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Abstract

On a real hypersurface M in a non-flat complex space form we have the Levi-
Civita and generalized Tanaka-Webster connections. For any nonnull constant

k and any vector field X tangent to M an operator on M , F
(k)
X , related to

both connections, is defined and is called k-th Cho operator. If X belongs to the
maximal holomorphic distribution D on M , the corresponding operator does not
depend on k and is denoted by FX and is called Cho operator. The aim of the
present paper is to classify real hypersurfaces in non-flat space forms such that
FXS = SFX , where S denotes the Ricci tensor of M and a further condition is
satisfied.
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1 Introduction.

A complex space form is an n-dimensional Kähler manifold of constant holomorphic
sectional curvature c. A complete and simply connected complex space form is ana-
lytically isometric to a complex projective space CP n if c > 0, a complex Euclidean
space Cn if c = 0, or a complex hyperbolic space CHn if c < 0. In case of CP n

c is considered 4 and in case of CHn c is equal to −4. Furthermore, the complex
projective and complex hyperbolic spaces are called non-flat complex space forms and
the symbol Mn(c), n ≥ 2, is used to denote them when it is not necessary to distinguish
them.

Let M be a connected real hypersurface of Mn(c) without boundary. Let ∇ be the
Levi-Civita connection on M and J the complex structure of Mn(c) . Take a locally
defined unit normal vector field N on M and denote by ξ = −JN . This is a tangent
vector field to M called the structure vector field on M . If it is an eigenvector of
the shape operator A of M the real hypersurface is called Hopf hypersurface and the
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corresponding eigenvalue is α = g(Aξ, ξ). Moreover, on M there exists an almost
contact metric structure (φ, ξ, η, g) induced by the Kählerian structure of Mn(c) ,
where φ is the tangent component of J and η is an one-form given by η(X) = g(X, ξ)
for any X tangent to M .

The classification of homogeneous real hypersurfaces in CP n was obtained by Takagi
(see [7], [22], [23], [24]). His classification contains 6 types of real hypersurfaces. Among
them we find type (A1) real hypersurfaces that are geodesic hyperspheres of radius r ,

0 < r <
π

2
, type (A2) real hypersurfaces that are tubes of radius r , 0 < r <

π

2
, over

totally geodesic complex projective spaces CP k , 0 < k < n − 1 (both types of real
hypersurfaces are called type (A) real hypersurfaces) and type (B) real hypersurfaces

that are tubes of radius r , 0 < r <
π

4
, over the complex quadric. All of them are Hopf

ones with constant principal curvatures. In case of CHn , the study of real hypersurfaces
with constant principal curvatures, was started by Montiel in [14] and completed by
Berndt in [1]. They are divided into two types: type (A) real hypersurfaces which
are either a horosphere in CHn , or a geodesic hypersphere or a tube over a totally
geodesic complex hyperbolic hyperplane CHn−1 , or a tube over a totally geodesic
CHk (1 ≤ k ≤ n−2) and type (B ) real hypersurfaces which are tubes of radius r > 0
over totally real hyperbolic space RHn . All of them are homogeneous and Hopf.

Ruled real hypersurfaces are another important class of real hypersurfaces in Mn(c) .
They can be described as follows: consider a regular curve γ in Mn(c) with tangent
vector field X . Then at each point of γ there is a unique hyperplane of Mn(c) cutting
γ in a way to be orthogonal to both X and JX . The union of all these hyperplanes
is a ruled hypersurface. Equivalently, for ruled hypersurfaces in Mn(c) we have that
the maximal holomorphic distribution D of M at any point, which consists of all the
vectors orthogonal to ξ , is integrable and it has as integrable manifold Mn−1(c), i.e
g(AD,D) = 0. For examples of ruled real hypersurfaces see [8] or [11].

The Jacobi operator RX with respect to a unit vector field X is defined by RX =
R(., X)X , where R is the curvature tensor field on M . Then we see that RX is a
self-adjoint endomorphism of the tangent space. It is related to Jacobi vector fields,
which are solutions of the second-order differential equation (the Jacobi equation)
∇γ̇(∇γ̇Y ) +R(Y, γ̇)γ̇ = 0 along a geodesic γ in M . The Jacobi operator with respect
to the structure vector field ξ , Rξ , is called the structure Jacobi operator on M .

In the problem of classifying real hypersurfaces in non-flat complex space forms
the Ricci tensor, S, of them plays an important role. Let R denote the Riemannian
curvature tensor of M then the Ricci tensor is defined by

SX =
2n−1∑
i=1

REi
(X) =

2n−1∑
i=1

R(X,Ei)Ei,

where {Ei}i=1,...,2n−1 is an orthonormal basis of TM , for any X tangent to M .

