ̂− 3)→ N(0, 24).

Now we state the kurtosis for four popular models used in many applications

of time series. Assume that the time series {Xt} is generated by a 4th order

stationary, independent noise process {εt} with mean zero, variance σ2 and

kurtosis κ(ε).

• The kurtosis for an AR(1) process generated by Xt = φXt−1 +εt is given

by

κ(X) =
κ(ε)(1− φ2) + 6φ2

1 + φ2
. (2.1)

• The kurtosis of an MA(1) process given by Xt = εt + θεt−1 is

κ(X) =
κ(ε)(1 + θ4) + 6θ2

(1 + θ2)2
. (2.2)

When εt is normal in both AR(1) and MA(1) models, it is easy to see

that κ(X) = 3.

• For an ARCH(1) process satisfying Xt =
√
htεt; ht = ω + αX2

t−1, the

corresponding kurtosis is

κ(X) =
κ(ε)(1− α2)

1− κ(ε)α2
. (2.3)

• For a GARCH(1,1) process given by Xt =
√
htεt and ht = ω+αX2

t−1 +

βht−1, we have

κ(X) =
κ(ε)[1− (α + β)2]

1− κ(ε)α2 − 2αβ − β2
. (2.4)

Even when εt is normal with κ(ε) = 3, it is easy to verify that κ(X) > 3 in both

the ARCH(1) and GARCH(1,1) models justifying the heavy tail behavior.

Although it is easy to calculate the kurtosis for lower order models, the

algebraic complexity will occur for higher order models. Therefore, section 3

is devoted to establish a number of new results for the kurtosis of 4th order

stationary general linear processes, which is of considerable interest in its own

right in many applications of time series analysis and related problems.
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3 Main Results

Let {Xt} be a general linear process (glp) given by

Xt − µ =
∞∑
j=0

ψjεt−j, (3.1)

where {εt} is a sequence of 4th order stationary, independent, identically dis-

tributed random variables with E(εt) = 0, E(ε2
t ) = σ2 and the kurtosis κ(ε) for

all t. Further, assume
∑∞
j=0 ψ

2
j <∞ and

∑∞
j=0 ψ

4
j <∞.

In many applications of time series, {Xt} can be approximated by a finite

parameter ARMA type model of the form

φ(B)Xt = C + θ(B)εt,

where C is a constant, B is the backshift operator and the polynomials φ(B) =

1 − φ1B − φ2B
2 − . . . − φpBp; θ(B) = 1 + θ1B + θ2B

2 + . . . + θqB
q have no

common zeros and the zeros lie outside the unit circle (known as AR and MA

regularity conditions).

Note that these AR and MA regularity conditions ensure the existence of 4th

order stationarity and invertibility of the ARMA representation. In addition,

• when φ(1) 6= 1, µ = E(Xt) = C
φ(1)

• Xt = µ+
∑∞
j=0 ψjεt−j, where ψ(B) = [φ(B)]−1[θ(B)] =

∑∞
j=0 ψjB

j satisfy

the conditions
∑∞
j=0 ψ

2
j <∞ and

∑∞
j=0 ψ

m
j <∞. See, for example, Wold

(1954).

• when θ(1) 6= 1, π(B) = [θ(B)]−1[φ(B)] =
∑∞
j=0 πjB

j and satisfy

εt +µ∗ =
∑∞
j=0 πjXt−j such that

∑∞
j=0 π

2
j <∞ and

∑∞
j=0 π

m
j <∞, where

µ∗ = C
θ(1)

.

