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Abstract

In this paper, the Arnoldi-type process and symmetric Lanczos-type
process for solving large scale quadratic eigenvalue problem (λ2A +
λB+C)x = 0 are given. One decomposition theorem about the matri-
ces A, B and C is obtained based on the Householder transformation.
The advantage of the Arnoldi-type process and symmetric Lanczos-type
process is that they can preserve the matrix structure and properties of
the original problems. Finally, some numerical examples are presented
to show the efficiency of the proposed methods.
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1. Introduction

To find a scalar λ ∈ C and nontrivial vectors x ∈ Cn satisfying the following
equation

(λ2A+ λB + C)x = 0(1.1)

is known as the quadratic eigenvalue problem (QEP). Here, A,B,C ∈ Cn×n is
called as the coefficient matrices, λ is called as the eigenvalue, nonzero vectors
x is the associated eigenvectors of the QEP, (λ, x) is known as eigenpair or Ritz
pair, λ and x are called as Ritz value and Ritz vector, respectively. The studies
on the QEP have attracted more and more attentions recently. In general, there
are mainly two methods for solving the QEP, namely lineralization method and
direct projection method [17].

Linearization method is to transform the QEP (1.1) into an linear form (M −
λN)y = 0 equivalently, where M,N ∈ C2n×2n, y ∈ C2n. The possibility of
lineralization was proved in [5, 17], and the properties of lineralization method
were studied in [3, 13, 14, 16]. But the drawback of linearization method is the
double size of the problem (1.1), and make the condition number and backward
error larger. Meanwhile, the essential spectral properties of the original problems
may not be preserved.

Krylov subspace based on matrix A ∈ Cn×n and vector υ ∈ Cn is of the form

Kk(A, υ) = span{υ,Aυ,A2υ, · · · , Ak−1υ}.
Krylov subspace method is often used to solve matrix computational problem,
such as linear system and eigenvalue problem [1, 2, 6, 7, 11, 12, 15, 18]. The

∗School of Mathematical Sciences, Nanjing Normal University, Nanjing 210097, P. R. China,
Email: song12368@163.com



2

main advantage of Krylov subspace techniques is that it can transform large scale
problem into small size problem and find the desired eigenvalues.

By building one orthogonal bases Vk and projecting the original problem (1.1)
into the problem V ∗

k (λ
2A + λB + C)VkV

∗
k x = 0 with smaller size, the projection

method can be applied to the QEP directly. The advantage of the projection
methods is the spectral property of the original problem can be guaranteed by
preserving the structure of the coefficient matrix, such as the symmetry or skew-
symmetry or positive-definiteness or semipositive-definiteness. In order to obtain
a projected lower-dimensional matrix polynomial to approximate the original one,
a Krylov-type projection process was applied to the coefficient matrices B and C
simultaneously [12, 7]. However, in the method, the coefficient matrix A should be
the unity matrix I, or should be transformed to the unity matrix I by displacement
inverse transformation, which makes the computation more complex. Therefore, in
this paper, the Krylov-type projection process was applied to all three coefficient
matrices A, B and C simultaneously, in which the coefficient matrix A can be
projected directly, and need not be unity matrix or transformed.

This paper is organized as follows. In Section 2, an Arnoldi-type process and
a symmetric Lanczos-type process for solving the large scale QEP (1.1) are pre-
sented, and the matrix A is different from the investigations in [12, 7], where A
is the unity matrix I. In Section 3, the residual upper bound for approximate
Ritz pairs are given out. In Section 4, combining the orthogonal basis generated
in Section 2 with the refined idea, we give out the refined Arnoldi-type algorithm
for solving quadratic matrix polynomial. Finally, numerical examples are given to
illustrated the efficiency of given algorithm in Section 5.

Throughout this article, we use following notations. ∥ · ∥2 denotes 2-norm. ·⊤
denotes the transpose and ·∗ denotes the conjugate transpose. In refers the n× n
identity matrix, ej denotes its jth column. MATLAB-like notations are adopted:
the ith to jth entries of v consists v(i:j), the intersection of rows i to j and columns
k to l of the matrix X consists the submatrix X(i:j,k:l), X(:,k:l) refers all rows and
kth to lth columns of X, X(i:j,:) refers ith to jth rows and all columns of X.

2. New Arnoldi-type process and symmetric Lanczos-type pro-
cess for (λ2A+ λB + C)x = 0

For solving one special kind of quadratic matrix polynomial

(λ2I − λB − C)x = 0,

an Arnoldi-type process and a symmetric Lanczos-type process were presented in
[12] and [7], respectively.

In this section, based on orthogonal transformations of coefficient matrices A,
B and C simultaneously, we propose an new Arnoldi-type process and symmetric
Lanczos-type process for solving the QEP (1.1).

2.1. Decomposition theorem for the coefficient matrices A, B and C.
By using Householder transformation, the following decomposition theorem for
the coefficient matrices A, B and C were derived.



