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problem. The methods developed are continuous, consistent, and symmetric
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1 Introduction

In this work, a three step y−function algorithm is developed to directly implement a

general second order differential equation of the form

y′′ = f(t, y, y′), y(t0) = y0, y′(t0) = y1. (1)

Literature has shown that many empirical problems can be modeled into problem (1).

Though the conventional method for solving (1) is by reducing it to system of first

order ordinary differential equations, attempt is hereby made to solve (1) directly to

avoid the drawbacks in the reduction methods [Onumanyi, Awoyemi, Jator and Sirisena

(1994); Awoyemi (2005); Waeleh, Majid, Ismail and Suleiman (2012); Jator (2010);

Majid and Suleiman (2006); Adesanya, Anake and Oghonyon (2009); Yusuph and On-

umanyi (2005)]. Waeleh et al (2012) developed a code based on 2-point Block methods

for solving higher order IVPs of ODEs directly. Majid (2004) in Majid, Azumin and

Suleiman (2009) developed the two-point block method for solving first and second or-

der ODEs using variable stepsize. Moreso, Majid and Suleiman (2006), have introduced

a direct integration implicit variable steps method for solving higher order systems of

ODEs. Jator (2010) solve second order IVPs directly using the application of a self

starting multistep method. Onumanyi et al (1994), Kayode (2005); Anake, Awoyemi,

Adesanya and Famewo (2012). These authors have solve problem (1) directly but the

location of the hybrids are at f−function which made the qualities of these methods

not desirable as they have low order of accuracy and less efficient. To make these

methods desirable and more efficient, there is need to introduce the hybrid points at

y−function [Kayode (2011), Kayode and Adeyeye (2011), Kayode and obarhua (2013)].

The aim of this paper is to extend the work in Kayode and Obarhua (2013) proposing 3-

step implicit y−function hybrid methods for direct numerical integration of initial value

problems (IVPs) of ordinary differential equations to address these observed limitations.

This we intend for efficiency and economically.
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2 Derivation of the Method

Let consider the approximate solution to problem (1) to be a partial sum of a power

series of the form

y(x) =

2(k+1)∑
j=0

ajx
j. (2)

Taking the second derivative of (2) and using this in (1) yields

2(k+1)∑
j=2

j(j − 1)ajx
j−2 = f(x, y, y′). (3)

Equations (2) and (3) are respectively interpolated and collocated at selected grid and

off-grid points xn+i as i = 0, r, 1, 2, v and xn+c as c = 0, 1, 2, 3 where r ∈ (0, 1) when the

stepnumber k = 3, 0 < r < 1, 2 < v < 3, giving rise to a system of c + i equations

written as matrix equation

Ax = b

as

1 xn x2n x3n x4n x5n x6n x7n x8n

1 xn+r x2n+r x3n+r x4n+r x5n+r x6n+r x7n+r x8n+r

1 xn+1 x2n+1 x3n+1 x4n+1 x5n+1 x6n+1 x7n+1 x8n+1

1 xn+2 x2n+2 x3n+2 x4n+2 x5n+2 x6n+2 x7n+2 x8n+2

1 xn+v x2n+v x3n+v x4n+v x5n+v x6n+v x7n+v x8n+v

0 0 2 6xn 12x2n 20x3n 30x4n 42x5n 56x6n

0 0 2 6xn+1 12x2n+1 20x3n+1 30x4n+1 42x5n+1 56x6n+1

0 0 2 6xn+2 12x2n+2 12x3n+2 30x4n+2 42x5n+2 56x6n+2

0 0 2 6xn+3 12x2n+3 12x3n+3 30x4n+3 42x5n+3 56x6n+3





a0

a1

a2

a3

a4

a5

a6

a7

a8



=



yn

yn+r

yn+1

yn+2

yn+v

fn

fn+1

fn+2

fn+3



.