It is well known, [5], that Mn(c), n ≥ 3, does not admit real hypersurfaces M
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whose Ricci tensor is parallel (that is, ∇XS = 0, for any vector field X tangent to
M ). Moreover, in [6] Kim extended the result of non-existence of real hypersurfaces
with parallel Ricci tensor in case of three dimensional real hypersurfaces. Therefore
it is natural to investigate real hypersurfaces that satisfy weaker conditions than the
parallelism of S . In [9] Kimura and Maeda provided the classification of Hopf hyper-
surfaces in non-flat complex space forms with constant mean curvature and ξ -parallel
Ricci tensor. Furthermore, Maeda in [12], classified Hopf real hypersurfaces in CP n ,
n ≥ 3, such that Aξ = 2cot(2r)ξ and the focal map φr has constant rank on M ,
satisfying ∇ξS = 0, obtaining particular cases of the homogeneous real hypersurfaces
in Takagi’s list and two kinds of non-homogeneous hypersurfaces. In [21] Suh classified
Hopf real hypersurfaces in Mn(c), n ≥ 2, whose Ricci tensor is η -parallel, that is,
g((∇XS)Y, Z) = 0, for any X, Y, Z ∈ D , obtaining real hypersurfaces either of type
(A) or of type (B). More details on the study of Ricci tensor of real hypersurfaces in
non-flat complex spaces forms are included in Section 6 of [16].

The Tanaka-Webster connection is the canonical affine connection defined on a
non-degenerate, pseudo-Hermitian CR-manifold (see [25], [27]). As a generalization of
this connection, in [26] Tanno defined the generalized Tanaka-Webster connection for
contact metric manifolds by

∇̂XY = ∇XY + (∇Xη)(Y )ξ − η(Y )∇Xξ − η(X)φY. (1.1)

Using the naturally extended affine connection of Tanno’s generalized Tanaka-Webster
connection, Cho defined the generalized Tanaka-Webster connection ∇̂(k) for a real hy-
persurface M in Mn(c) given by

∇̂(k)
X Y = ∇XY + g(φAX, Y )ξ − η(Y )φAX − kη(X)φY (1.2)

for any X , Y tangent to M where k is a nonnull real number (see [3], [4]). Then the
following relations hold

∇̂(k)η = 0, ∇̂(k)ξ = 0, ∇̂(k)g = 0, ∇̂(k)φ = 0.

In particular, if the shape operator of a real hypersurface satisfies φA+Aφ = 2kφ , the
generalized Tanaka-Webster connection coincides with the Tanaka-Webster connection.

We can consider the tensor field of type (1,2) given by the difference of both con-
nections F (k)(X, Y ) = g(φAX, Y )ξ − η(Y )φAX − kη(X)φY , for any X, Y tangent to
M (see [10] Proposition 7.10, pages 234-235). We will call this tensor the k -th Cho
tensor on M . Associated to it, for any X tangent to M and any nonnull real number
k we can consider the tensor field of type (1,1) F

(k)
X , given by F

(k)
X Y = F (k)(X, Y ) for

any Y ∈ TM . This operator will be called the k -th Cho operator corresponding to X
and is given by

F
(k)
X Y = g(φAX, Y )ξ − η(Y )φAX − kη(X)φY. (1.3)
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The torsion of the connection ∇̂(k) is given by T̂ (k)(X, Y ) = F
(k)
X Y − F (k)

Y X for any
X, Y tangent to M . Notice that if X ∈ D , the corresponding k-th Cho operator does
not depend on k and is called Cho operator and simply denoted by FX .

Let T be a tensor field of type (1, 1) on M and X a vector field tangent to M .

Then it is easy to see that ∇XT = ∇̂(k)
X T if and only if TF

(k)
X = F

(k)
X T . That means

that the eigenspaces of T are preserved by F
(k)
X . In [20] we studied the problem of

commutativity of Cho operators and shape operator, obtaining that the unique real
hypersurfaces in CPm , m ≥ 3, such that FXA = AFX for any X ∈ D are locally
congruent to ruled real hypersurfaces. Similar results were obtained in the case of
structure Jacobi operator of real hypersurfaces in Mn(c), n ≥ 2, (see [19], [18]).

The aim of this paper is to study real hypersurfaces M in Mn(c) whose Cho opera-
tors commute with the Ricci tensor, i.e.

FXS = SFX , X ∈ D. (1.4)

First we prove the following Theorem

Theorem 1.1 There do not exist Hopf hypersurfaces in Mn(c), n ≥ 2, whose Ricci
tensor satisfies relation (1.4).