3

2.1. Lemma. There exists an unitary matrix Q ∈ Cn×n with Qe1 = e1 satisfying

Q∗AQ = Ha ≡ (ha;ij), Q
∗BQ = Hb ≡ (hb;ij), Q

∗CQ = Hc ≡ (hc;ij)

where ha;ij = 0 for i ≥ 3j, hb;ij = 0 for i ≥ 3j + 1, hc;ij = 0 for i ≥ 3j + 2.

Proof. Split

A =

[
a11 a⊤2
a1 A22

]
,

where a1 = (a21, a31, ..., an1)
⊤, a2 = (a12, a13, ..., a1n)

⊤.

There exists an unitary matrix Q̂1a ∈ C(n−1)×(n−1) satisfying Q̂∗
1aa1 = α1e1.

Let Q1a = diag(1, Q̂1a). Then, we have

Q∗
1aAQ1a =

 a11 x
α1 x
0 X

 , Q∗
1aBQ1a =

 b11 x
b21 x
b1 X

 .

Similarly, there exists an unitary matrix Q̂1b ∈ C(n−2)×(n−2) satisfying Q̂∗
1bb1 =

β1e1. Let Q1b = diag(I2, Q̂1b). Then, we have

Q∗
1bQ

∗
1aBQ1aQ1b =


b11 x
b21 x
β1 x
0 X

 , Q∗
1bQ

∗
1aCQ1aQ1b =


c11 x
c21 x
c31 x
c1 X

 .

In the same way, we can find an unitary matrix Q̂1c ∈ C(n−3)×(n−3) satisfying
Q̂1cc1 = γ1e1. Let Q1c = diag(I3, Q̂1c) and define Q1 = Q1aQ1bQ1c. Then, we
have

Q∗
1AQ1 =

 a11 x
α1 x
0 X

 , Q∗
1BQ1 =


b11 x
b21 x
β1 x
0 X

 , Q∗
1CQ1 =


c11 x
c21 x
c31 x
γ1 x
0 X

 .

According to the above transformation, the first columns of the matrix A, B
and C have been transformed into the desired forms. Then, we transform the
second columns of the matrix A, B, and C into the desired forms in the same way.

Split the matrices

Q∗
1AQ1 =


x x x
α1 x x
0 x x
0 a42 x
0 a2 X

 ,

then there exists a unitary matrix Q̂2a ∈ C(n−4)×(n−4) satisfying Q̂∗
2aa2 = α2e1.
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Let Q2a = diag(I4, Q̂2a). Then we have

Q∗
2aQ

∗
1AQ1Q2a =


x x x
α1 x x
0 x x
0 a42 x
0 α2 x
0 0 X

 , Q∗
2aQ

∗
1BQ1Q2a =


b11 x x
b21 x x
β1 x x
0 x x
0 b52 x
0 b2 x

 .

Find an unitary matrix Q̂2b ∈ C(n−5)×(n−5) satisfying Q̂∗
2bb2 = β2e1. Let

Q2b = diag(I5, Q̂2b). Then, we have

Q∗
2bQ

∗
2aQ

∗
1BQ1Q2aQ2b =



b11 x x
b21 x x
β1 x x
0 x x
0 b52 x
0 β2 x
0 0 x


, Q∗

2bQ
∗
2aQ

∗
1CQ1Q2aQ2b =



c11 x x
c21 x x
c31 x x
γ1 x x
0 x x
0 c62 x
0 c2 X


.

Find an unitary matrix Q̂∗
2c ∈ C(n−6)×(n−6) satisfying Q̂∗

2cc2 = γ2e1. Let

Q2c = diag(I6, Q̂2c) and define Q2 = Q2aQ2bQ2c. Then, we have

Q∗
2Q

∗
1AQ1Q2 =


x x x
α1 x x
0 x x
0 a42 x
0 α2 x
0 0 X

 , Q∗
2Q

∗
1BQ1Q2 =



x x x
x x x
β1 x x
0 x x
0 b52 x
0 β2 x
0 0 x


,

Q∗
2Q

∗
1CQ1Q2 =



x x x
x x x
x x x
γ1 x x
0 x x
0 c62 x
0 γ2 x
0 0 X


.

The following proof can be continued in a similar way. At the jth step, the jth
column of matrices A, B and C has at most 3j−1, 3j and 3j+1 nonzero entries at
the top respectively. The reduction can be completed by setting Q = Q1Q2 · · ·Qk,
where k ≤ n/3.

Obviously, we have

Qe1 = Q1Q2 · · ·Qke1 = e1,

where Q1 = Q1aQ1bQ1c, Q2 = Q2aQ2bQ2c, · · · , Qk = QkaQkbQkc. �

Based on the above discussions, we can get the following another description of
the decomposition theorem for the coefficient matrices.
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2.2. Theorem. Given q1 ∈ Cn with ∥q1∥2 = 1, there is an unitary matrix Q ∈
Cn×n with Qe1 = q1, such that

Q∗AQ = Ha = (ha;ij), Q
∗BQ = Hb = (hb;ij), Q

∗CQ = Hc = (hc;ij)(2.1)

satisfied ha;ij = 0 for i ≥ 3j, hb;ij = 0 for i ≥ 3j + 1, hc;ij = 0 for i ≥ 3j + 2.

