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ABSTRACT: In this paper new results concerning three dimensional real hypersurfaces in non-flat complex space forms
in terms of their stucture Jacobi operator are presented. More precisely, the conditions of 1) the structure Jacobi oper-
ator being of Codazzi type with respect to the generalized Tanaka-Webster connection and commuting with the shape
operator and 2) η-invariance of the structure Jacobi operator and commutativity of it with the shape operator are studied.
Furthermore, results concerning Hopf hypersurfaces and ruled hypersurfaces of dimension greater than three satisfying
the previous conditions are also included.

1 INTRODUCTION

A complex space form is an n-dimensional Kähler manifold of constant holomorphic sectional curvature c. A complete
and simply connected complex space form is complex analytically isometric to a complex projective space CPn if c > 0,
or to a complex Euclidean space Cn if c = 0, or to a complex hyperbolic space CHn if c < 0. The complex projective
and complex hyperbolic spaces are called non-flat complex space forms, since c 6= 0 and the symbol Mn(c) is used to
denote them when it is not necessary to distinguish them.

A real hypersurface M is an immersed submanifold with real co-dimension one inMn(c). The Kähler structure (J,G),
where J is the complex structure and G is the Kähler metric of Mn(c), induces on M an almost contact metric structure
(ϕ, ξ, η, g). The vector field ξ is called structure vector field and when it is an eigenvector of the shape operator A of M
the real hypersurface is called Hopf hypersurface and the corresponding eigenvalue is α = g(Aξ, ξ).

The study of real hypersurfaces M in Mn(c) was initiated by Takagi, who classified homogeneous real hypersurfaces
in CPn and divided them into six types, namely (A1), (A2), (B), (C), (D) and (E) in [16]. These real hypersurfaces
are Hopf ones with constant principal curvatures. In case of CHn the study of real hypersurfaces with constant principal
curvatures was started by Montiel in [9] and completed by Berndt in [1]. They are divided into two types, namely (A) and
(B), depending on the number of constant principal curvatures. The real hypersurfaces found by them are homogeneous
and Hopf ones.

The last years many geometers have studied real hypersurfaces in Mn(c) when they satisfy certain geometric condi-
tions. More precisely, the structure Jacobi operator of them plays an important role in their study. Generally, the Jacobi
operator with respect to a vector field X on a manifold is defined by R(·, X)X , where R is the Riemmanian curvature of
the manifold. In case of real hypersurfaces forX = ξ the Jacobi operator is called structure Jacobi operator and is denoted
by l = Rξ = R(·, ξ)ξ.

One of the geometric conditions concerning the structure Jacobi operator that has been studied is that of Codazzi type.
Generally, a tensor field T of type (1,1) on M is of Codazzi type when it satisfies

(∇XT )Y = (∇Y T )X, where X , Y ∈ TM.

In [14] the non-existence of real hypersurfaces in complex projective space whose structure Jacobi operator is of Codazzi
type is proved. In [18] and [19] the previous result is extended for the case of three dimensional real hypersurfaces in
non-flat complex space forms and for real hypersurfaces in complex hyperbolic space. In these cases it is also proved the
non-existence of real hypersurfaces satisfying the Codazzi-type condition for the structure Jacobi operator.

Another topic that has been of great importance is the study of real hypersurfaces in Mn(c) in terms of their general-
ized Tanaka-Webster connection. The notion of generalized Tanaka-Webster connection was first introduced by Tanno in
[17] in case of contact metric manifolds in the following way

∇̂XY = ∇XY + (∇Xη)(Y )ξ − η(Y )∇Xξ − η(X)ϕY.
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In [2], [3] Cho extended Tanno’s work by defining the notion of generalized Tanaka-Webster connection for real hyper-
surfaces M in Mn(c) in the following way

∇̂(k)
X Y = ∇XY + g(ϕAX, Y )ξ − η(Y )ϕAX − kη(X)ϕY,

whereX , Y are tangent to M and k is a non-zero real number. Denote by F (k)
X Y = g(ϕAX, Y )ξ−η(Y )ϕAX−kη(X)ϕY

which is called the k-th Cho operator corresponding to a vector field X . The above relation becomes

∇̂(k)
X Y = ∇XY + F

(k)
X Y. (1.1)

The importance of the above connection lies in the fact that studying real hypersurfaces in Mn(c) which satisfy
geometric conditions such as parallelness or Codazzi type with respect to the generalized Tanaka-Webster connection leads
to different results to those obtained with respect to the Levi-Civita connection. More precisely, in [15] real hypersurfaces
in Mn(c), n ≥ 3, whose shape operator is of Codazzi type with respect to the generalized Tanaka-Webster connection
are classified in contrast to the fact that there are no real hypersurfaces in Mn(c) whose shape operator is of Codazzi type
with respect to the Levi-Civita connection.