Next we study real hypersurfaces in Mn(c), n ≥ 2, which in addition satisfy the
relation h = g(Aξ, ξ), where h = Trace(A). The following Theorem is proved

Theorem 1.2 Let M be a real hypersurface in Mn(c), n ≥ 2, such that h = g(Aξ, ξ).
Then FXS = SFX for any X ∈ D if and only if M is locally congruent to a ruled real
hypersurface.

As a direct consequence of the above Theorem we have

Corollary There do not exist real hypersurfaces M in Mn(c), n ≥ 2, such that

F
(k)
X S = SF

(k)
X for any X tangent to M and some nonnull k , if h = g(Aξ, ξ).

This paper is organized as follows: In Section 2 basic results concerning real hy-
persurfaces in Mn(c), n ≥ 2, are stated. In Section 3 the proof of Theorem 1.1 is
provided. In Section 4 the proof of Theorem 1.2 and Corollary are given. At the end
of the Section an open problem is stated.

2 Preliminaries.

Throughout this paper, all manifolds, vector fields, etc., will be considered of class
C∞ unless otherwise stated. Let M be a connected real hypersurface in Mn(c), n ≥ 2,
without boundary. Let N be a locally defined unit normal vector field on M . Let ∇
be the Levi-Civita connection on M and (J, g) the Kählerian structure of Mn(c).
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For any vector field X tangent to M we write JX = φX + η(X)N and −JN = ξ .
Then (φ, ξ, η, g) is an almost contact metric structure on M (see [2]). That is, we have

φ2X = −X + η(X)ξ, η(ξ) = 1, g(φX, φY ) = g(X, Y )− η(X)η(Y ) (2.1)

for any tangent vectors X, Y to M . From (2.1) we obtain

φξ = 0, η(X) = g(X, ξ).

From the parallelism of J we get

(∇Xφ)Y = η(Y )AX − g(AX, Y )ξ and ∇Xξ = φAX (2.2)

for any X, Y tangent to M , where A denotes the shape operator of the immersion.
As the ambient space has holomorphic sectional curvature c , the equations of Gauss
and Codazzi are given, respectively, by

R(X, Y )Z =
c

4
[g(Y, Z)X − g(X,Z)Y + g(φY, Z)φX − g(φX,Z)φY

−2g(φX, Y )φZ] + g(AY,Z)AX − g(AX,Z)AY,

and

(∇XA)Y − (∇YA)X =
c

4
[η(X)φY − η(Y )φX − 2g(φX, Y )ξ],

for any tangent vectors X, Y, Z to M , where R is the curvature tensor of M . We will
call the (maximal) holomorphic distribution D on M (if n ≥ 3) to the following one:
at any P ∈M , D(P ) = {X ∈ TPM |g(X, ξ) = 0} .

From the above formulas we have that the Ricci tensor on M is given by

SX =
c

4
[(2n+ 1)X − 3η(X)ξ] + hAX − A2X (2.3)

for any X tangent to M , where h = Trace(A).

In the sequel we need the following result which is owed to Maeda in case of CP n, n ≥
2, and is owed to Montiel [14] in case of CHn, n ≥ 2 (also Corollary 2.3 in [16]).

Theorem 2.1 Let M be a Hopf hypersurface in Mn(c), n ≥ 2. Then
i) α is constant.
ii) If W is a vector field which belongs to D such that AW = λW , then

(λ− α

2
)AφW = (

λα

2
+
c

4
)φW.
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iii) If the vector field W satisfies AW = λW and AφW = νφW then

λν =
α

2
(λ+ ν) +

c

4
. (2.4)

Remark 2.1 In case of real hypersurfaces of dimension greater than three the third

case of Theorem 2.1 occurs when α2 + c 6= 0, since in this case relation λ 6= α

2
holds.

Finally we provide the following Theorem which is proved by Okumura in case of
CP n ([17]) and by Montiel and Romero in case of CHn ([15]).

Theorem 2.2 Let M be a real hypersurface of Mn(c), n ≥ 2. Then Aφ = φA, if and
only if M is locally congruent to a homogeneous real hypersurface of type (A). More
precisely:
In case of CP n

(A1) a geodesic hypersphere of radius r , where 0 < r <
π

2
,

(A2) a tube of radius r over a totally geodesic CP k ,(1 ≤ k ≤ n−2), where 0 < r <
π

2
.

In case of CHn

(A0) a horosphere in CHn , i.e a Montiel tube,
(A1) a geodesic hypersphere or a tube over a totally geodesic complex hyperbolic hyper-
plane CHn−1 ,
(A2) a tube over a totally geodesic CHk (1 ≤ k ≤ n− 2).

