Direct Solution of initial Value Problems of Fourth order Ordinary Differential Equations Using Modified Implicit Hybrid Block Method.
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ABSTRACT

Our focus in this article is the derivation; analysis and implementation of a new modified implicit hybrid block method for the direct solution of initial value problems of fourth order ordinary differential equations. In the derivation of the method, we adopted the approach of collocation approximation to obtain the main scheme with continuous coefficients. From the main scheme, additional schemes were developed. The implementation strategy of the new method is by combining the main scheme and the additional schemes as simultaneous integrator to initial value problem of fourth order ordinary differential equations. As required of any numerical method, the properties analysis of the block was done and the result showed that it is consistent, convergent, zero stable and absolutely stable. We then test our method with numerical examples solved using existing method and were found to give better results.

Key words:  Interpolation, Continuous coefficients, Block method, Numerical integration, fourth order ordinary differential equations.

1. Introduction 
Some empirical problems and physical

Phenomena in science and engineering, such

as mechanical systems without dissipation, 

celestial mechanics, control theory, computer

aided designs when modeled result to higher

order ordinary differential equations of the 

form:
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Conventionally, to solve (1) numerically, we first reduce it to system of first order ordinary differential equations and then apply any other existing first order method to solve it. Many literature abounds on this ( Lambert 1973, Fatunla 1988). The drawback of this method is that it is time consuming, cumbersome to solve, and take much computer space. To circumvent these draw backs, many researchers has solved (1) directly, they include: Oman (1999), Kayode (2008), Olabode (2009) and Adesanya (2011) who 
developed block methods for numerical solution of fourth order ordinary differential equations. The works of Olabode (2009) and Adesanya (2011) serve as improvement on the work of Kayode (2008) who developed Linear multistep method for the solution of fourth order ordinary differential equations whose implementation is Predictor – Corrector mode. 

We are motivated to advance the course of research 

Work by continuing with the proposition of  block 

method which have been shown to eliminate
the drawbacks of Predictor corrector method as 

discussed in Olabode (2009) and Yusuph (2004).
Anake (2011), Bolaji (2012), Bolaji et al 
(2012 a and b) in their works have
proposed single Step hybrid methods for the 
direct numerical solution of initial value problems
of second order and third order Ordinary 
differential equations respectively. In all Cases, 
their methods of implementation is block mode 
with the proposed methods being efficient, adequate and 
suitable towards catering for the class of problems

for which they were designed. 

Consequently, our motivation in this work is
the success story of the adoption of  single step 
method to solving higher order ordinary 
differential equations. Thus, in this work, we
are proposing a single step method for 
the direct numerical solution of fourth
order ordinary differential equations, which
eliminates the use of predictors by providing
sufficiently accurate simultaneous difference 
equations from a single continuous formula 
and its derivatives.

According to Awoyemi et al (2011), the general block formula is given by: 
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where e is 
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is the order of the differential equation. 

Given a predictor equation in the form:
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By Putting (3) in (2) we have:
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Equation (4) is called a self starting block-predictor-corrector method because the prediction equation is gotten directly from the block formula (Shampine & Watts (1969) and (Kayode (2008)).

Consequently, our focus in this paper is the proposition of an improved implicit continuous hybrid algorithm for the solution of initial value problems of fourth order ordinary differential equations.

2. Derivation of the Method

We take our basis function to be a power series of the form:
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        (5)

The third derivative of (5) gives:
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By putting (6) into (1) we have the differential system:
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Where 
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the parameters to be determined are, while r+s denotes the number of collocation and interpolation points. By collocating (7) at the mesh points
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By putting these system of equations in matrix form and then solved to obtain the values of

parameters
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’s , j = 0, 
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, .. Which when substituted in (5), yields, after some manipulation, a hybrid linear method with continuous coefficients of the form:
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The co efficient of 
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Where 
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2.1  Derivation of the Block 
The general block formula proposed by Awoyemi et al (2011), in the Normalized form is given by:
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  By evaluating (10) at
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3.
Analysis of the Properties of the block
In this section we carry out the analysis of the 

Basic properties of the new method.

