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Abstract
This paper examines the structural changes emanating from Gross domestic product of Nigeria from 1980 to 2017. Out of sample forecast performances of non-linear time series SETAR model were examined. All necessary theoretical frameworks were stated and stationarity tests conducted before the model setting. Out-of-sample forecast performances between the standard linear ARIMA model and non-linear SETAR model were compared. The Empirical illustration shows that the non-linear SETAR model has superior forecasting power than linear ARIMA model using Gross domestic product of Nigeria. It suffices to recommend the non-linear model for would be policy makers, investors and academia for forecasting. However, this does not foreclose the fact that the linear ARIMA forecast model could still be used by forecasters in the absence of SETAR and other powerful non-linear model.
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1.0	 INTRODUCTION
Linear methods have dominated forecasting in the past decades. Methods such as the MA and ARMA were quite successful in numerous applications. Their main advantage is that they are easy to develop and implement and simple to understand and interpret. However, these models have a shortcoming as they are unable to capture nonlinearity in data (Makridakis et al., 1982). Linear methods are not capable of representing many nonlinear dynamic patterns such as asymmetry, amplitude dependence and volatility clustering. Since linear models have a weakness in tem1s of capturing nonlinearity in data sets such as stock price inflation rate, interest rate and others, researchers have resorted to nonlinear methods such as the Smooth Transition Regressive (STR) model, the Threshold Autoregressive (TAR) model and the Markov switching autoregressive model (MS-AR) (Makridakis et al., 1982).
A number of nonlinear modelling techniques have been suggested in the literature to capture the suggested nonlinearities in economic and financial data. Commonly used among these models are the Smooth Transition Regressive (STR), Threshold Autoregressive (TAR) and Markov-Switching Autoregressive (MS-AR) models. These three modelling techniques differ from conventional linear econometric models by their assumption of existence of different segments or regimes, within which the time series may exhibit different behaviour. In the context of the current study, the statement of the problem is how these three methods do applied to model and forecast the five closing stock prices, and how the estimated models compare in terms of efficiency and performance. The majority of the empirical econometric modeling work in financial and Economic data assumes that relationships are linear.  Economic theory plays a passive role on this issue, and thus most applied research finds it convenient to assume linearity. Recently, arguments have been presented, based on regularities observed in economic and financial data, that nonlinear specifications may be a more realistic representation of data generation processes. In finance, for instance, stock returns tend to be more correlated when there is low volatility than when volatility is high. A similar behavior has been observed in exchange rate mechanisms where the exchange rate may be constrained to lie within a pre-defined target zone (Franses and Dijk, 2000). To accommodate this kind of dynamic behavior using time series data, regime-switching models (RSM) have been introduced (Priestley, 1980 & 1988; Granger and Terasvirta, 1993). One particular model that begins to regularly appear in the agricultural economics literature is the threshold autoregressive (TAR) model introduced by Tong, Tong and Lim (1980), and extensively discussed in Tong (1990). The TAR model assumes that the regime is determined by a variable qt relative to a threshold value (The empirical existence of a threshold seems plausible in various economic settings.
2.0	LITERATURE REVIEW
TAR model were initially proposed by Tong (1978) and Tong and Lim (1980) at an Ordinary Meeting of the Royal Statistical Society meeting. The threshold idea was thus conceived in
1977 and Tong put the idea into practice which meant a huge amount of computer experimentation. The first paper presented was the SETAR (Self-exciting threshold autoregressive) model. Then it became more general in the further researches. Tasy (1989) carried on suggesting a simple yet widely applicable model-building procedure for threshold autoregressive models and a test for threshold nonlinearity. Then LeBaron (1992) demonstrated that different levels of volatility can be regarded as the regime-determining process. One year later, Kräger and Kugler (1993) argued that exchange rates might show regime-switching behavior and found that the significant threshold effects, estimated by SETAR models, affected the exchange rates for five currency exchange rates. Till the year of 1998, more econometricians put their attention on the ergodicity/stationarity problem. De Gooijer (1998) considered regime-switching to the MA model and used validation criteria on SETAR model selection. Clements and Smith (2001) evaluated forecasts from SETAR models of exchange rates and compared them with traditional random walk measures. Hansen (2001) used Chow test in testing unknown structural change timing. Boero and Marrocu (2002) showed clear gains from the SETAR model over the linear competitor, on MSFEs evaluation of point forecasts, in sub-samples characterized by stronger non-linear models. Boero (2003) studied the out-of-sample forecast performance of SETAR models in Euro effective exchange rate. The SETAR models have been specified with two and three regimes, and their performance has been assessed against that of a simple linear AR model and a GARCH model. Kapetanios and Yongcheol (2006) distinguished a unit root process from a globally stationary three-regime SETAR process.
An ARIMA model can be considered as a special type of regression model-in which the dependent variable has been stationarized and the independent variables are all lags of the dependent variable and/or lags of the errors. In this study, we quote Box-Jenkins approach to modeling ARIMA processes which was announced by Box and Jenkins in 1970. An ARIMA process is a mathematical model used for forecasting. Box-Jenkins modelling involves identifying an appropriate ARIMA process, fitting it to the data, and then using the fitted model for forecasting. One of the attractive features of the Box-Jenkins approach to forecasting is that ARIMA processes are a very rich class of possible models and it is usually possible to find a process which provides an adequate description to the data. All these years, ARIMA forecasting
models for economic variables were broadly developed, estimated, and then used for ex-post and ex-ante forecasts.
THEORETICAL FRAMEWORK
1.1 Stationary SETAR Models 