3 Proof of Theorem 1.1

Let M be a Hopf hypersurface in Mn(c), n ≥ 2, with Aξ = αξ and whose Ricci tensor
satisfies relation (1.4). Relation (1.4) taking into account relation (1.3) is written as

g(φAX, SY )ξ − η(SY )φAX = g(φAX, Y )Sξ − η(Y )SφAX. (3.1)

We consider the following two cases
Case I: α2 + c 6= 0.

In this case relations of Theorem 2.1 and Remark 2.1 hold. Taking W ∈ D such
that AW = λW then AφW = νφW . Relation (2.3) due to the previous relations
implies

Sξ = [
c

2
(n− 1) + hα− α2]ξ, SW = [

c

4
(2n+ 1) + hλ− λ2]W and

SφW = [
c

4
(2n+ 1) + hν − ν2]φW.

(3.2)

Relation (3.1) for Y = ξ implies

SφAX = [
c

2
(n− 1) + hα− α2]φAX, for any X ∈ D .
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The above relation for X = W and X = φW taking into account relation (3.2)
yields respectively

λ[
3c

4
+ h(ν − α)− (ν2 − α2)] = 0 ν[

3c

4
+ h(λ− α)− (λ2 − α2)] = 0. (3.3)

If
3c

4
+h(ν−α)−(ν2−α2) 6= 0 then the first of (3.3) implies λ = 0 and relation (2.4)

results in 2αν + c = 0. So we conclude that M has at most three different constant
eigenvalues. So M is locally congruent to a real hypersurface of type (B ). Substitution
of the eigenvalues of these real hypersurfaces in λ = 0 leads to a contradiction.

Therefore, on M we have
3c

4
+ h(ν − α) − (ν2 − α2) = 0. Following similar steps

as in the above case we conclude that the second relation of (3.3) implies
3c

4
+ h(λ−

α)− (λ2 − α2) = 0. Combination of the last two relation yields

(ν − λ)(h− ν − λ) = 0.

Suppose that ν 6= λ then h = λ + ν . So relation
3c

4
= (ν2 − α2) − h(ν − α)

because of (2.4) results in λν =
5c

4
+ α2 . Substitution of the latter in (2.4) implies

α(λ+ν) = 2(α2+c). So λ+ν and λν are constant. Thus, λ , ν are constant and the real
hypersurface has at most three different eigenvalues. So it is locally congruent to a real
hypersurface of type (B ). Substitution of the eigenvalues of these real hypersurfaces

in λν =
5c

4
+ α2 leads to a contradiction.

Therefore, on M relation λ = ν holds and this implies that Aφ = φA and because
of Theorem 2.2 we conclude that M is locally congruent to a real hypersurface of type
(A). So relation (2.4) becomes

λ2 = αλ+
c

4
.

Furthermore, we have h = α+ (2n− 2)λ . Relation
3c

4
= (λ2−α2)−h(λ−α) because

of the latter results in c = 0, which is impossible.

Case II: α2 + c = 0.

This case occurs when the ambient space is the complex hyperbolic space CHn, n ≥
2. So we have that c = −4 and α2 = 4.

Take a unit W ∈ D such that AW = λW and suppose that λ 6= α

2
. Then

AφW = νφW and relation (2.4) owing to α2 − 4 = 0 yields ν =
α

2
and the real

hypersurface has three distinct eigenvalues α , λ and ν =
α

2
. If p is the multiplicity

of λ and q is the multiplicity of ν we have that h = α + pλ+ qν .
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Relation (3.2) holds. The inner product of the first of relation (3.2) with ξ implies

η(Sξ) =
c

2
(n− 1) + hα − α2 . Moreover, relation (3.1) for X = W and Y = ξ due to

relation (3.2), η(Sξ) =
c

2
(n− 1) + hα− α2 , ν =

α

2
and α2 = 4 results in hλ = 0.

Suppose that λ 6= 0 then h = 0. Moreover, relation (3.1) for X = φW and Y = ξ

because of the relation (3.2) and all the above relations yields λ = −α
2

. Thus, M has

three constant principal curvatures. So M is locally congruent to a real hypersurface of

type (B ). Substitution of the eigenvalues of such real hypersurface in λ = −α
2

leads

to a contradiction.

So λ = 0. Furthermore, relation (3.1) for X = φW and Y = ξ because of relation

(3.2) and all the above relations yields h =
α

4
. The latter due to h = α + pλ + qν ,

ν =
α

2
and λ = 0 implies α = 0 which is a contradiction.

Therefore, we conclude that λ =
α

2
will be the only eigenvalue for all vectors in D .