(4)
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Solving (4) for aj’s and substituting their results into (2) to obtain

yk(x) =
k−1∑
j=0

αj(x)yn+j + {τ1(x)yn+r + τ2(x)yn+v}+ h2
k∑

j=0

βj(x)fn+j. (5)

yn+3 =
1

T0
α0yn +

1

T1
τ1yn+r −

1

T2
α1yn+1 +

1

T3
α2yn+2 +

1

T4
τ2yn+v

+
h2

6T5

(
− β0fn + 3β1fn+1 − 3β2fn+2 − β3fn+3

)
, (6)

and its first derivative is

y′n+3 =
1

T ′0
α′0yn +

1

T ′1
τ ′1yn+r −

1

T ′2
α′1yn+1 +

1

T ′3
α′2yn+2 +

1

T ′4
τ ′2yn+v

+
h2

6T ′5

(
− β′0fn + 3β′1fn+1 − 3β′2fn+2 − β′3fn+3

)
, (7)

where

α0 = 2(r − 3)(3− v)



−408(r4v + rv4) + 783(rv3 + r3v) + 144(r3v4 + r4v3)

−1662(r2v + rv2)− 261(r4v2 + r2v4)− 18r4v4 + 56730r3v3

−1984r2v2 + 665rv + 252 + 1590(r3v2 + r2s3) + 63(r4 + v4)

−37(r3 + v3) + 413(r2 + v2) + 44202(r + v)


τ1 = 6(3− v)(−63v4 + 378v3 − 413v2 − 462v − 252)

α1 = −3(r − 3)(3− v)



−864(r + v)− 851r3v3 + 262046r2v2 + 1116rv

+2106(r3v + rv3) + 1763(r3v2 + r2v3)− 828(r3 + v3)

+1836(r2 + v2) + 12096− 3993(r4v + rv4) + 702(r2v + rv2)

−237(r4v2 + r2v4) + 120(r3v4 + r4v3)− 18r4v4

+108(r4 + v4)



α2 = 6(r − 3)(3− v)



−1188(r + v)− 563r3v3 − 2292r2v2 − 315rv − 453(r3v + rv3)

+964(r3v2 + r2v3)− 360(r3 + v3) + 1268(r2 + v2)

+36(r4v + rv4) + 1332(r2v + rv2)− 129(r4v2 + r2v4)

+15648(r3v4 + r4v3)− 18r4v4 + 27(r4 + v4)


τ2 = 6(r − 3)(−63r4 + 378r3 − 413r2 − 462r − 252)
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β0 = −2(r − 3)(3− v)


4920(rv2 + r2v)− 2612r2v2 − 8005rv − 60468(r2 + v2)

+732(r + v)− 747(r3v + rv3) + 360(r3v2 + r2v3)

+108(r3 + v3)− 45r3v3 + 3780


β1 = 6(r − 3)(3− v)


4290(rv2 + r2v) + 2556(r2 + v2)− 4176(r + v)− 2801r2v2

−5100rv − 726(r3v + rv3) + 395(r3v2 + r2v3)

−11769(r3 + v3)− 45r3v3


β2 = −6(r − 3)(3− v)


2010(rv2 + r2v) + 1224(r2 + v2)− 1494(r + v)− 664r2v2

−1515rv − 429(r3v + rv3)− 10(r3v2 + r2v3)− 234(r3 + v3)

+45r3v3


β3 = −6(r − 3)(3− v)


750(rv2 + r2v) + 468(r2 + v2)− 528(r + v)− 6568r2v2

+3388rv − 198(r3v + rv3)− 45(r3v2 + r2v3)

−108(r3 + v3) + 45r3v3



T0 = 2rv



−2976(r + v) + 3930(rv2 + r2v)− 1926(r3v + rv3) + 1059(r2v3 + r3v2)

+3556(r2 + v2)− 908rv − 4361r2v2 + 143r3v3 + 270(r4v + rv4)

−63(r4v2 + r2v4)− 72(r4v3 + r3v4)− 1404(r3 + v3) + 180(r4 + v4)

+18r4v4



T1 = r(r − 1)(r − 2)(r − v)



−2976(r + v) + 3930(rv2 + r2v)− 1926(r3v + rv3)

+3556(r2 + v2)− 908rv − 4361r2v2 + 143r3v3

+270(r4v + rv4)− 63(r4v2 + r2v4)− 72(r4v3 + r3v4)

+180(r4 + v4) + 18r4v4 + 1059(r2v3 + r3v2)

−1404(r3 + v3)



T2 = (r − 1)(v − 1)



−2976(r + v) + 3930(rv2 + r2v)− 1926(r3v + rv3)

+3556(r2 + v2)− 908rv − 4361r2v2 + 143r3v3 + 270(r4v + rv4)

−63(r4v2 + r2v4)− 72(r4v3 + r3v4) + 180(r4 + v4) + 18r4v4

+1059(r2v3 + r3v2)− 1404(r3 + v3)



5



T3 = 2(r − 2)(v − 2)