Motivated by all the above the following question raises naturally.
Question: Are there real hypersurfaces in Mn(c) whose structure Jacobi operator is of Codazzi type with respect to the
generalized Tanaka-Webster connection?

First of all, the structure Jacobi operator is called of Codazzi type with respect to the generalized Tanaka-Webster
connection, when the following relation is satisfied

(∇̂(k)
X l)Y = (∇̂(k)

Y l)X, (1.2)

for any X , Y tangent to M .
In this paper we study three dimensional real hypersurfaces in M2(c) when the structure Jacobi operator satisfies

relation (1.2) and also commutes with the shape operator, i.e.

AlX = lAX (1.3)

for any X tangent to M .
More precisely, the following Theorem is proved.

Theorem 1.1 Every real hypersurface M in M2(c), whose structure Jacobi operator satisfies relations (1.2) and (1.3), is
a Hopf hypersurface. Furthermore, if α 6= 2k then M is locally congruent
i) to a real hypersurface of type (A)
ii) or to a Hopf hypersurface with Aξ = 0, which in case of CP 2 it is a non-homogeneous real hypersurface, considered
as a tube of radius r = π

4 over a holomorphic curve.

Furthermore, in this paper three dimensional real hypersurfaces in M2(c) whose structure Jacobi operator is η-invariant
are also studied. The condition of η-invariance implies that the structure Jacobi operator satisfies the following

g((LX l)Y,Z) = 0, X , Y , Z ∈ D, (1.4)

where L denotes the Lie derivative on M . More precisely, the following Theorem is proved

Theorem 1.2 Every real hypersurface M in M2(c), whose structure Jacobi operator satisfies relations (1.3) and (1.4), is
a Hopf hypersurface. Furthermore, M is locally congruent
i) to a real hypersurface of type (A)
ii) or to a Hopf hypersurface with Aξ = 0, which in case of CP 2 it is a non-homogeneous real hypersurface, considered
as a tube of radius r = π

4 over a holomorphic curve,
iii) or to a real hypersurface of type (B). In case of CP 2 it is a tube of radius r ∈ (0, π4 ) around the complex quadric Q1

and in case of CH2 it is a tube of some radius r around the canonically (totally geodesic) embedded 2-dimensional real
hyperbolic space.

This paper is organized as follows: In Section 2 basic relations and results about real hypersurfaces in Mn(c), n ≥ 2,
are given. In Section 3 the proof of Theorem 1.1 is provided. Furthermore, in this Section some Propositions for Hopf
and ruled hypersurfaces, whose structure Jacobi operator is only of Codazzi type with respect to the generalized Tanaka-
Webster connection, are proved. In Section 4 the proof of Theorem 1.2 is given. Finally, in this Section Propositions for
Hopf and ruled hypersurfaces, whose structure Jacobi operator satisfies only the condition of η-invariance, are included.
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2 PRELIMINARIES

Throughout this paper all manifolds, vector fields etc are assumed to be of class C∞ and all manifolds are assumed to be
connected. Furthermore, the real hypersurfaces M are supposed to be without boundary.

Let M be a real hypersurface immersed in a non-flat complex space form (Mn(c), G) with complex structure J of
constant holomorphic sectional curvature c. In case of CPn we have c = 4 and in case of CHn we have c = −4.

Let N be a locally defined unit normal vector field on M and ξ = −JN be the structure vector field of M . For a
vector field X tangent to M relation

JX = ϕX + η(X)N

holds, where ϕX and η(X)N are respectively the tangential and the normal component of JX . The Riemannian connec-
tions ∇ in Mn(c) and ∇ in M are related for any vector fields X , Y on M by

∇XY = ∇XY + g(AX,Y )N,

where g is the Riemannian metric induced from the metric G.
The shape operator A of the real hypersurface M in Mn(c) with respect to N is given by

∇XN = −AX.

The real hypersurface M has an almost contact metric structure (ϕ, ξ, η, g) induced from J of Mn(c), where ϕ is the
structure tensor which is a tensor field of type (1,1) and η is an 1-form on M such that

g(ϕX, Y ) = G(JX, Y ), η(X) = g(X, ξ) = G(JX,N).

Moreover, the following relations hold

ϕ2X = −X + η(X)ξ, η ◦ ϕ = 0, ϕξ = 0, η(ξ) = 1,

g(ϕX,ϕY ) = g(X,Y )− η(X)η(Y ), g(X,ϕY ) = −g(ϕX, Y ).