In this case the real hypersurface is a horosphere. In the same way as in the previous

case we obtain η(Sξ) =
c

2
(n− 1) + hα− α2 . Moreover, relation (3.1) for X = W and

Y = ξ due to (3.2), η(Sξ) =
c

2
(n− 1) + hα− α2 , λ =

α

2
and α2 = 4 yields h = 0. In

this case we have h = (2n− 1)α , so α = 0 which is impossible and this completes the
proof of Theorem.

4 Proof of Theorem 1.2

In order to prove Theorem 1.2 the steps below are followed:

• As a consequence of Theorem 1.1 we conclude

Proposition 4.1 There do not exist Hopf hypersurfaces in Mn(c), n ≥ 2, with
h = g(Aξ, ξ) and whose Ricci tensor satisfies relation (1.4).

• Next we study non-Hopf hypersurfaces satisfying the above conditions and the
shape operator on U and φU orthogonal to ξ is characterized (see Lemma 4.1).
In case of three dimensional real hypersurfaces Lemma 4.1 leads to the conclusion
that the real hypersurface is a ruled one (see Proposition 4.2).

• We go on with the study of real hypersurfaces of dimension greater than three.
In this case it is proved that the eigenvalues of the shape operator on DU , which
consist of the vector fields orthogonal to {ξ, U, φU} , can be:
either all are equal to zero,
or zero and two non-zero λ1 and λ2 . It is proved that this case can not occur.
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Therefore, the only case that occurs is the first one and this leads to the conclusion
that M is a ruled real hypersurface.

We are now focused on the study of non-Hopf real hypersurfaces satisfying relation
(1.4) and h = g(Aξ, ξ). In this case also relation (3.1) holds. First, the scalar product
of relation (3.1) for Y ∈ D with Y yields

η(SY )g(φAX, Y ) = 0, for any X, Y ∈ D. (4.1)

Suppose that g(φAX, Y ) = 0 for any X, Y ∈ D . Then M is a ruled hypersurface.

Next we examine the case of η(SY ) = 0, for any Y ∈ D . The previous relation im-
plies Sξ = µξ , for a certain function µ on M . Since M is a non-Hopf real hypersurface
we locally have

Aξ = αξ + βU,

where we denote by α = g(Aξ, ξ), U is a unit vector field in D , α and β are functions
on M with β 6= 0. Furthermore, we denote by DU the orthogonal complementary dis-
tribution in D to the one spanned by U and φU (this holds in case of real hypersurfaces
with dimension greater than 3).

Lemma 4.1 Let M be a real hypersurface in Mn(c), n ≥ 2, whose Ricci tensor satisfies
relation (1.4) and h = α. Then the shape operator A of M satisfies the relation

AU = βξ AφU = 0. (4.2)

Proof: Relation (3.1) for Y = ξ implies η(Sξ)φAX = SφAX , for any X ∈ D . As

Sξ = µξ =
c

4
(2n − 2)ξ + αAξ − A2ξ = [

c

4
(2n − 2)]ξ − βAU , its scalar product with

a vector field Z , orthogonal to ξ and U , gives βg(AU,Z) = 0. Moreover, the scalar
product with U yields βg(AU,U) = 0 from our hypothesis. This implies

AU = βξ.

The scalar product of (3.1) with U yields η(SY )g(AφU,X) = η(Y )g(AφSU,X).
Taking Y = ξ it becomes

η(Sξ)g(AφU,X) = g(AφSU,X) (4.3)

for any X ∈ D . Since SU = (
c

4
(2n + 1) − β2)U and η(Sξ) =

c

4
(2n − 2) − β2 , from

(4.3) we have

AφU = 0.
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2

Due to Lemma 4.1 and Proposition 4.1 we conclude that

Proposition 4.2 Let M be a real hypersurface in M2(c), with h = α and whose Ricci
tensor satisfies relation (1.4). Then M is locally congruent to a ruled real hypersurface.

From now on we suppose that the dimension of the real hypersurface is greater
than 3. From Lemma 4.1 we know now that DU is A-invariant. Take now a unit
Y ∈ DU such that AY = λY . From (3.1) we get λ(g(φY, SZ)ξ − η(SZ)φY ) =
λ(g(φY, Z)Sξ − η(Z)SφY ), for any Z tangent to M . Therefore either λ = 0, or, if
λ 6= 0, taking Z = ξ , we have SφY = η(Sξ)φY .

Now we have that if AY = 0 for any Y ∈ DU we obtain a ruled real hypersurface.