The SETAR model is a convenient way to specify a TAR model because qt is defined simply as the dependent variable. In this case, the process can be formally written as

	
1.2	SMOOTH TRANSITION REGRESSION MODELS
Smooth Transition Regression models are a set of nonlinear models that incorporates both the detetministic changes in parameters over time and the regime switching behaviour within the
time series data (van Dijk, Terasvirta & Franses, 2002). The general STR model for a time

series  is:

	








Where  is the transition function with as the transition variable which determines the switching point,  is the decay parameter is the smoothing parameter that determines the smoothness of the transition variable, c is the threshold parameter, and are the parameters of the two autoregressive components of the model with optimal lag length , and  is an error term. The two most popular transition functions are the logistic smooth and exponential functions given, respectively, by

	Logistic Function 

	Exponential Function 
1.3	ARIMA MODELS

Consider a standard ARIMA model 

	










Where denotes the order of Autoregressive model  model and  denotes the order of Moving Average () model.  model is a generalization of  to handle non-stationary time series. A common approach to control the non-stationarity is the use of differencing. Parameter  in  stands for its degree.  is a unit-root non-stationary model with strong memory.
1.4	ORDER DETERMINATION
	Akaike Information Criterion (AIC) is used in the determination of the order (Akaike, 1974). Also Final Prediction Error (F.P.E.), Parzen (1974).	For the kth autoregressive model, the FPE criterion is given by

		

where  is the unbiased estimator of 2 using the kth order model, that is

	
Similarly for a pth order model 

					


is the maximum likelihood estimate of the residual variance after fitting the AR(p).In practice, we specify a maximum lag L and fit successively 	AIC(1), AIC(2), …. 
The minimum FPE or AIC is the best model for the data. AIC is known to perform better than FPE.
1.5       TEST FOR LINEARITY

A zero-mean stationary stochastic process  is said to be generated by an autoregressive model of order k, denoted by AR(k), if it satisfies the difference equation

				
 Where {et} is a white noise process with variance σ2. Here, {et} will be assumed to be a Gaussian process.


Suppose, in a multiple linear regression, the response variable is given by Y and there is a set of explanatory variables, say . The full linear regression model is, given a set of derivations on 

	

Where {et} are usually assumed to be independently distributed as . The problem is to search for that subset of explanatory variables, which best explains the variation in Y.
1.6	FORECAST EQUATIONS USED



 is a point forecast of the series at time  given the series has been observed from       1 to 
Statistically speaking,









Since ARMA models build upon the series, the properties of   needs to be revisited.  In particular,  are independent and that future values of  are independent of the present and the past values of, i.e.,  is independent of .  
One-step forecast:

First, we have 


Two-step forecast:


  



2.0	METHODOLOGY/ DATA ANALYSIS

2.1	DESCRIPTIVE STATISTICS

Summary Statistics of Nigeria gross domestic products
	Mean
	Median
	Std. dev.
	Skewness
	Kurtosis
	Jarque-Bera
	Observation