The fact that J is parallel implies∇J = 0. The last relation leads to

∇Xξ = ϕAX, (∇Xϕ)Y = η(Y )AX − g(AX,Y )ξ. (2.1)

The ambient space Mn(c) is of constant holomorphic sectional curvature c and this results in the Gauss and Codazzi
equations are respectively given by

R(X,Y )Z =
c

4
[g(Y,Z)X − g(X,Z)Y + g(ϕY,Z)ϕX (2.2)

−g(ϕX,Z)ϕY − 2g(ϕX, Y )ϕZ] + g(AY,Z)AX − g(AX,Z)AY,

(∇XA)Y − (∇YA)X =
c

4
[η(X)ϕY − η(Y )ϕX − 2g(ϕX, Y )ξ],

where R denotes the Riemannian curvature tensor on M and X , Y , Z are any vector fields on M .
Relation (2.2) implies that the structure Jacobi operator l is given by

lX =
c

4
[X − η(X)ξ] + αAX − η(AX)Aξ, (2.3)

for any X tangent to M and α = η(Aξ) = g(Aξ, ξ).
The tangent space TPM , for every point P ∈ M , can be decomposed as

TPM = span{ξ} ⊕ D,

where D = ker η = {X ∈ TPM : η(X) = 0} and is called (maximal) holomorphic distribution (if n ≥ 3). Due to the
above decomposition, the vector field Aξ can be written

Aξ = αξ + βU,

where β = |ϕ∇ξξ| and U = − 1
βϕ∇ξξ ∈ ker(η) is a unit vector field, provided that β 6= 0.

The following Theorem is necessary in the proof of our Theorems. It was proved by Okumura in case of CPn ([12])
and by Montiel and Romero in case of CHn ([10]) and it provides the classification of real hypersurfaces inMn(c) whose
shape operator commutes with the structure tensor field ϕ.
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Theorem 2.1 Let M be a real hypersurface of Mn(c), n ≥ 2. Then Aϕ = ϕA, if and only if M is locally congruent to a
homogeneous real hypersurface of type (A). More precisely:
In case of CPn
(A1) a geodesic hypersphere of radius r , where 0 < r < π

2 ,
(A2) a tube of radius r over a totally geodesic CP k,(1 ≤ k ≤ n− 2), where 0 < r < π

2 .
In case of CHn

(A0) a horosphere in CHn, i.e a Montiel tube,
(A1) a geodesic hypersphere or a tube over a totally geodesic complex hyperbolic hyperplane CHn−1,
(A2) a tube over a totally geodesic CHk (1 ≤ k ≤ n− 2).

The above real hypersurfaces are called real hypersurfaces of type (A).
Finally, we mention the following Theorem which in case of CPn is owed to Maeda [8] and in case of CHn is owed

to Montiel [9] (also Corollary 2.3 in [11]).

Theorem 2.2 Let M be a Hopf hypersurface in Mn(c), n ≥ 2. Then
i) α is constant.
ii) If W is a vector field which belongs to D such that AW = λW , then

(λ− α

2
)AϕW = (

λα

2
+
c

4
)ϕW. (2.4)

iii) If the vector field W satisfies AW = λW and AϕW = νϕW then

λν =
α

2
(λ+ ν) +

c

4
. (2.5)

Remark 2.3 In case of real hypersurfaces of dimension greater than three the third case of Theorem 2.2 occurs when
α2 + c 6= 0, since in this case relation λ 6= α

2 holds. Furthermore, the first of (2.1) and the structure Jacobi operator for
X =W and X = ϕW becomes

∇W ξ = λϕW and ∇ϕW ξ = −νW, (2.6)

lW = (
c

4
+ αλ)W and lϕW = (

c

4
+ αν)ϕW. (2.7)

2.1 AUXILIARY FACTS ABOUT THREE DIMENSIONAL REAL HYPERSURFACES IN COMPLEX
SPACE FORMS

Let M be a non-Hopf real hypersurface in M2(c) and {U,ϕU, ξ} be a local orthonormal basis at some point P of M . Then
the following Lemma holds

Lemma 2.4 Let M be a non-Hopf real hypersurface in M2(c). The following relations hold on M

AU = γU + δϕU + βξ, AϕU = δU + µϕU, Aξ = αξ + βU (2.8)
∇Uξ = −δU + γϕU, ∇ϕUξ = −µU + δϕU, ∇ξξ = βϕU,

∇UU = κ1ϕU + δξ, ∇ϕUU = κ2ϕU + µξ, ∇ξU = κ3ϕU,

∇UϕU = −κ1U − γξ, ∇ϕUϕU = −κ2U − δξ, ∇ξϕU = −κ3U − βξ,

where α, β, γ, δ, µ, κ1, κ2, κ3 are smooth functions on M and β 6= 0.

Remark 2.5 The proof of Lemma 2.4 is included in [13].