Proof. There exists an unitary matrix Q0 ∈ Cn×n with Q0e1 = q1. Then, applying
Lemma 2.1 to Q∗

0AQ0, Q
∗
0BQ0 and Q∗

0CQ0 to get an unitary Q̂ ∈ Cn×n with

Q̂e1 = e1 such that

Q̂∗(Q∗
0AQ0)Q̂ = Ha, Q̂

∗(Q∗
0BQ0)Q̂ = Hb, Q̂

∗(Q∗
0CQ0)Q̂ = Hc

have the desired forms. Then, the proof is completed by letting Q = Q0Q̂. �

2.2. A new Arnoldi-type process for (λ2A + λB + C)x = 0. According to
Lemma 2.1 and Theorem 2.2, the reduced matrices Ha, Hb, Hc of coefficient
matrices A, B and C can be obtained, but they are of little use in the numerical
computation when A, B and C are large and sparse. Therefore, a new Arnoldi-type
process for the QEP (1.1) were presented in this section.

Rewrite (2.1) as

AQ = QHa, BQ = QHb, CQ = QHc.

Inspecting the jth column, we see

Aqj =

3j−2∑
i=1

qiha;ij + q3j−1ha;3j−1,j ,(2.2)

Bqj =

3j−1∑
i=1

qihb;ij + q3jhb;3j,j ,(2.3)

Cqj =

3j∑
i=1

qihc;ij + q3j+1hc;3j+1,j .(2.4)

From (2.2) and since q1, q2, · · · , q3j is orthogonal, we have

ha;ij = q∗i Aqj for i ≤ 3j − 2,

ha;3j−1,j =

∥∥∥∥∥Aqj −
3j−2∑
i=1

qiha;ij

∥∥∥∥∥
2

,

q3j−1 = (Aqj −
3j−2∑
i=1

qiha;ij)/ha;3j−1,j ,

where assume that ha;3j−1,j ̸= 0.
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Similarly, assuming hb;3j,j ̸= 0, the formula (2.3) implies

hb;ij = q∗i Bqj for i ≤ 3j − 1,

hb;3j,j =

∥∥∥∥∥Bqj −
3j−1∑
i=1

qihb;ij

∥∥∥∥∥
2

,

q3j = (Bqj −
3j−1∑
i=1

qihb;ij)/hb;3j,j .

In the same way, assuming hc;3j+1,j ̸= 0, the formula (2.4) implies

hc;ij = q∗i Cqj for i ≤ 3j,

hc;3j+1,j =

∥∥∥∥∥Cqj −
3j∑
i=1

qihc;ij

∥∥∥∥∥
2

,

q3j+1 = (Cqj −
3j∑
i=1

qihc;ij)/hc;3j+1,j .

Above derivation leads to a process that q3j−1, q3j , q3j+1 can be constructed
from q1, q2, · · · , q3j−2. After k steps of construction, we can obtain q1, q2, · · · ,
q3k+1 such that

AQ(:,1:k) = Q(:,1:3k−1)Ha(1:3k−1,1:k), BQ(:,1:k) = Q(:,1:3k)Hb(1:3k,1:k),

CQ(:,1:k) = Q(:,1:3k+1)Hc(1:3k+1,1:k).

Figure 1 shows the computed parts of Ha, Hb and Hc when k = 6, and the
entries marked by unfilled circles are not computed yet.

From the computed entries, the projections of A, B and C onto span{Q(:,1:k)}
can be obtained. The entries marked by unfilled circles in Figure 1 are computed
by

ha,ij = q∗i Aqj , hb,ij = q∗i Bqj , hc,ij = q∗i Cqj ,

for 1 ≤ i ≤ 3k + 1 and k + 1 ≤ j ≤ 3k + 1, which give the projections on
span{Q(:,1:3k+1)}. In above analysis, it is assumed that ha;3j−1,j ̸= 0, hb;3j,j ̸= 0,
hc;3j+1,j ̸= 0. When ha,ij = 0 or hb,ij = 0 or hc,ij = 0, the process can be
continued by continuing the next step directly, although there is no new q-vector
can be generated.