Let us suppose that AY = 0. Then SY =
c

4
(2n + 1)Y . For any X ∈ D it follows

c

4
(2n + 1)g(φAX, Y )ξ = g(φAX, Y )Sξ . Therefore, for any X ∈ D , [

c

4
(2n + 1) −

η(Sξ)]g(φAX, Y ) = 0. As
c

4
(2n + 1)− η(Sξ) =

3c

4
+ β2 6= 0, we obtain AφY = 0. If

we denote by T0 the distribution in DU corresponding to the eigenvalue 0, we have
that T0 is φ-invariant. Thus the complementary distribution of T0 in DU is also
φ-invariant.

Let {E1, ...E2p} be an orthonormal basis of eigenvectors in the complementary distri-
bution. Then relation SφY = η(Sξ)φY implies for any i = 1, ..., 2p SφEi = η(Sξ)φEi .
As {φE1, ..., φE2p} is also an orthonormal basis of the distribution, we obtain that for
any X ∈ DU such that AX 6= 0, SX = η(Sξ)X . If X is an eigenvector with eigen-

value λ 6= 0, it follows SX = [
c

4
(2n + 1) + αλ − λ2]X = [

c

4
(2n − 2) − β2]X . This

yields

3c

4
+ λ(α− λ) + β2 = 0. (4.4)

Relation (4.4) implies that the unique possible nonnull eigenvalues in DU are λ1 =

α

2
+

√
(
α

2
)2 +

3c

4
+ β2 and λ2 =

α

2
−

√
(
α

2
)2 +

3c

4
+ β2 . If λ2 does not appear, as

h = α and if p is the multiplicity of λ1 relation h = α results in

α = α + p(
α

2
+

√
(
α

2
)2 +

3c

4
+ β2). (4.5)

Similarly, if λ1 does not appear and q is the multiplicity of λ2

α = α + q(
α

2
−
√

(
α

2
)2 +

3c

4
+ β2). (4.6)
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Combining relations (4.5) and (4.6) yields
α

2
= ±

√
(
α

2
)2 +

3c

4
+ β2 , and this results

in (
α

2
)2 = (

α

2
)2 +

3c

4
+ β2 . In case the ambient space is CP n the previous relation is

impossible. In case the ambient space is CHn the previous relation implies β2 = −3c

4

and since c = −4 we obtain λ1 =
α

2
+

√
(
α

2
)2 = α and λ2 =

α

2
−

√
(
α

2
)2 = 0. Thus

pα = 0. Therefore, either p = 0 and M is ruled or α = 0, which implies h = 0. So
M is ruled and minimal.

From now on we suppose that both of the eigenvalues λ1 and λ2 do appear as
eigenvalues in DU . Furthermore, suppose that there exists Y ∈ DU such that AY =

AφY = 0. From the Codazzi equation (∇YA)ξ− (∇ξA)Y = − c
4
φY . Developing it we

get Y (α)ξ + Y (β)U + β∇YU + A∇ξY = − c
4
φY . Its scalar product with ξ yields

Y (α) + βg(∇ξY, U) = 0 (4.7)

and its scalar product with U gives

Y (β) = 0. (4.8)

Let Z ∈ DU such that AZ = λZ (where either λ = λ1 or λ = λ2 ). As above,

(∇ZA)ξ − (∇ξA)Z = − c
4
φZ implies Z(α)ξ + αφAZ + Z(β)U + β∇ZU − AφAZ −

(ξ)(λ)Z − λ∇ξZ + A∇ξZ = − c
4
φZ . Its scalar product with ξ implies

Z(α) + βg(∇ξZ,U) = 0 (4.9)

and its scalar product with U yields

Z(β)− λg(∇ξZ,U) = 0. (4.10)

From (4.9) and (4.10) we have

λZ(α) + βZ(β) = 0. (4.11)

Moreover, (∇ZA)U−(∇UA)Z = 0 yields Z(β)ξ+βφAZ−A∇ZU−U(λ)Z−λ∇UZ+
A∇UZ = 0. Taking its scalar product with ξ we obtain

Z(β) + βg(∇UZ,U) = 0 (4.12)
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and its scalar product with U gives

λg(∇UZ,U) = 0. (4.13)

As λ 6= 0, from (4.12) and (4.13) we have Z(β) = 0 and from (4.11)

Z(α) = Z(β) = 0. (4.14)

On the other hand, (∇ξA)U − (∇UA)ξ =
c

4
φU implies ξ(β)ξ + βφAξ − A∇ξU −

U(α)ξ − U(β)U − β∇UU =
c

4
φU . Its scalar product with ξ yields ξ(β) − U(α) = 0

and the scalar product with U implies U(β) = 0. Therefore

ξ(β) = U(α)
U(β) = 0.