3.1
Order of the Method

The linear operator of the block (12) is defined as: 
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By expanding 
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The block (11) and associated linear operator are said to have order p if 
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The term 
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 is called the error constant and implies that the local truncation error is given by: 
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Hence the block (12) has order 8 with error constant:
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3.2
Zero Stability of the Block

The block (11) is said to be Zero stable if the roots 
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 is the order of the differential equation, for the block (11),
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Hence our method is Zero stable.

3.3
Convergence

The necessary and sufficient condition for a numerical method to be convergent is for it to be Zero stable and has order
[image: image69.wmf]1
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, Since our method has been shown to be zero stable and has order 8, it satisfied the above condition, thus our method is convergent.

4.
Numerical Experiments.

To test the accuracy, workability and suitability of the method, we adopted our method to solving some initial value problems of fourth order ordinary differential equations.

Test Problem 1.

We consider a non linear fourth order problem:
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Whose exact solution is given by: 
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The result is as shown in table 1.
Test Problem 2.
We consider special fourth order problem:
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Whose exact solution is: 
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Our method was used to solve the problem and result compared with Mohammed (2010).  The result is as shown in table II.

4.2 Numerical Results

We make use of the following Notations in the table of results:

XVAL: Value of the independent variable where numerical value is taken.

ERC: Exact result at XVAL

NRC: Our Numerical result at XVAL

ERR: Error of our result at XVAL. 

5.
Discussion of Results.

In this paper, we have proposed a modified Implicit Hybrid Block algorithm for the numerical solution of initial value problems of fourth order ordinary differential equations. For better performance of the method, step size is chosen within the stability interval. The results of our new method when compared with the block method proposed by Mohammed (2010) showed that our method is more accurate.





Table 1; showing results for problem 1

	XVAL
	        ERC
	         NRC
	    ERR

	0.103125
	  1.119264744787591900
	  1.119264744787634518
	4.261834E-14 

	0.206250
	 1.271599493198048300
	 1.271599493198779782
	7.314820E-13

	0.306250
	 1.452110907065012200
	 1.452110907066637521
	1.625321E-12

	0.406250
	 1.666216862500120800
	 1.666216862506568972
	6.568972E -12

	0.506250
	 1.915347109920913400
	 1.915347109923762547
	2.849147E -12

	0.603125
	 2.201081767908965600
	 2.201081767913196057
	4.231457E -12

	0.703125
	 2.514440293337009000
	 2.514440293349477520
	1.246852E -11

	0.803125
	 2.877516387746618300
	 2.877516387798079728
	5.146142E - 11

	0.903125
	 3.282936158805117400
	 3.282936158837654230
	3.765423E - 11

	1.003125
	3.733049511495201100
	3.7330495115567381246
	7.218014E - 11


Table 2; showing results for problem 2.
	 XVAL
	             ERC
	           NRC
	      ERR
	ERR  in Mohammed(2010)

	0.1
	 0.1000000833333340
	  0.1000000833335172
	1.832E-13
	7.000E- 10

	0.2
	0.20000266666666690
	 0.20000266667150250
	4.835E-12
	8.999E -10

	0.3
	0.300020250000000004
	 0.30002025000721480
	7.214E -12
	2.999E- 09

	0.4
	0.400008533333333333
	 0.40000853340160457
	6.832E -11
	5.100E- 09

	0.5
	0.500260416666666665
	 0.50026041674083458
	7.416E -11
	7.799E- 09

	0.6
	0.600648000000000007
	 0.60064800002714565
	2.714E -11
	1.180E -08

	0.7
	0.701400583333333344
	 0.70140058361478378
	2.815E -10
	1.240E- 08

	0.8
	0.802730666666666670
	 0.80273066700848838
	3.412E -10
	1.410E -08

	0.9
	0.904920750000000005
	 0.90492075019356814
	1.936E -10
	1.880E- 08

	1.0
	1.00833333333333300
	1.00833333361984509
	2.865E - 10
	2.600E -08
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