According to the above mentioned analysis, the new q-vectors can be generated
as the following steps. Let N be the number of q-vectors already generated, and
N = 1 at the beginning of the process. At the first step, the matrix A is applied to
q1, and if a new q-vector is generated, N = N+1, otherwise, N is invariant. Then,
the matrix B is applied to q1, and if a new q-vector is generated, N = N + 1,
otherwise, N is invariant. In sequence, the matrix C is applied to q1, and if a
new q-vector is generated, N = N + 1, otherwise, N is invariant. After the above
steps, if N = 1, the process can be terminated since the subspace span{q1} is the
invariant subspace about the matrices A, B and C, otherwise, the matrices A,
B and C should be applied to q2 in the same way. In general, at the jth step,
let q1, q2, · · · , qN be the N q-vectors have been generated, and q1, q2, · · · , qj−1

been the j − 1 q-vectors have applied by the matrices A, B and C, and if N =
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Figure 1. The sparsity of the matrix Ha, Hb and Hc

j − 1, the process can be terminated since the subspace span{q1, q2, · · · , qN} is
the invariant subspace about the matrices A, B and C, otherwise, the matrices
A, B and C should be applied to qj in the same way. The process continues until
N = j−1 or a preselected k number of steps is completed, in which N must satisfy
N ≤ 3k + 1. In order to utilize fully the information presented by the generated
subspace span{Q(:, 1 : N)}, the fully projected matrices Ha(1:N,1:N), Hb(1:N,1:N)

and Hc(1:N,1:N) are computed in our later numerical examples. Based on the above
analysis, we have the following algorithm:

Algorithm 1: New Arnoldi-type process
1. Given q1 with ∥q1∥2 = 1
2. N = 1
3. For j = 1, 2, · · · , k do
4. If j > N , break
5. q̂ = Aqj
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6. For i = 1, 2, · · · , N do
7. ha;ij = q∗i q̂; q̂ = q̂ − qiha;ij

8. End do
9. ha;N+1,j = ∥q̂∥2
10. If ha;N+1,j > 0
11. N = N + 1, qN = q̂/ha;Nj

12. End if
13. q̂ = Bqj
14. For i = 1, 2, · · · , N do
15. hb;ij = q∗i q̂; q̂ = q̂ − qihb;ij

16. End do
17. hb;N+1,j = ∥q̂∥2
18. If hb;N+1,j > 0
19. N = N + 1, qN = q̂/hb;Nj

20. End if
21. q̂ = Cqj
22. For i = 1, 2, · · · , N do
23. hc;ij = q∗i q̂; q̂ = q̂ − qihc;ij

24. End do
25. hc;N+1,j = ∥q̂∥2
26. If hc;N+1,j > 0
27. N = N + 1, qN = q̂/hc;Nj

28. End if
29. End do
In the practical numerical computation, the following statements should be

made for Algorithm 1. In practical implement of line 10 to line 26, an appropriate
error, e.g., ha;N+1,j > nε∥A∥2, hb;N+1,j > nε∥B∥2, hc;N+1,j > nε∥C∥2 can be
permitted, where ε is the machine roundoff unit.

Denote αj = value of N at line 12 at step j, βj = value of N at line 20 at step
j, γj = value of N at line 28 at step j with α0 = β0 = γ0 = 1. Then,

Aqj =

αj∑
i=1

ha;ijqi, Bqj =

βj∑
i=1

hb;ijqi, Cqj =

γj∑
i=1

hc;ijqi.

Thus, when the above process is completed, we have

AQ(:,1:k) = Q(:,1:αk)Ha(1:αk,1:k)

BQ(:,1:k) = Q(:,1:βk)Hb(1:βk,1:k)(2.5)

CQ(:,1:k) = Q(:,1:γk)Hc(1:γk,1:k)

However, if the j-loop BREAK out at line 4, an invariant subspace of A, B and
C is obtained as follows

AQ(:,1:N) = Q(:,1:N)Ha(1:N,1:N)

BQ(:,1:N) = Q(:,1:N)Hb(1:N,1:N)

CQ(:,1:N) = Q(:,1:N)Hc(1:N,1:N)
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Moreover, the nonzero entries of the jth column of Ha, Hb and Hc is contained
in the first αj , βj and γj entries respectively. αj , βj and γj can increase at most
by 3 at each step.

When A, B and C are Hermitian, Ha, Hb, Hc are also Hermitian. In this case,
their upper triangular parts need not be fully computed. Obviously, the following
simple recurrences holds:

ha;αj ,jqαj = Aqj −
∑

1≤i<αj ,αi≥j

ha;ijqi,

hb;βj ,jqβj = Bqj −
∑

1≤i<βj ,βi≥j

hb;ijqi,

hc;γj ,jqγj = Cqj −
∑

1≤i<γj ,γi≥j

hc;ijqi.