(4.15)

Analogously, developing (∇ξA)φU−(∇φUA)ξ = − c
4
U and taking its scalar product

with ξ , respectively with U , we obtain

(φU)(α) = αβ − βg(∇ξφU,U) (4.16)

and

(φU)(β) = β2 +
c

4
. (4.17)

Let p be the multiplicity of λ1 and q the multiplicity of λ2 . As h = α we have

(p+ q)
α

2
+ (p− q)

√
(
α

2
)2 + β2 +

3c

4
= 0. As U(β) = 0, differentiating the latter with

respect to U we get (
p+ q

2
+

p− q

4
√

(α
2
)2 + β2 + 3c

4

α)U(α) = 0. If we suppose U(α) 6= 0,

then we have 2(p+q)

√
(
α

2
)2 + β2 +

3c

4
= (q−p)α . This yields ((p+q)2−(q−p)2)α2+

(p + q)2(4β2 + 3c) = 0. Taking the derivative of this expression in the direction of U
we get 2α((p + q)2 − (q − p)2)U(α) = 0, and as we are supposing U(α) 6= 0 the fact
that (p + q)2 − (q − p)2 = 4pq 6= 0 yields α = 0. This contradicts U(α) 6= 0, and we
have proved that U(α) = 0. So the first of (4.15) yields

U(α) = ξ(β) = 0. (4.18)

Following similar steps it is proved that ξ(α) = 0.

12



Relations (4.8), (4.14), (4.15) and (4.18) result in

grad(β) = (β2 +
c

4
)φU. (4.19)

As g(∇Xgrad(β), Y ) = g(∇Y grad(β), X) for any X, Y tangent to M , we have

X(β2+
c

4
)g(φU, Y )+(β2+

c

4
)g(∇XφU, Y ) = Y (β2+

c

4
)g(φU,X)+(β2+

c

4
)g(∇Y φU,X),

for any X, Y tangent to M . Taking X = ξ we obtain (β2 +
c

4
)[g(∇ξφU, Y ) +

g(U,AY )] = 0 for any Y tangent to M .

Suppose that g(∇ξφU, Y )+g(U,AY ) 6= 0 then the above relation implies β2+
c

4
= 0,

This case occurs when the ambient space is the complex hyperbolic space. So we have

that the nonnull eigenvalues in DU are λ1 =
α

2
+

√
(
α

2
)2 +

c

2
and λ2 =

α

2
−
√

(
α

2
)2 +

c

2

with multiplicity p and q respectively. Since, h = α we obtain 4pq(
α

2
)2 =

c

2
(q − p)2 ,

which is a contradiction, since c < 0.

So on M , we have g(∇ξφU, Y ) = −g(U,AY ) for any Y tangent to M . If Y = U
it follows g(∇ξφU,U) = 0 and from (4.16)

(φU)(α) = αβ. (4.20)

Moreover, from the above relation we also know that g(∇ξφU, φY ) = −g(U,AφY )
for any Y tangent to M . If Y ∈ DU satisfies AY = AφY = 0, this and (2.2) yield
g(∇ξU, Y ) = 0 and from (4.7) we get

Y (α) = 0. (4.21)

From (4.14), (4.17), (4.18), (4.20) and (4.21) we assure

grad(α) = αβφU. (4.22)

Recall that (p + q)
α

2
+ (p − q)

√
(
α

2
)2 + β2 +

3c

4
= 0. Taking its derivative in

the direction of φU and bearing in mind (4.19) and (4.20) we obtain
p+ q

2
αβ +

p− q

2
√

(α
2
)2 + β2 + 3c

4

(
1

2
α2β + 2β(β2 +

c

4
)) = 0. From this we arrive to
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((p+ q)2 − (q − p)2)α
4

4
+ (p+ q)2α2(

3c

4
+ β2)

= (q − p)2(β2 +
c

4
)(2α2 + 4β2 + c).

(4.23)

Derivating (4.23) in the direction of φU and bearing in mind (4.19) and (4.20) we
obtain

((p+ q)2 − (q − p)2)α4 + 2(p+ q)2α2(2β2 + c)

= 4(q − p)2(β2 +
c

4
)(2α2 + 4β2 + c).

(4.24)

From (4.23) and (4.24) it follows c(p+ q)2α2 = 0. This yields α = 0.

Relation (4.23) gives

4(q − p)2(β2 +
c

4
)2 = 0.

Suppose that p 6= q then the above relation implies β2 +
c

4
= 0. This case occurs

when the ambient space is complex hyperbolic space and the nonnull eigenvalues in

DU are λ1 =

√
c

2
and λ2 = −

√
c

2
, which is a contradiction, since c < 0.