The structure Jacobi operator for X = U , X = ϕU and X = ξ due to (2.8) is given by

lU = (
c

4
+ αγ − β2)U + αδϕU, lϕU = αδU + (

c

4
+ αµ)ϕU and lξ = 0. (2.9)

The Codazzi equation for X ∈ {U,ϕU} and Y = ξ because of Lemma 2.4 implies the following relations

Uβ − ξγ = αδ − 2δκ3 (2.10)

ξδ = αγ + βκ1 + δ2 + µκ3 +
c

4
− γµ− γκ3 − β2 (2.11)

Uα− ξβ = −3βδ (2.12)
ξµ = αδ + βκ2 − 2δκ3 (2.13)

(ϕU)α = αβ + βκ3 − 3βµ (2.14)

(ϕU)β = αγ + βκ1 + 2δ2 +
c

2
− 2γµ+ αµ (2.15)
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and for X = U and Y = ϕU

Uδ − (ϕU)γ = µκ1 − κ1γ − βγ − 2δκ2 − 2βµ (2.16)
Uµ− (ϕU)δ = γκ2 + βδ − κ2µ− 2δκ1 (2.17)

Furthermore, combination of the Gauss equation (2.2) with the formula of Riemannian curvature R(X,Y )Z =
∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z, taking into account relations of Lemma 2.4, implies

Uκ2 − (ϕU)κ1 = 2δ2 − 2γµ− κ21 − γκ3 − κ22 − µκ3 − c, (2.18)
(ϕU)κ3 − ξκ2 = 2βµ− µκ1 + δκ2 + κ3κ1 + βκ3. (2.19)

Remark 2.6 In case of Hopf three dimensional real hypersurfaces we consider a local orthonormal basis {W,ϕW, ξ} at
some point P ∈M such that AW = λW and AϕW = νϕW . So relation (2.5) holds. Moreover, relations (2.6) and (2.7)
hold.

3 PROOF OF THEOREM 1.1

Let M be a three-dimensional real hypersurface in M2(c) whose structure Jacobi operator satisfies relations (1.2), (1.3)
and α 6= 2k. More analytically, relation (1.2) due to (1.1) is written

∇X(lY ) + F
(k)
X (lY )− l∇XY − lF (k)

X Y = ∇Y (lX) + F
(k)
Y (lX)− l∇YX − lF (k)

Y X, (3.1)

where X , Y are tangent to M .
We consider the open subset N of M such that

N = {P ∈ M : β 6= 0 in a neighborhood of P}.

On N relation (2.8) holds. Moreover, relation (1.3) for X = ξ implies that lU = 0 and due to the first of (2.9) we
have αδ = 0 and αγ + c

4 = β2. Suppose that α 6= 0. Then δ = 0 and relation (2.8) becomes

AU = γU + βξ and AϕU = µϕU.

Relation (3.1) for X = U and Y = ξ and X = U and Y = ϕU due to the above relation, relation (2.9) and Lemma
2.4 implies respectively

(κ3 − k)(
c

4
+ αµ) = 0 and κ1(

c

4
+ αµ) = 0.

Suppose that κ3 6= k then the first relation implies that c4 + αµ = 0 and the second of (2.9) yields lϕU = 0. So we
have that l = 0 which due to Proposition 8 in [4] is impossible. For the same reason as in the previous case the second
relation implies that κ1 = 0. So the following relations hold

κ3 = k, κ1 = 0 and
c

4
+ αµ 6= 0, (3.2)

since lU = 0 and Proposition 8 in [4]. Differentiation of c
4 + αγ = β2 with respect to ϕU taking into account relations

(2.14), (2.15), (2.16) and (3.2) implies γk + γµ = c. On the other hand, relation (2.11) because of the first two relations
of (3.2) and αγ + c

4 = β2 implies that

µk = γµ+ γk. (3.3)

Combination of the last two relations yields µ = c
k and this results in Uµ = 0. The last one due to (2.17) implies

(γ − µ)κ2 = 0. If κ2 6= 0 then γ = µ and substitution of the latter in (3.3) leads to µ = 0. Then since µ = c
k this results

in c = 0, which is impossible. So relation κ2 = 0 holds.
Relation (2.18) due to κ1 = κ2 = 0, γk+ γµ = c and µ = c

k implies that γ = −3k. Differentiation of the latter with
respect to ϕU due to (2.16), (3.2) and the relations for γ and µ yields c = 3κ2

2 . On the other hand, relation (2.19) because
of (3.2), κ2 = 0 and µ = c

k leads to c = −κ
2

2 . Combination of the two relations for c leads to a contradiction.
So on N relation α = 0 holds and this results in c

4 = β2 and lϕU = c
4ϕU .

Relation (3.1) for X = U and Y = ξ and for X = U and Y = ϕU due to the above relations and Lemma 2.4 implies

κ3 = k and κ1 = 0.
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Relation (2.14) because of the first of the above relations implies µ = k
3 . Furthermore, relation (2.13) yields δ = 0, thus

relation (2.11) due to the previous relations results in γ = k
4 . Moreover, differentiation of c

4 = β2 taking into account the
relations for γ, µ and relation (2.15) implies c = k2

3 . Substitution of the previous relations for γ, µ, κ3 and c in (2.18)
results in k = 0, which is impossible.

Thus, N is empty and the following Proposition is proved

Proposition 3.1 Every real hypersurface in M2(c) whose structure Jacobi operator satisfies relations (1.2) and (1.3) is
Hopf.