−2976(r + v) + 3930(rv2 + r2v)− 1926(r3v + rv3)

+3556(r2 + v2)− 908rv − 4361r2v2 + 143r3v3 + 270(r4v + rv4)

−63(r4v2 + r2v4)− 72(r4v3 + r3v4) + 180(r4 + v4) + 18r4v4

+1059(r2v3 + r3v2)− 1404(r3 + v3)



T4 = v(r − v)(v − 1)(v − 2)



−2976(r + v) + 3930(rv2 + r2v)− 1926(r3v + rv3)

+3556(r2 + v2)− 908rv − 4361r2v2 + 143r3v3

+270(r4v + rv4)− 63(r4v2 + r2v4)− 72(r4v3 + r3v4)

+180(r4 + v4) + 18r4v4 + 1059(r2v3 + r3v2)

−1404(r3 + v3)


T5 =


−2976(r + v) + 3930(rv2 + r2v)− 1926(r3v + rv3)− 1404(r3 + v3)

+1059(r2v3 + r3v2) + 3556(r2 + v2)− 908rv − 4361r2v2 + 143r3v3

+270(r4v + rv4)− 63(r4v2 + r2v4)− 72(r4v3 + r3v4) + 180(r4 + v4) + 18r4v4

 .

(8)

and

α′0 = 3



19764(rv4 + r4v)− 73224(rv3 + r3v) + 103842(rv2 + r2v) + 1229823rv

+37071r2v2 + 125874r3v3 − 256716r4v4 − 14445(r4 + v4) + 2557737(r3 + v3)

−24003(r2 + v2) + 223398(r + v)− 47223(r4v3 + r3v4) + 32454(r4v2 + r2v4)

−875761(r3v2 − r2v3)− 1863(r5v + rv5) + 50058(r5v4 + r4v5)

−41958(r5v3 + r3v5)− 3645(r5v2 + r2v5) + 1701(r5 + v5)− 9396r5v5

+6651288


τ ′1 = 3(1341v5 − 11637v4 + 1031098v3 − 18051v2 − 17658v − 11772)

α′1 = −3



−147744rv + 36288(rv2 + r2v)− 63563(r4v3 + r3v4)− 293112(r3v2 + r2v3)

+86304(r2v4 + r4v2) + 129600(r3 + v3)− 186624(r2 + v2) + 1710720(r + v)

+17960r4v4 + 223200r3v3 + 365976r2v2 − 8739(r5v2 + r2v5)

−1794(r5v4 + r4v5) + 180r5v5 + 6348(r5v3 + r3v5) + 1782(r5v + rv5)

−1090476(r4v + rv4) + 28728(r3v + rv3) + 3564(r5 + v5)− 36072(r4 + v4)
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α′2 = 3



−829359rv + 55566(rv2 + r2v) + 981693(r4v3 + r3v4)− 1809(r3v2 + r2v3)

−2659857(r2v4 + r4v2) + 1189161(r3 + v3)− 1133595(r2 + v2) + 304236(r + v)

−178032r3v3 + 767205r2v2 + 36531(r5v2 + r2v5) + 68850(r5v4 + r4v5)

−142074(r5v3 + r3v5) + 56943(r5v + rv5)− 396846(r4v + rv4)

+735372(r3v + rv3) + 56943(r5 + v5)− 453789(r4 + v4)− 494532r4v4

−9396r5v5


τ ′2 = 3(−1341r5 + 11637r4 − 1031098r3 + 18051r2 + 17658r + 11772)

β′0 = −



−1313109(rv2 + r2v) + 433593(rv3 + r3v)− 52157277rv + 1171547r2v2

−363687(r3v2 + r2v3)− 65880(r3 + v3) + 104544(r2 + v2) + 217944(r + v)

−529740 + 1143r4v4 − 11277(r4v3 + r3v4) + 38241(r4v2 + r2v4)

+8748(r4 + v4)− 47223(r4v + rv4) + 109507r3v3



β′1 = −3



−715662(rv2 + r2v) + 273564(rv3 + r3v) + 338580rv + 1013871r2v2

−354426(r3v2 + r2v3) + 196560(r3 + v3)− 608148(r2 + v2) + 631152(r + v)

+292959r4v4 − 12886(r4v3 + r3v4) + 39273(r4v2 + r2v4)− 21276(r4 + v4)