Now we state and prove the theorem below which establishes the kurtosis of

a finite linear combination of {εi}.
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Theorem 3.1 Suppose that {εi}; i = 0, 1, . . . , ` is a sequence of independent

and non-identically distributed random variables each with E(εi) = 0, E(ε2
i ) =

σ2
i and kurtosis κ(εi) for each i. Then the kurtosis of Y =

∑`
i=0 aiεi (ai; i =

0, 1, . . . , ` are finite real numbers) can be expressed as

κ(Y ) =

∑`
i=0 a

4
iσ

4
i κ

(εi) + 6
∑`−1
i=0

∑`
j>i a

2
i a

2
jσ

2
i σ

2
j

(
∑`
i=0 a

2
iσ

2
i )

2
. (3.2)

Proof: For any k such that 0 < k < `, let Y = A + B, where A =
∑k
i=0 aiεi

and B =
∑`
i=k+1 aiεi. Then E(A) = E(B) = 0;A and B are independent

and E[f(A)g(B)] = E[f(A)]E[g(B)], where f() and g() are any two bounded,

measurable functions of A and B respectively. Therefore,

E(Y 4) = E(A4) + 4E(A3B) + 6E(A2B2) + 4E(AB3) + E(B4)

reduces to

E(Y 4) = E(A4) + 6E(A2B2) + E(B4).

Using the multinomial expansion of each term on right hand side (rhs) and

noting that E(εiε
3
j) = 0, j 6= i, it is easy to evaluate the expected values

E(A4) + E(B4) and E(A2B2) with terms involving even powers of ε4
i and

ε2
i ε

2
j , j 6= i and gives the numerator of (3.2)

E(Y 4) = E(A4) + 6E(A2B2) + E(B4) =
∑̀
i=0

a4
iσ

4
i κ

(εi) + 6
`−1∑
i=0

∑̀
j>i

a2
i a

2
jσ

2
i σ

2
j .

Since V ar(Y ) =
∑`
i=0 a

2
iσ

2
i , (3.2) follows.

When εi are iid with kurtosis κ(ε), we have the following corollary.

Corollary 3.1 When εi are iid with kurtosis κ(ε), then κ(Y ) in (3.2) reduces

to

κ(Y ) =
κ(ε)∑`

i=0 a
4
i + 6

∑`−1
i=0

∑`
j>i a

2
i a

2
j

(
∑`
i=0 a

2
i )

2
. (3.3)

The next theorem gives the corresponding result for a glp given in (3.1).

5



Theorem 3.2 Let {Xt} be a 4th order stationary process satisfying (3.1).

Then the kurtosis of {Xt} is given by

κ(X) =

κ(ε)
∞∑
j=0

ψ4
j + 6

∞∑
i=0

∑
j>i

ψ2
iψ

2
j( ∞∑

j=0

ψ2
j

)2
. (3.4)

Proof: The theorem immediately follows from (3.3) by allowing `→∞.

The section 4 considers some useful examples to illustrate the usefulness of

this result given in (3.4).

4 Examples

First consider the family of stationary Gaussian ARMA processes and without

loss of generality, assume that µ = 0.

4.1 Gaussian ARMA processes

• Using the fact that the noise process {εt} is Gaussian, we have κ(ε) = 3.

Hence the equation (3.4) for the kurtosis of Xt becomes

κ(X) =

3

{ ∞∑
j=0

ψ4
j + 2

∞∑
i=0

∑
j>i

ψ2
iψ

2
j

}
( ∞∑
j=0

ψ2
j

)2
=

3
( ∞∑
j=0

ψ2
j

)2

( ∞∑
j=0

ψ2
j

)2
= 3,

consistent with the knowledge that the process Xt in (3.1) is also Gaus-

sian.

Now we verify the results in (2.1) and (2.2) for non-Gaussian AR(1) and

MA(1) processes.
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4.2 Non-Gaussian ARMA processes

• ARMA(0,0) process

When p = 0 and q = 0, we have φ(B) ≡ 1 and θ(B) ≡ 1. Therefore,

ψ0 = 1 and ψj = 0 for all j ≥ 1 and the result (3.4) reduces to the

expected conclusion of κ(X) = κ(ε).