Due to the above Proposition, relations of Theorem 2.2 and remark 2.3 hold. The inner product of relation (3.1) for
X =W and Y = ξ with ϕW due to (2.6) and (2.7) implies

α(λ− ν)g(∇ξW,ϕW ) = ακ(λ− ν).

Suppose that α(λ − ν) 6= 0 then since g(∇ξW,W ) = g(∇ξW, ξ) = 0 we have ∇ξW = κϕW and taking into account
the second of (2.1) we obtain∇ξϕW = −κW .

The inner product of Codazzi equation for X = ξ and Y = W with ϕW and for X = ξ and Y = ϕW with W due
to the above relations and (2.6) implies

λκ− νκ− αλ+ λν =
c

4
,

λκ− νκ+ αν − λν = − c
4
.

Combination of the above relations due to λ 6= ν results in α = 2κ which is a contradiction.
So on M we have that α(λ − ν) = 0. If α = 0 in case of CP 2 we have to cases: 1) if λ 6= ν then M is locally

congruent to a non-homegeneous real hypersurface considered as a tube of radius r = π
4 over a holomorphic curve, 2) if

λ = ν then M is locally congruent to a geodesic hypersphere of radius r = π
4 . In case of CH2 M is a Hopf hypersurface

with Aξ = 0 (for the construction of such real hypersurfaces see [5]).
If α 6= 0 then λ = ν. The latter implies that

(Aϕ− ϕA)X = 0

for any X tangent to M . So due to Theorem 2.1 M is locally congruent to a real hypersurface of type (A) and this
completes the proof of Theorem 1.1.

Remark 3.2 The structure Jacobi operator is parallel with respect to the generalized Tanaka-Webster connection when
it satisfies

(∇(k)
X l)Y = 0,

for anyX , Y tangent to M. The above relation implies that the structure Jacobi operator satisfies relation (1.2). Thus M is
locally congruent to one of the above mentioned real hypersurfaces. Thus, as a consequence of the Theorem 1.1 we obtain

Corollary: Let M be a real hypersurface in M2(c) with α 6= 2k whose structure Jacobi operator is parallel with respect
to the generalized Tanaka-Webster connection and also satisfies (1.3). Then M is locally congruent to
i) a real hypersurface of type (A)
ii) or to a Hopf hypersurface with Aξ = 0, which in case of CP 2 is a non-homegeneous real hypersurface considered as
a tube of radius r = π

4 over a holomorphic curve.

3.1 REAL HYPERSURFACES IN Mn(c), n ≥ 2, WHOSE STRUCTURE JACOBI OPERATOR SAT-
ISFIES RELATION (1.2)

3.1.1 HOPF HYPERSURFACES IN NON-FLAT COMPLEX SPACE FORMS

Let M be a Hopf hypersurface in Mn(c), n ≥ 2, whose structure Jacobi operator satisfies relation (1.2) and α 6= 2k.
Relation (3.1) also holds. We consider two cases
Case I: α2 + c 6= 0.
In this case relations of Theorem 2.2 and remark 2.3 hold. Thus, following similar steps to those as in the proof of three
dimensional Hopf hypersurfaces we obtain

α(λ− ν) = 0. (3.4)
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Case II: α2 + c = 0.
In this case the ambient space is CHn and α 6= 0. Suppose that λ 6= α

2 then AϕW = νϕW and (2.5) results in
ν = α

2 . The same steps as in the previous case lead to α = 2k, which is a contradiction.
Therefore, λ = α

2 is the only eigenvalue for all vector fields in D and M is locally congruent to a horosphere.
Therefore, due to Theorem 1.1, relation (3.4) and Theorem 2.1 we obtain

Proposition 3.3 Let M be a Hopf hypersurface in Mn(c), n ≥ 2, whose structure Jacobi operator is of Codazzi type with
respect to the generalized Tanaka-Webster connection and α 6= 2k. Then M is locally congruent
i) to a real hypersurface of type (A)
ii) or to a real hypersurface with Aξ = 0.

Due to remark 3.2 we also obtain the following Proposition

Proposition 3.4 Let M be a Hopf hypersurface inMn(c), n ≥ 2, whose structure Jacobi operator is parallel with respect
to the generalized Tanaka-Webster connection and α 6= 2k. Then M is locally congruent
i) to a real hypersurface of type (A)
ii) or to a real hypersurface with Aξ = 0.