Similar to Algorithm 1, we have the following Algorithm:
Algorithm 2: Symmetric Lanczos-type process
1. Given q1 with ∥q1∥2 = 1;
2. N = 1; α1 = 1; β1 = 1; γ1 = 1; la = 1; lb = 1; lc = 1;
3. For j = 1, 2, · · · , k do
4. If j > N , break
5. q̂ = Aqj ;
6. if j > αla then la = la + 1;
7. For i = la, · · · , N do
8. ha;ij = q∗i q̂; q̂ = q̂ − qiha;ij ;
9. End do
10. ha;N+1,j = ∥q̂∥2;
11. If ha;N+1,j > 0
12. N = N + 1, qN = q̂/ha;Nj , αj = N ;
13. End if
14. q̂ = Bqj ;
15. if j > βlb then lb = lb + 1;
16. For i = lb, · · · , N do
17. hb;ij = q∗i q̂; q̂ = q̂ − qihb;ij ;
18. End do
19. hb;N+1,j = ∥q̂∥2;
20. If hb;N+1,j > 0
21. N = N + 1, qN = q̂/hb;Nj , βj = N ;
22. End if
23. q̂ = Cqj ;
24. if j > γlc then lc = lc + 1;
25. For i = lc, · · · , N do
26. hc;ij = q∗i q̂; q̂ = q̂ − qihc;ij ;
27. End do
28. hc;N+1,j = ∥q̂∥2;
29. If hc;N+1,j > 0
30. N = N + 1, qN = q̂/hc;Nj , γj = N ;
31. End if
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32. End do

3. Analysis of residual upper bound of the algorithm for (λ2A +
λB + C)x = 0

From above discussions, we know that the solution of the QEP (1.1) can be
approximated by the solution of

(λ2Ha(1:N,1:N) + λHb(1:N,1:N) +Hc(1:N,1:N))Q
⊤x = 0,

where Q(:,1:N),Ha(1:N,1:N), Hb(1:N,1:N) and Hc(1:N,1:N) be produced by Algorithms
1 or 2.

That is, if (θi, νi) is an eigenvalue and right eigenvector of

(λ2Ha(1:N,1:N) + λHb(1:N,1:N) +Hc(1:N,1:N))ν = 0,

then the eigenvalue and eigenvector of the QEP (1.1) can be approximated by
eigenpairs (θi, xi), where xi = Q(:,1:N)νi.

The above analysis points that an original quadratic eigenvalue problem can be
approximated by a projection quadratic eigenvalue problem, and the accuracy can
be calculated by the residual error. Therefore, in the following, the residual upper
bound for symmetric Lanczos-type process are derived. Corresponding results for
the new Arnoldi-type process can be derived similarly, the details were omitted
here.

3.1. Theorem. If the Ritz value and Ritz vector are obtained by Algorithm 2,
then the following inequality

∥(θ2iA+Bθi + C)xi∥2
≤ ∥Q∥2(|θi|2∥Ha(N+1:αN ,p:N)∥2 + |θi|∥Hb(N+1:βN ,p:N)∥2(3.1)

+∥Hc(N+1:γN ,p:N)∥2)∥νi(p:N)∥2
holds, where p is the smallest integer such that γp > N and is equal to the value
of lc at step N + 1.

Proof. According to (2.5), we have

AQ(:,1:N) = Q(:,1:N)Ha(1:N,1:N) +Q(:,N+1:αN )Ha(N+1:αN ,1:N),

BQ(:,1:N) = Q(:,1:N)Hb(1:N,1:N) +Q(:,N+1:βN )Hb(N+1:βN ,1:N),

CQ(:,1:N) = Q(:,1:N)Hc(1:N,1:N) +Q(:,N+1:γN )Hc(N+1:γN ,1:N).

Then, we have

(θ2iA+ θiB + C)xi = (θ2iAQ(:,1:N) + θiBQ(:,1:N) + CQ(:,1:N))νi

= Q(:,1:N)(θ
2
iHa(1:N,1:N) + θiHb(1:N,1:N) +Hc(1:N,1:N))νi

+(θ2iQ(:,N+1:αN )Ha(N+1:αN ,1:N) + θiQ(:,N+1:βN )Hb(N+1:βN ,1:N)

+Q(:,N+1:γN )Hc(N+1:γN ,1:N))νi

= (θ2iQ(:,N+1:αN )Ha(N+1:αN ,p:N) + θiQ(:,N+1:βN )Hb(N+1:βN ,p:N)

+Q(:,N+1:γN )Hc(N+1:γN ,p:N))νi(p:N).

Since the first p−1 columns of Ha(N+1:αN ,1:N), Hb(N+1:βN ,1:N) and Hc(N+1:γN ,1:N)

are zeros, (3.1) can be obtained by taking the norm of above formula. �
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From (3.1), it is easy to see that the eigenpairs (θi, xi) is good approximation
to original problem when νi(p : N) is small.