• AR(1) process

When p = 1 and q = 0, ψj = φj, j ≥ 0. This gives

N = κ(ε)
∞∑
j=0

ψ4
j + 6

∞∑
i=0

∑
j>i

ψ2
iψ

2
j =

κ(ε)

1− φ4
+

6φ2

(1− φ2)(1− φ4)

and

D =
( ∞∑
j=0

ψ2
j

)2

= (
1

1− φ2
)2.

The ratio N
D

reduces to κ(X) given in (2.1) for an AR(1) process.

• MA(1) process

When p = 0 and q = 1, ψ0 = 1, ψ1 = θ and ψj = 0, j ≥ 2. Therefore,

N = κ(ε)
∞∑
j=0

ψ4
j + 6

∞∑
i=0

∑
j>i

ψ2
iψ

2
j = κ(ε)(1 + θ4) + 6θ2

and

D =
( ∞∑
j=0

ψ2
j

)2

= (1 + θ2)2.

The ratio N
D

reduces to κ(X) given in (2.2) for a MA(1) process.

• ARMA(1,1)

When p = 1 and q = 1, we have the most useful ARMA model in practice

given by

Xt = φXt−1 + εt + θεt−1.

In this case ψ0 = 1, ψj = φj−1(φ+ θ), j ≥ 1 and

N =
κ(ε)[(1− φ4) + (φ+ θ)4]

(1− φ4)
+

6(φ+ θ)2[(1− φ4) + φ2(φ+ θ)2]

(1− φ4)(1− φ2)
,
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D = [
(1− φ2) + (φ+ θ)2

(1− φ2)
]2.

The ratio N
D

gives the corresponding κ(X) for this ARMA(1,1) process.

4.3 An Illustration

As an illustration, we provide three ARMA(1,1) processes generated by the

following innovations:

• Gaussian with µ = 0 and σ = 1 :

κ(G) = 3.

• Lognormal with µ = 0 and σ = 1 :

κ(LN) = 110.94.

• t with 5 df:

κ(t5) = 6.

The acf and pacf plots (see the Appendix) show that all three can be considered

as ARMA(1,1) processes. However, the time series plots 2 and 3 show that

they have higher kurtosis than the time series plot in 1.

Theorem 3.2 is applicable only for glp satisfying the form in (3.1). However,

in some applications of financial time series one needs to develop similar ex-

pressions for the squared process {X2
t }.

8



5 Evaluating κ(X) when X2
t follows a stationary

ARMA Process

Suppose that Xt follows a zero mean, 4th order stationary process and {X2
t }

is generated by an ARMA (r,r) type process given by

Φ(B)X2
t = ω + β(B)ηt, (5.1)

where

• ω > 0 and {ηt} is a martingale difference sequence with mean zero and

variance σ2
η.

• the polynomials Φ(B) = 1−Φ1B−· · ·−ΦrB
r, β(B) = 1−β1B−· · ·−βrBr

(B is the backshift operator) have distinct zeros outside the unit circle

and Φ(1) > 0.

The last condition ensures that the process {Xt} is stationary up to 4th order

and {X2
t } possesses the following Wold representation

X2
t = δ +

∞∑
j=0

Ψjηt−j, (5.2)

where

• Ψ0 = 1,

• δ = E(X2
t ) = ω

1−Φ1−...−Φr
= ω

Φ(1)
> 0,

• ∑∞j=0 Ψ2
j <∞.

This leads to the theorem below.

Theorem 5.1 The kurtosis of the process {Xt} is given by

κ(X) =
δ2 + σ2

η(1 + a)

δ2
, (5.3)

where σ2
η = V ar(ηt) and a =

∑∞
j=1 Ψ2

j .
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Proof: The proof is straight forward and follows from (5.2) since

E(X4
t ) = E(δ +

∞∑
j=0

Ψjηt−j)
2

and the right hand side reduces to δ2 + σ2
η(1 + a). Noting the fact that

V ar(Xt) = E(X2
t ) = δ, the theorem follows.