−31914(r4v + rv4) + 119476r3v3



β′2 = −3



−211383(rv2 + r2v) + 94311(rv3 + r3v) + 58725rv + 241629r2v2

−69069(r3v2 + r2v3) + 68310(r3 + v3)− 186462(r2 + v2) + 163458(r + v)

−279r4v4 + 371(r4v3 + r3v4) + 6117(r4v2 + r2v4)− 8154(r4 + v4)

−12231(r4v + rv4) + 9389r3v3



β′3 =



6119334(rv2 + r2v) + 90072(rv3 + r3v) + 39420rv + 197893r2v2

−45768(r3v2 + r2v3) + 65880(r3 + v3)− 163404(r2 + v2) + 135215(r + v)

−1143r4v4 + 4572(r4v3 + r3v4) + 1989(r4v2 + r2v4)− 8748(r4 + v4)

+70872(r4v + rv4) + 264470r3v3


.

(9)

To test the accuracy of (6), we take an example by making r = 1
2

and v = 5
2
, to have

yn+3 = −55

3
yn+2+

32

3
yn+ 5

2
+

55

3
yn+1−

32

3
yn+ 1

2
+yn+

h2

36
(fn+3−63fn+2+63fn+1−fn). (10)
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The order p and the principal error constant cp+2 of (10) are p = 7 and cp+2 =

−0.000029624 respectively and its first derivative is

y′n+3 =
1

h

(
−8567059

156366
yn+2 +

11212304

390915
yn+ 5

2
+

4276442

78183
yn+1 −

2474704

78183
yn+ 1

2
+

37989

12410
yn

)
+

h

9381960
(1726769fn+3 − 52604847fn+2 + 47501847fn+1 − 819569fn).

(11)

The order p and the principal error constant cp+2 of (11) are p = 7 and cp+2 =

−0.0035276 respectively.

3 Implementation of the Method

To implement the derived method to solve problem (1) of the discrete scheme (10)

obtained from (6) requires the generation of some starting values. This is obtained

in Predictor-Corrector mode of the same order of accuracy. The following symmetric

explicit predictor scheme and its derivative of the same order with the corrector scheme

are obtained using the same procedure in section 2 yn+3 and y′n+3.

yn+3 =

(
−14422

359
yn +

25584

359
yn 1

2
− 5915

359
yn+1 −

12840

359
yn+2 +

7952

359
yn+ 5

2

)
+

h2

4308

(
3033fn + 39712fn+ 1

2
+ 5526fn+1 − 21811fn+2

)
. (12)

y′n+3 =
1

h

(
−3389333

12565
yn +

1284680

12565
yn+ 1

2
− 1326461

7539
yn+1 −

61136

359
yn+2 +

3949384

37695
yn+ 5

2

)
+

h

904680

(
4307697fn + 55256608fn 1

2
+ 1779534fn+1 − 24931099fn+2

)
.

(13)

The principal error constants of (12) and (13) are cp+2 = 0.0021109 and Cp+2 =

0.0014857 respectively. The schemes (12) and (13) above have the same order p = 7.

Other explicit schemes were also generated to evaluate other starting values and Taylor’s

series was used to evaluate the values for yn+r

yn+r = yn + (rh)y′n +
(rh)2

2!
fn +

(rh)3

3!

{
∂fn
∂xn

+ y′n
∂fn
∂yn

+ fn
∂fn
∂y′n

}
+O(h4) (14)
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and

y′n+r = y′n + (rh)fn +
(rh)2

2!

{
∂fn
∂xn

+ y′n
∂fn
∂yn

+ fn
∂fn
∂y′n

}
+O(h4). (15)

3.1 Numerical Examples

The method is applied to solve the following linear and non-linear second order initial

value problems of ordinary differential equations directly without reduction to system

of first order equations.

Problem 1:

y′′ = x(y′)2, y(0) = 1, y′(0) =
1

2
, h =

1

100
.

The Exact Solution:

y(x) = 1 +
1

2
ln

(
2 + x

2− x

)
.