4. Analysis of refined algorithm for (λ2A+ λB + C)x = 0

As [10] defines, for each θ, the refined process is to seek an unit vector µ̃ ∈
gKℓ({A,B,C}, q1) satisfies

∥(θ2A+ θB + C)µ̃∥2 = min
µ∈gKℓ({A,B,C},q1),∥µ∥2=1

∥(θ2A+ θB + C)µ∥2,(4.1)

and µ̃ is called a refined eigenvector.
Since Qℓ is an orthogonal basis of gKℓ({A,B,C}, q1), (4.1) is equivalent to seek

an unit vector z̃ ∈ Cℓ such that µ̃ = Qℓz̃ satisfies

z̃ = arg min
z∈Cℓ,∥z∥2=1

∥(θ2A+ θB + C)Qℓz∥2.(4.2)

It is easy to see that z̃ is the right singular vector of θ2AQℓ + θBQℓ + CQℓ

associated with σmin(θ
2AQℓ+θBQℓ+CQℓ). Based on Algorithm 1 and refined idea

in [10], the following restarted refined Arnoldi-type algorithm can be presented:
Algorithm 3: New restarted refined Arnoldi-type algorithm
1. Given m required eigenpairs, an unit initial vector q1 and a tolerance tol.
2. Run the Arnoldi-type process to generate an orthogonal basisQℓ of gKℓ({A,B,C}, q1).
3. Compute W1 = AQℓ, W2 = BQℓ, W3 = CQℓ.
4. Compute Aℓ = Q∗

ℓW1, Bℓ = Q∗
ℓW2, Cℓ = Q∗

ℓW3, and the eigenpairs of the
projection problem

(θ2iAℓ + θiBℓ + Cℓ)zi = 0.

Then, select m Ritz values as approximations to the m desired eigenvalues θi, i =
1, 2, · · · ,m.

5. For each θi, i = 1, 2, · · · ,m, based on SVD, σmin(θ
2
iAQℓ+θiBQℓ+CQℓ) and

eigenvector z̃i associated with its smallest singular value can be obtained. Then,
the refined eigenvector is µ̃i = Qℓz̃i.

6. Compute the relative residual error by

∥(θ2iA+ θiB + C)µ̃i∥2
|θi|2||Aµ̃i||2 + |θi|||Bµ̃i||2 + ||Cµ̃i||2

, i = 1, 2, · · · ,m.

If they are all below tol, then stop, else continue.
7. Construct a new initial vector q1 from µ̃i, i = 1, 2, · · · ,m, and return to step

2. Here, q1 can be obtained as the following combinations:

β · q1 = Σm
i=1∥(θ2iA+ θiB + C)µ̃i∥2Reµ̃i = QℓΣ

m
i=1∥(λ2

iA+ θiB + C)µ̃i∥2Rez̃i.

5. Numerical examples

In order to show the efficiency of Algorithms 1 and 2, some numerical examples
are indicated in this section, the process is realized by Matlab 7.8 on Pentium(R)
Dual-Core CPU. In the following example, if [12, Algorithm 2.1] is used, it means
that we transform the QEP (1.1) into (λ2I + λA−1B + A−1C)x = 0, where it is
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assumed that A is nonsingular. In the numerical examples, the relative residual
norm for an approximate eignpairs (θj , xj) are defined by

γj =
||(θ2jA+ θjB + C)xj ||2

|θj |2||Axj ||2 + |θj |||Bxj ||2 + ||Cxj ||2
.

5.1. Example. In this example, taking n = 10, k = 2.

Q =



0.3215 −0.0830 −0.1955 0.3294 0.1108 −0.1143 −0.8251 −0.0615 −0.0741 0.1662
0.3667 0.8872 −0.0975 −0.0782 0.1205 −0.0637 0.0635 0.1858 −0.0751 −0.0000
0.3786 −0.0977 0.5776 −0.0956 0.0446 −0.0399 0.1546 −0.2211 −0.2664 0.5975
0.1048 −0.0270 −0.3103 −0.0251 0.1232 0.9065 0.0510 −0.0729 −0.0879 0.1971
0.2096 −0.0541 −0.1274 0.8489 −0.0655 −0.0627 0.4561 0.0000 0.0000 0.0000
0.3977 −0.1026 0.5516 0.0701 0.0228 0.3065 −0.1258 0.2486 0.2253 −0.5470
0.4525 −0.1449 −0.2844 −0.2552 −0.7873 −0.0495 0.0506 0.0369 0.0456 0.0000
0.4120 −0.3608 −0.3342 −0.2781 0.5652 −0.2356 0.2410 0.1756 0.2173 0.0000
0.1572 −0.0406 −0.0956 −0.0867 0.1080 −0.0605 0.0648 −0.5558 −0.5927 −0.5266
0.0810 0.1715 0.0140 −0.0062 0.0177 0.0064 0.0021 −0.7104 0.6774 0.0000


,

A1 =



105 0 0 0 0 0 0 0 0 0
0 104 0 0 0 0 0 0 0 0
0 0 103 0 0 0 0 0 0 0
0 0 0 102 0 0 0 0 0 0
0 0 0 0 101 0 0 0 0 0
0 0 0 0 0 10−1 0 0 0 0
0 0 0 0 0 0 10−2 0 0 0
0 0 0 0 0 0 0 10−3 0 0
0 0 0 0 0 0 0 0 10−7 0
0 0 0 0 0 0 0 0 0 100