3.1.2 RULED HYPERSURFACES IN NON-FLAT COMPLEX SPACE FORMS

A ruled real hypersurface in Mn(c), n ≥ 2, is a real hypersurface such that D is integrable and its integral manifold is
Mn−1(c) (see [6] and [7]). Thus, the shape operator of a ruled real hypersurface satisfies the following relations

Aξ = αξ + βU, AU = βξ and AZ = 0 for any Z orthogonal to span{ξ, U},

where β 6= 0. The inner product of Codazzi equation for X = ξ and Y ∈ {U,ϕU} with U , ϕU and Z ∈ DU , for
n ≥ 3, which is the orthogonal complement of span{U,ϕU, ξ} yields

β2 = βκ1 +
c

4
, where κ1 = g(∇UU,ϕU), (3.5)

g(∇UU,Z) = 0, for any Z ∈ DU , (3.6)
g(∇ϕUU,ϕU) = 0, (3.7)
g(∇ϕUU,Z) = 0, for any Z ∈ DU , (3.8)

(ϕU)β = β2 +
c

4
. (3.9)

The following relations taking into account the second of (2.1) and relations (3.6), (3.7), (3.8), g(∇UU,U) =
g(∇UU, ξ) = 0 and g(∇ϕUU,U) = g(∇ϕUU, ξ) = 0 hold

∇UU = κ1ϕU, ∇UϕU = −κ1U, ∇ϕUU = ∇ϕUϕU = 0. (3.10)

Moreover, the structure Jacobi operator (2.3) becomes

lξ = 0, lU = (
c

4
− β2)U and lZ =

c

4
Z, for any Z orthogonal to U and ξ. (3.11)

Let M be a ruled real hypersurface whose structure Jacobi operator satisfies relation (1.2). Relation (3.1) also holds.
The inner product of relation (3.1) for X = U and Y = ξ due to the first of (2.1) and (3.11) with ϕU and Z ∈ DU implies
respectively

κ3 = g(∇ξU,ϕU) = k and g(∇ξU,Z) = 0.

So because of the above and the second of (2.1) we have

∇ξU = kϕU and ∇ξϕU = −kU − βξ. (3.12)

Moreover, relation (3.1) forX = ϕU and Y = U yields (ϕU)β = κ1β
2 . So relation (3.9) due to the latter and (3.5) implies

β2 = − 3c
4 . Differentiation of the latter with respect to ϕU implies (ϕU)β = 0. So relation (3.9) implies β2 + c

4 = 0.
Combination of the latter with β2 = − 3c

4 results in c = 0 which is a contradiction. So the following Proposition is proved

Proposition 3.5 There are no ruled real hypersurfaces in Mn(c), n ≥ 2, whose structure Jacobi operator satisfies
relation (1.2).
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4 PROOF OF THEOREM 1.2

Let M be a three-dimensional real hypersurface in M2(c) whose structure Jacobi operator satisfies relations (1.3) and
(1.4). The last one implies

g(∇X lY −∇lYX − l∇XY + l∇YX,Z) = 0, X , Y , Z ∈ D. (4.1)

We consider the open subset N of M such that

N = {P ∈ M : β 6= 0 in a neighborhood of P}.

On N relation (2.8) holds. Moreover, relation (1.3) for X = ξ implies that lU = 0.
Relation (4.1) for X = ϕU and Y = U due to the latter and relations of Lemma 2.4 implies

κ2g(lϕU,Z) = 0, Z ∈ D.

Suppose that κ2 6= 0 then lϕU = 0 and this results in l = 0, which due to Proposition 8 in [4] is impossible.
So on N κ2 = 0 and since lU = 0 the first of (2.9) implies

αδ = 0 and
c

4
+ αγ = β2. (4.2)

Suppose that α 6= 0 then δ = 0. Relation (4.1) for X = U and Y = ϕU due to (4.2), the second of (2.9), relations of
Lemma 2.4, κ2 = 0 and lU = lξ = 0 yields

U(αµ)g(ϕU,Z)− κ1(
c

4
+ αµ)g(U,Z) = 0.

For Z = U the above implies that κ1( c4 + αµ) = 0. If κ1 6= 0 then ( c4 + αµ) = 0 and the second of (2.9) results in
lϕU = 0. The latter implies that l = 0 and due to Proposition 8 in [4] we have a contradiction.

So κ1 = 0. Differentiation of the second one of (4.2) with respect to ϕU taking into account relations (2.14), (2.15)
and (2.16) implies

γµ+ γκ3 = c. (4.3)

Since κ2 = 0 relations (2.13) and (2.17) implies

ξµ = Uµ = 0.

The Lie bracket [U, ξ]µ is given by [U, ξ]µ = U(ξµ)− ξ(Uµ) = 0. On the other hand, because of Lemma 2.4 we obtain
[U, ξ]µ = (∇Uξ −∇ξU)µ = (γ − κ3)(ϕU)µ. Combination of the above relations results in (γ − κ3)(ϕU)µ = 0.

Suppose that (ϕU)µ 6= 0 then γ = κ3 and relation (2.18) taking into account (4.3) implies γµ = −c. Substitution
of the last one in (4.3) implies γ2 = 2c. Moreover, relation (2.11) yields γ = 0. So we conclude that c = 0, which is
impossible. Thus, relation (ϕU)µ = 0 holds.