In this example, the results of our methods of order 7 are compared with the method of

(Kayode & Awoyemi, 2005) a five step which is of order 8. This can be seen in table 1

at some selected points.
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Table 1: Results and absolute errors |yexact− ycomputed| for problem 1

x yexact ycomputed Errors in Kayode Errors in new

& Awoyemi (2005) scheme (10)

0.1 1.050041729278 1.050041729281 0.1708719055e-09 2.312595e-12

0.2 1.100335347731 1.100335347742 0.6836010114e-08 1.088329e-11

0.3 1.151140435936 1.151140435961 0.1555757709e-07 2.430833e-11

0.4 1.202732554054 1.202732554094 0.2880198295e-07 4.018186e-11

0.5 1.255412811883 1.255412811937 0.4802328029e-07 5.422818e-11

0.6 1.309519604203 1.309519604262 0.7628531256e-07 5.901679e-11

0.7 1.365443754271 1.365443754313 0.1157914170e-06 4.161738e-11

0.8 1.423648930194 1.423648930173 0.1727046080e-06 2.077827e-11

0.9 1.484700278594 1.484700278425 0.2561456831e-06 1.692806e-10

1.0 1.549306144334 1.549306143854 0.3815695118e-06 4.802496e-10

Problem 2:

y′′1 = −y2 + cosx, y1(0) = −1, y′1(0) = −1.

y′′2 = y1 + sinx, y2(0) = 1, y′2(0) = 0.

The Exact Solution:

y1(x) = − cosx− sinx.

y2(x) = cos x. (Majid et al (2009))

In this example, the results of the new method (10) of order p = 7 are compared with

those of Majid et al (2009) and Adeyeye (2012).

10



Table 2: Results and absolute errors |yexact− ycomputed| for problem 2

TOL
Majid et al (2009)

MTD TS
Adeyeye (2012) New Method (10)

MTD TS MAXE tc MAXE tc MAXE tc

10−2 2P4SDIR 33 2.73003E-2 710 3-STEP 33 2.993106E-10 144 1.961956E-10 122

10−4 2P4SDIR 42 1.72828E-3 837 3-STEP 42 6.394885E-14 285 1.598721E-14 131

10−6 2P4SDIR 69 6.87609E-6 1182 3-STEP 69 3.030909E-14 276 1.443290E-14 198

10−8 2P4SDIR 84 9.64221E-7 1552 3-STEP 84 3.208545E-13 337 2.430278E-13 312

10−10 2P4SDIR 160 2.04449E-9 2485 3-STEP 160 1.035838E-13 612 1.310063E-14 581

Problem 3:

y′′ = −y, y(0) = 1, y′(0) = 1, h = 0.1.

The Exact Solution:

y(x) = cos x+ sinx

. In this example, the optimal errors of the method (10) are compared with the optimal

errors of Ehigie et al, (2010). The results are as shown in Table 3a and Graph 3b below:

Table 3a: Results and absolute optimal errors for problem 3

x yexact ycomputed Optimal errors

in Ehigie et al

(2010)

Optimal errors

in New Method

(10)

0.3 1.250856695787 1.250856675130 1.26e-05 2.07e-08

0.4 1.310479336312 1.310479337927 1.66e-05 1.62e-09

0.5 1.357008100495 1.357008130874 2.05e-05 3.04e-08

0.6 1.389978088305 1.389978152572 2.41e-05 6.43e-08

0.7 1.409059874522 1.409059976326 2.75e-05 1.02e-07

0.8 1.414062800247 1.414062941683 3.07e-05 1.41e-07

0.9 1.404936877898 1.404937059457 3.35e-05 1.82e-07

1.0 1.381773290676 1.381773511219 3.60e-05 2.21e-07
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Problem 4:

y′′ = λ(1− y2)y′ − y, y(0) = 2, y′(0) = 0, h = 0.1 when λ = 1.

This example is solved using the new methods of order 7. This can be seen in Table 4a

and the graph 4b.

Table 4a: Numerical solution for problem 4

x ycomputed x ycomputed x ycomputed x ycomputed

0.3 1.9106729679 0.4 1.8421219814 0.5 1.7551651171 0.6 1.6506712174

0.7 1.5296843493 0.8 1.3934133719 0.9 1.2432198584 1.0 1.0806044914

1.1 0.9071920686 1.2 0.7247152685 1.3 0.5349973381

Conclusion: In this paper, the efficiency and low error term was established by ex-

tending earlier results of Kayode and Obarhua (2013), the performance of the continu-

ous y−function hybrid methods developed have significantly improved by introducing a

step higher. The methods were derived by interpolation and collocation procedure using

power series as the basis function. The main predictor, which is of the same order with

the method (10), was derived to implement the method. The new hybrid methods are

continuous, consistent, symmetric and of higher order of accuracy than earlier ones in

Kayode and Obarhua (2013). These methods were compared with some existing meth-

ods. The results show that the accuracy of the new methods is better than the existing

methods.
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