Below illustrates how this theorem can be used to evaluate the kurtosis of any

GARCH process.

5.1 Kurtosis for GARCH Processes

Considers the family of GARCH (l,m) process given by

Xt =
√
htεt, (5.4)

ht = ω +
l∑

i=1

αiX
2
t−i +

m∑
j=1

βjht−j, ω > 0, αi ≥ 0, βj ≥ 0, (5.5)

where the following conditions hold:

(i) εt comprises of a stationary sequence of independent and identically dis-

tributed random variables with zero mean, unit variance and kurtosis

κ(ε) = E(ε4
t ) <∞ for all t;

(ii) ht is the conditional variance ofXt given the history Ft−1 = {Xt−1, Xt−2, . . .}

such that ht = Var(Xt|Ft−1);

(iii) the parameters ω, α1, . . . , αl, β1, . . . , βm appear in (5.5) are real-valued

satisfying ht > 0 and
∑l
i=1 αi +

∑m
j=1 βj < 1 for all t.

When r = max(l,m), an alternative equivalent representation of (5.4)

and (5.5) is given by

Φ(B)X2
t = ω + β(B)ηt, (5.6)

where ηt = X2
t −ht = (ε2

t − 1)ht is a martingale difference sequence with

σ2
η = E(η2

t ) = δ2(κ(ε)−1)

1−(κ(ε)−1)a
; Φ(B), β(B) are AR and MA polynomials of

degree r such that Φi = αi + βi, i = 1, 2, · · · , r.
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(iv) 0 < (κ(ε) − 1)a < 1.

Since the process {X2
t } in (5.6) is stationary and possesses the moving average

([11]) representation given in (5.2), the theorem 5.2 below can be established

using the theorem 5.1. Further applications can be found in [9].

Theorem 5.2 The kurtosis for the GARCH process in (5.4) and (5.5) is given

by

κ(X) =
κ(ε)

1− (κ(ε) − 1)a
. (5.7)

Proof: From (5.3) of theorem 5.1, we have

κ(X) =
δ2 + σ2

η(1 + a)

δ2
.

Substituting σ2
η and rearranging terms, theorem 5.2 follows.

5.2 Examples

• When l = 1 and m = 0, we have an ARCH(1) process with Φ1 = α and

a =
∑∞
j=1 Ψ2

j = α2

1−α2 . Substituting in (5.7) gives the kurtosis (2.3) for an

ARCH(1).

• When l = 1, m = 1, we have a GARCH(1,1) process with Φ1 = α +

β, β1 = β and a =
∑∞
j=1 Ψ2

j = α2

1−(α+β)2
. Substituting in (5.7) gives the

kurtosis (2.4) for a GARCH(1,1).

When the marginal distribution of εt is normal, the corresponding GARCH

process is called a Gaussian GARCH (r, r) process.

5.3 Kurtosis of Normal GARCH

Any GARCH process {Xt} satisfy κ(X) > 3 and hence the excess kurtosis

κ(G) = κ(X) − 3 is known as the GARCH kurtosis. Therefore, it is easy to

show that the corresponding κ(G) can be expressed as

κ(G) =
κ(ε) − 3 + 3a(κ(ε) − 1)

1− (κ(ε) − 1)a
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and when {εt} follows a Gaussian distribution, the above result reduces to

κ(G)N =
6a

1− (κ(ε) − 1)a
.

Further results related to kurtosis and applications can be found in [6],

[10], [8], [4], [12], [3] and the references there in.

6 Conclusions

Financial returns are often modelled as stationary (autoregressive) time se-

ries with innovations having conditional heteroscedastic errors, especially with

GARCH innovations. This paper, extends the results to any 4th order station-

ary processes which have ARMA type representation. The kurtosis is useful

for identifying the marginal distribution of volatility processes and is expressed

in a simple form in terms of the model parameters and autocorrelation of the

squared observed processes.
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