Relation (4.1) for X = Y = Z = ϕU because of the latter implies µ(ϕU)α = 0. Suppose that (ϕU)α 6= 0 then
µ = 0 and relation (2.11) results in γκ3 = 0. So (4.3) leads to c = 0, which is a contradiction. Thus (ϕU)α = 0 and
because of (2.14) we obtain κ3 = 3µ− α. Substitution of the last one in (4.3) implies (4µ− α)γ = c. Differentiation of
the last one with respect to ϕU because of (ϕU)µ = (ϕU)α = 0 yields (4µ−α)(ϕU)γ = 0. If (ϕU)γ 6= 0 then 4µ = α
and κ3 = −µ. On the other hand, relation (2.19) since (ϕU)κ3 = 0 implies κ3 = µ = 0 and relation (4.3) leads to c = 0,
which is impossible.

So we have (ϕU)γ = 0 and (2.16) implies γ = −2µ. Relation (2.11) because of the relations for γ and κ3 and (4.3)
implies µ(11µ− 3α) = 0. If 11µ− 3α 6= 0 then µ = 0 and this results in γ = 0. So β2 = c

4 and differentiating the latter
with respect to ϕU taking into account (2.15) we obtain c = 0, which is a contradiction.

So α = 11µ
3 and κ3 = − 2µ

3 . So (2.18) implies c = 10µ2

3 . Substitution of the relations for γ, κ3 and c in (4.3) yields
µ = 0 and this results in c = 0, which is a contradiction.

Therefore, on N we have α = 0 and the second of (4.2) implies β2 = c
4 . Moreover, relation (2.14) implies κ3 = 3µ.

Relation (4.1) for X = U , Y = ϕU and Z = U yields κ1 = 0. So relation (2.11) taking into account the previous results
yields µ(4γ − 3µ) = 0. If µ 6= 0 then γ = 3µ

4 and relation (2.15) implies c = 3µ2. Thus, relation (2.18) yields µ = 0,
which is a contradiction.

So µ = 0 and this results in κ3 = 0. Therefore, relation (2.18) implies c = 0, which is a contradiction.
Thus, N is empty and the following Proposition is proved
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Proposition 4.1 Every real hypersurface in M2(c) whose structure Jacobi operator satisfies relations (1.3) and (1.4) is
Hopf.

Due to the above Proposition we have that M is a Hopf hypersurface and relations of Theorem 2.2 and Remark 2.6
hold. Relation (4.1) for X = ϕW , Y =W and Z = ϕW due to (2.7) implies

α(λ− ν)g(∇ϕWW,ϕW ) = 0.

Suppose that α(λ − ν) 6= 0 then g(∇ϕWW,ϕW ) = 0. Moreover, relation (4.1) for X = W , Y = ϕW and Z = W
implies g(∇WϕW,W ) = 0. The inner product of Codazzi equation for X = ξ and Y = W with ϕW because of (2.5)
implies g(∇ξW,ϕW ) = α

2 . Combination of the Codazzi equation with the formula for the Riemannian curvature for
X = W , Y = ϕW and Z = W taking into account all the previous implies λν = − c

4 and because of (2.5) we have that
α(λ + ν) = −c. Thus λ, ν are constant and since λ 6= ν we have that M is locally congruent to a real hypersurface of
type (B).

Let α(λ − ν) = 0. If α = 0 in case of CP 2 we have to cases: 1) if λ 6= ν then M is locally congruent to a non-
homegeneous real hypersurface considered as a tube of radius r = π

4 over a holomorphic curve, 2) if λ = ν then M is
locally congruent to a geodesic hypersphere of radius r = π

4 . In case of CH2 M is a Hopf hypersurface with Aξ = 0 (for
the construction of such real hypersurfaces see [5]).

If α 6= 0 then λ = ν. The latter implies that

(Aϕ− ϕA)X = 0

for any X tangent to M . So due to Theorem 2.1 M is locally congruent to a real hypersurface of type (A) and this
completes the proof of Theorem 1.2.

4.1 REAL HYPERSURFACES IN Mn(c), n ≥ 2, WHOSE STRUCTURE JACOBI OPERATOR SAST-
ISFIES RELATION (1.4)

4.1.1 HOPF HYPERSURFACES IN NON-FLAT COMPLEX SPACE FORMS

Let M be a Hopf hypersurface in Mn(c), n ≥ 2, whose structure Jacobi operator satisfies relation (1.4). Relation (4.1)
also holds. We consider two cases.
Case I: α2 + c 6= 0.
In this case relations of Theorem 2.2 and remark 2.3 hold. Following similar steps to those of the case of three dimensional
real hypersurfaces we obtain

g(∇ϕWW,ϕW ) = κ2 = 0 and g(∇WϕW,W ) = κ1 = 0.

The inner product of Codazzi equation for X = ξ and Y =W with ϕW due to (2.5) yields

κ3 = g(∇ξW,ϕW ) =
α

2
.