,

A = Q−1A1Q,

B =



5 6 7 8 9 0 1 2 3 4
6 1 2 3 4 5 6 7 8 9
7 2 3 2 4 5 7 8 9 4
8 3 2 0 1 2 3 4 5 6
9 4 4 1 3 3 2 1 5 4
0 5 5 2 3 4 3 2 1 5
1 6 7 3 2 3 9 9 4 2
2 7 8 4 1 2 9 3 2 1
3 8 9 5 5 1 4 2 1 3
4 9 4 6 4 5 2 1 3 2


,

C =



3 3 2 1 9 5 4 3 8 9
3 2 1 4 5 9 7 8 3 2
2 1 9 3 2 1 5 4 3 2
1 4 3 2 2 9 5 4 3 1
9 5 2 2 3 3 2 1 5 4
5 9 1 9 3 6 5 4 2 3
4 7 5 5 2 5 3 2 1 2
3 8 4 4 1 4 2 3 0 4
8 3 3 3 5 2 1 0 3 3
9 2 2 1 4 3 2 4 3 0


.
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Let p = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1)⊤, k = 2 and take initial vector q = p/||p||2,
the projection quadratic eigenvalue problem can be obtained by Algorithm 2. By
using the polyeig function, the modulo largest eigenvalue is −6.9702×107, and the
termination criterion is 1E-6, the residual error is 8.2930 × 10−7. Figure 2 plots
the relative residual norms for the solving method. However, by [12, Algorithm
2.1] and by polyeig function, the modulo largest eigenvalue is Inf or spill over. By
polyeig(C,B,A), the modula largest eigenvalue is −6.9700× 107.

From the example, it is indicated that when the condition number of matrix A
is very large, the solution may spill over by [12, Algorithm 2.1]. In this case, we
can try to utilize Algorithm 2.
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Figure 2. Residual errors of computed eigenvalues

5.2. Example. n = 50, A0 = rand(n), λmin(A
⊤
0 A0) = 3.3015 × 10−6, A =

A⊤
0 A0 − 3.3014 × 10−6In, cond(A) = 5.1352 × 1012, B = round(80 ∗ rand(n)),

C = round(80 ∗ rand(n)).

Let p = ones(50, 1), taking initial vector q = p/||p||2 and k = 3, by utilizing
Algorithm 1, the lower-dimensional quadratic eigenvalue problem can be obtained.
By polyeig function, the modulo largest eigenvalue is 3.4187 × 1011, and the ter-
mination criterion is 1E-5, the residual error is 9.1972 × 10−6. Figure 3 plots
the relative residual norms for this solving method. However, by [12, Algorithm
2.1] and or polyeig function, the modulo largest eigenvalue is Inf or spill over.
Furthermore, by polyeig(C,B,A), the modula largest eigenvalue is 3.4188× 1011.
Although the polyeig is convenient, it cannot solve large scale eigenvalue problem.
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Figure 3. Residual errors of computed eigenvalues

5.3. Example. n = 100, A0 = rand(n), λmin(A
⊤
0 A0) = 2.2805 × 10−5, A =

A⊤
0 A0 − 2.28 × 10−5In, cond(A) = 4.9641 × 1011, B = round(160 ∗ rand(n)),

C = round(160 ∗ rand(n)).

Let p = ones(100, 1), taking initial vector q = p/||p||2 and k = 3, by utilizing
Algorithm 1, the lower-dimensional quadratic eigenvalue problem can be obtained.
By polyeig function, the modulo largest eigenvalue is 2.3796×109−12.764i, and the
termination criterion is 1E-5, the residual error is 9.7534×10−6. Figure 4 plots the
relative residual norms for this solving method. However, by [12, Algorithm 2.1]
or polyeig function, the modulo largest eigenvalue is Inf or spill over. Furthermore,
by polyeig(C,B,A), the modula largest eigenvalue is 2.3796× 109.

5.4. Example. n = 300, A0 = rand(n), A = A⊤
0 A0 − 9.45× 10−5In, cond(A) =

2.4070 × 1011, λmin(A
⊤
0 A0) = 9.4594 × 10−5, B = round(500 ∗ rand(n)), C =

round(500 ∗ rand(n)).

Let p = ones(300, 1), taking initial vector q = p/||p||2 and k = 5, by utilizing
Algorithm 1, the lower-dimensional quadratic eigenvalue problem can be given. By
polyeig function, the modulo largest eigenvalue is −1.1874× 109 +5.829i, and the
termination criterion is 1E-5, the residual error is 9.9988×10−6. Figure 5 plots the
relative residual norms for this solving method. However, by [12, Algorithm 2.1]
or polyeig function, the modulo largest eigenvalue is Inf or spill over. Furthermore,
by polyeig(C,B,A), the obtained modula largest eigenvalue is −1.1874× 109.