Therefore, on M we have p = q and DU can be written as follows

DU = T0
⊕

T√
β2+ 3c

4

⊕
T−
√
β2+ 3c

4

,

and the last two eigenspaces have the same dimension.

Let {Z1, ..., Zp} an orthonormal basis of T√
β2+ 3c

4

. Take i, j ∈ {1, ..., p} , i 6= j

(we suppose that p ≥ 2). The Codazzi equation yields (∇Zi
A)Zj − (∇Zj

A)Zi =

− c
2
g(φZi, Zj)ξ . As β is constant along the directions in T√

β2+ 3c
4

we obtain√
β2 +

3c

4
∇Zi

Zj − A∇Zi
Zj −

√
β2 +

3c

4
∇Zj

Zi + A∇Zj
Zi = − c

2
g(φZi, Zj)ξ.

Its scalar product with ξ yields

βg([Zj, Zi], U) =
c

2
(β2 +

c

2
)g(φZi, Zj) (4.25)

and its scalar product with U implies

g([Zj, Zi], U) =
c

2
βg(φZi, Zj). (4.26)
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From (4.25) and (4.26) we obtain g(φZi, Zj) = 0. This means that for any Z ∈

T√
β2+ 3c

4

, φZ ∈ T−√β2+ 3c
4

. Call λ =

√
β2 +

3c

4
. Take Z ∈ Tλ . The Codazzi equation

yields −λ∇ZφZ − A∇ZφZ − λ∇φZZ + A∇φZZ = − c
2
ξ . Its scalar product with ξ

yields

βg(∇φZZ,U)− βg(∇ZφZ,U) = − c
2

(β2 + c) (4.27)

and its scalar product with U , bearing in mind that λ 6= 0, gives

g(∇φZZ,U) + g(∇ZφZ,U) = 0. (4.28)

From (4.27) and (4.28) we obtain

g(∇ZφZ,U) = −g(∇φZZ,U) =
β2 + c

β
. (4.29)

On the other hand (∇φUA)φZ − (∇φZA)φU = 0. This yields −(φU)(λ)φZ −
λ∇φUφZ − A∇φUφZ + A∇φZφU = 0. Its scalar product with φZ yields −(φU)(λ)−
λg(∇φZφU, φZ) = 0. From (2.2) g(∇φZφU, φZ) = g(∇φZU,Z). Bearing in mind

the value of λ , from (4.29) it follows β2(β2 + c) + (β2 +
3c

4
)(β2 + c) = 0. That is,

β4 +
5c

2
β2 +

3c2

4
= 0. Thus β is constant and this results in grad(β) = 0. So relation

(4.19) implies β2+
c

4
= 0, which occurs in case the ambient space is CHn . In this case,

substitution of the last one in β4 +
5c

2
β2 +

3c2

4
= 0 implies c = 0, which is impossible.

This means that our non Hopf real hypersurfaces must be ruled and this completes the
proof of Theorem 1.2. 2

In order to prove the Corollary, suppose that M is a ruled real hypersurface such
that for some nonnull k , F

(k)
ξ SY = SF

(k)
ξ Y for any Y tangent to M . The previous

relation because of F
(k)
X Y = g(φAX, Y )ξ − η(Y )φAX − kη(X)φY becomes

g(φAξ, SY )ξ − η(SY )φAξ − kφSY = g(φAξ, Y )Sξ − η(Y )SφAξ − kSφY (4.30)

for any Y tangent to M .

The shape operator of a ruled real hypersurface M is given by

Aξ = αξ + βU, AU = βξ and AY = 0, for any Y orthogonal to {ξ, U}. (4.31)

The Ricci tensor (2.3) for X = ξ , X = U and X = Y , where Y is any orthogonal
vector to {ξ, U} , because of h = g(Aξ, ξ) = α and relation (4.31) becomes respectively

Sξ = (
c

2
(n− 1)− β2)ξ, SU =

c

4
(2n+ 1)U − β2ξ and SY =

c

4
(2n+ 1)Y. (4.32)
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Relation (4.30) for Y = U bearing in mind the first of relation (4.31) and the second
of relation (4.32) leads to β = 0, which is a contradiction since M is ruled and this
completes the proof of the Corollary.

Remark If in our Theorem we suppose h 6= g(Aξ, ξ), it is easy to see that
β2 = g(Aξ, ξ)(h − g(Aξ, ξ)) − 3 for a non Hopf real hypersurface. This might pro-
duce a new kind of real hypersurfaces.
Conjecture (open problem): Such real hypersurfaces in complex space forms do
not exist.
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