The inner product of Codazzi equation for X = W and Y = ϕW with any W1 ∈ DW , if n ≥ 3, which is the
orthogonal complement of the span{W,ϕW, ξ} yields

νg(∇WϕW,W1)− λg(∇ϕWW,W1) = g(A∇WϕW −A∇ϕWW,W1). (4.4)

Furthermore, the inner product of (4.1) for X = W , Y = ϕW and Z = W1 due to relation (4.4) and relation (2.3)
for X = ∇WϕW and X = ∇ϕWW , since λ 6= ν leads to

g(∇ϕWW,W1) = 0, for any W1 ∈ DW .

Because of the latter and the fact that∇ϕWW has no component on W and ϕW we conclude that

∇ϕWW = νξ and ∇ϕWϕW = 0. (4.5)

The inner product of (4.1) for X = ϕW , Y = W and Z = W1 due to relation (4.4) and relation (2.3) for X =
∇WϕW and X = ∇ϕWW , since λ 6= ν leads to

g(∇WϕW,W1) = 0, for any W1 ∈ DW .
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Due to the latter and the fact that∇WϕW has no component on W and ϕW we conclude that

∇WϕW = −λξ and ∇WW = 0. (4.6)

The Riemannian curvature tensor is given by the relation

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z. (4.7)

Relation (4.7) for X =W , Y = ϕW and Z =W because of relations (4.5) and (4.6) yields

R(W,ϕW )W = (Wν)ξ + νλϕW + (λ+ ν)∇ξW. (4.8)

On the other hand from the Gauss equation for X =W , Y = ϕW and Z =W we obtain

R(W,ϕW )W = −(λν + c)ϕW. (4.9)

The combination of the inner product of the above two relations with W1 ∈ DW implies

(λ+ ν)g(∇ξW,W1) = 0.

Suppose that g(∇ξW,W1) 6= 0 then the above relation gives λ + ν = 0. Combining the inner product of (4.8) and
(4.9) with ϕW results in λν = − c

2 . Substituting the previous two relations in (2.4) leads to c = 0, which is a contradiction.
Therefore, on M1 we have that g(∇ξW,W1) = 0, which implies that ∇ξW has no component on DW . Therefore, since
κ3 = α

2 the following relations hold

∇ξW =
α

2
ϕW and ∇ξϕW = −α

2
W. (4.10)

The combination of the inner product of relations (4.8) and (4.9) with ϕW because of (4.10) implies 2λν+ α
2 (λ+ν) =

−c. The last one due to (2.4) results in λν = − c
4 . Substitution of the previous one in (2.4) implies α(λ + ν) = −c.

Therefore, the real hypersurface has at least three distinct constant principal curvatures. Substitution of the principal
curvatures in λν = − c

4 implies that only type (B) satisfies this relation.
If α(µ− ν) = 0 holds, which implies that either M is a Hopf hypersurface with α = 0 or µ = ν. The last one results

in (Aϕ− ϕA)X = 0, X tangent to M .
Case II: α2 + c = 0.

In this case the ambient space is CHn and α 6= 0. Suppose that λ 6= α
2 then AϕW = νϕW and (2.5) results in ν = α

2 .
Following similar steps as in the previous case gives a contradiction

Therefore, λ = α
2 is the only eigenvalue for all vector fields in D and M is locally congruent to a horosphere.

Therefore, due to Theorem 1.2, relation (Aϕ− ϕA)X = 0 and Theorem 2.1 we obtain

Proposition 4.2 Let M be a Hopf hypersurface in Mn(c), n ≥ 2, whose structure Jacobi operator satisfies relation (1.4).
Then, M is locally congruent
i) to a real hypersurface of type (A)
ii) or to a Hopf hypersurface with Aξ = 0,
iii) or to a real hypersurface of type (B), i.e. in case of CPn a tube of radius r ∈ (0, π4 ) around the complex quadric
Qn−1 and in case of CHn a tube of some radius r around the canonically (totally geodesic) embedded n-dimensional real
hyperbolic space.

4.2 RULED HYPERSURFACES IN COMPLEX SPACE FORMS

Let M be a ruled real hypersurface whose structure Jacobi operator satisfies relation (1.4) and also relation (4.1) holds.
Furthermore, the relations (3.5)-(3.11) are satisfied. Relation (4.1) for X = U , Y = ϕU and Z = U due to (3.10) and
(3.11), results in κ1 = 0. Combination of the Gauss equation for X = U , Y = ϕU and Z = U due to κ1 = 0 with the
definition of the Riemannian curvature R(X,Y )Z = ∇X∇Y Z − ∇Y∇XZ − ∇∇XY−∇YXZ implies c = 0, which is
impossible. Thus we have proved the following Proposition.

Proposition 4.3 There are no ruled real hypersurfaces in Mn(c), n ≥ 2, whose structure Jacobi operator satisfies
relation (1.4)
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