5.5. Example. n = 500, A0 = rand(n), λmin(A
⊤
0 A0) = 3.9457 × 10−5, A =

A⊤
0 A0 − 3.9 × 10−5In, cond(A) = 1.3698 × 1011, B = round(800 ∗ rand(n)),

C = round(800 ∗ rand(n)).
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Figure 4. Residual errors of computed eigenvalues
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Figure 5. Residual errors of computed eigenvalues

Let p = ones(500, 1), taking initial vector q = p/||p||2 and k = 8, by utilizing
Algorithm 1, the lower-dimensional quadratic eigenvalue problem can be obtained.
By polyeig function, the modulo largest eigenvalue is 6.0500×108+72.832i, and the
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termination criterion is 1E-5, the residual error is 9.8699×10−6. Figure 6 plots the
relative residual norms for this solving method. However, by [12, Algorithm 2.1]
or polyeig function, the modulo largest eigenvalue is Inf or spill over. Meanwhile,
by polyeig(C,B,A), the modula largest eigenvalue is 6.0500× 108.
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Figure 6. Residual errors of computed eigenvalues

5.6. Example. n = 1000, A0 = rand(n), λmin(A
⊤
0 A0) = 3.8766 × 10−5, A =

A⊤
0 A0 − 3.1 × 10−5In, cond(A) = 3.2212 × 1010, B = round(1500 ∗ rand(n)),

C = round(1500 ∗ rand(n)).

Let p = ones(1000, 1), taking initial vector q = p/||p||2 and k = 15, by utilizing
Algorithm 1, the lower-dimensional quadratic eigenvalue problem can be obtained.
By polyeig function, the modulo largest eigenvalue is −3.9828×107−91.527i, and
the termination criterion is 1E-5, the residual error is 9.9989×10−6. Figure 7 plots
the relative residual norms for this solving method. However, by [12, Algorithm
2.1] or polyeig function, the modulo largest eigenvalue is Inf or spill over. By
polyeig(C,B,A), the obtained modula largest eigenvalue is −3.9828× 107.

References

[1] Arnoldi, W.E. The principle of minimized iterations in the solution of the matrix eigenvalue

problem, Quarterly of Applied Mathematics (9), 17-29, 1951.
[2] Z.J. Bai, Y.F. Su, SOAR: A second-order arnoldi method for the solution of the quadratic

eigenvalue problem, SIAM Journal on Matrix Analysis and Applications 26(3), 640-659,
2004.

[3] M. A. Brebner, J. Grad, Eigenvalues of Ax = λBx for real symmetric matrices A and B
computed by reduction to a pseudosymmetric form and the HR process, Linear Algebra and
its Applications 43 (3), 99-118, 1982.



17

0 20 40 60 80 100
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

R
es

id
ua

l e
rr

or
s

λ
1
=−3.9828 × 107 − 91.527i

Figure 7. Residual errors of computed eigenvalues

[4] J.W. Demmel, Applied Numerical Linear Algebra, SIAM, Philadelphia, 1997.

[5] I. Gohberg, P. Lancaster, L. Rodman, Matrix Polynomials, Academic Press, New York,
1982.

[6] G.H. Golub, C.F. van Loan, Matrix Computations, 3rd ed., Johns Hopkins University Press,
Baltimore, MD, 1996.

[7] L. Hoffnung, R.C. Li, Q. Ye, Krylov type subspace methods for matrix polynomials, Linear
Algebra and its Applications 415 (1), 52-81, 2006.

[8] Z.X. Jia, Refined iterative algorithms based on Arnoldi’s process for large unsymmetric
eigenproblems, Linear Algebra and its Applications 259 (1), 1-23, 1997.

[9] Z.X. Jia, Using cross-product matrices to compute the SVD, Numerical algorithms 42 (1),
31-61, 2006.

[10] Z.X. Jia, Y.Q. Sun, A refined second-order arnoldi (RSOAR) method for the quadratic

eigenvalue problem and implicitly restarted algorithms, Taiwanese J. Math. Accepted, (2014)
[11] C. Lanczos, An iteration method for the solution of the eigenvalue problem of linear differ-

ential and integral operators, Journal of Research of the National Bureau Standards (45),
255-282, 1950.

[12] R.C. Li, Q. Ye, A Krylov subspace method for quadratic matrix polynomials with application
to constrained least squares problems, SIAM Journal on Matrix Analysis and Applications
25 (2), 405-428, 2003.

[13] K. Meerbergen, The quadratic arnoldi method for the solution of the quadratic eigenvalue

problem, SIAM Journal on Matrix Analysis and Applications 30 (4), 1463-1482, 2008.
[14] C.B. Moler, G.W. Stewart, An algorithm for generalized matrix eigenvalue problems, SIAM

Journal on Numerical Analysis 10 (2), 241-256, 1973.
[15] Y. Saad, Numerical Methods for Large Eigenvalue Problems, Manchester University Press,

Man-chester, UK, 1992.
[16] F. Tisseur, Backward error and condition of polynomial eigenvalue problems, Linear Algebra

and its Applications 309 (1-3), 339-361, 2000.



18

[17] F. Tisseur, K. Meerbergen, The quadratic eigenvalue problem, SIAM Review 43 (2), 235-

286, 2001.
[18] J.H. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, England,

1965.