	3.2447
	9.1500
	2.4693
	0.4843
	1.8123
	43.4500 (0.0000)
	300


2.2	UNIT ROOT TESTS
Augmented Dickey fuller test was used for two unit root tests. At level the series was not stationary, but at first difference the series appeared to be stationary, thereby paving way for the estimation of parameters of the models involved. The results of unit root tests were displayed in tables 1a and 1b below.
Table 1a: Unit root test at level.
	Null Hypothesis: GDP has a unit root
	

	Exogenous: Constant
	
	

	Lag Length: 0 (Automatic - based on SIC, maxlag=17)

	
	
	
	
	

	
	
	
	
	

	
	
	
	t-Statistic
	  Prob.*

	
	
	
	
	

	
	
	
	
	

	Augmented Dickey-Fuller test statistic
	 0.201297
	 0.9725

	Test critical values:
	1% level
	
	-3.444890
	

	
	5% level
	
	-2.867845
	

	
	10% level
	
	-2.570192
	

	
	
	
	
	

	
	
	
	
	

	*MacKinnon (1996) one-sided p-values.
	



Table 1b:  Unit root test at first difference.
	Null Hypothesis: D(STOCK) has a unit root
	

	Exogenous: Constant
	
	

	Lag Length: 0 (Automatic - based on SIC, maxlag=17)

	
	
	
	
	

	
	
	
	
	

	
	
	
	t-Statistic
	  Prob.*

	
	
	
	
	

	
	
	
	
	

	Augmented Dickey-Fuller test statistic
	-21.66831
	 0.0000

	Test critical values:
	1% level
	
	-3.444923
	

	
	5% level
	
	-2.867859
	

	
	10% level
	
	-2.570200
	

	
	
	
	
	

	
	
	
	
	

	*MacKinnon (1996) one-sided p-values.







	


2.3	ASYMMETRIC UNIT ROOT AND LINEARITY TESTS
	
	TAR
	SETAR

	

	

	


	

	

	


	

	

	


	

	

	


	

	

	


	

	

	


	

	

	














 are coefficient of first lag values of each regimes and parenthesis are t-statistics  shows the number of lags in a model  represents F-statistics for the null hypothesis  the values related to  shows the F-statistics for the null hypothesis , is the Ljung Box Q-statistics and the bracket values are  values of corresponding test values. is calculated as .
As observed from the above Table, all of the series reject the null hypothesis of a unit root at 5% significance level for both TAR and SETAR models. This means that all of the variables are stationary.
Estimated linear AR model for Gross domestic product


[image: ]
According to p values, all coefficients are significant. Even though, second lagged growth of industrial production index is not significant at 5% significance level but significant at 10% significance level, we include it according to AIC.

For the nonlinear SETAR model, threshold variable is selected from two candidate lagged variables. By using Chan (1993) methodology, optimum threshold variable is determined as  and optimum threshold value is found -0.359.
Estimated Non-linear SETAR model for Gross domestic product


[image: ]
Compared to the linear AR model, SSR, AIC and variance of residuals support the nonlinear M-TAR model. In other words, it means that estimated nonlinear model describes the GDP index better that the linear model.
3.0	OUT OF SAMPLES FORECAST PERFORMANCE OF SETAR MODELS USING 	NIGERIAN GDP DATA
	Date
	Actual
	Lower Forecast limit
	Upper Forecast limit

	2006
	18,564.59
	17,231.03
	18,423.98

	2007
	20,657.32
	18,503.5
	22.190.3

	2008
	24,296.33
	19503.5
	24,490.3

	2009
	24,794.24
	19903.9
	25,349.7

	2010
	54,612.26
	49,503.5
	55,490.5

	2011
	62,980.40
	59,875.1
	73,490.7

	2012
	71,713.94
	70,607.5
	73,493.2

	2013
	80,092.56
	79,781.2
	81,234.3

	2014
	89,043.62
	88,356.0
	91,590.7

	2015
	94,144.96
	92.621.3
	96,123.1

		2016
	 97,253.02
	94,287.9
	99,651.7

		2017
	 101,542.01
	99,761.7
	103,201.9


 The table shown above indicates that at both lower and upper levels SETAR model predict the data very well.
4.0	CONCLUSION
Nonlinear models can capture asymmetries more properly by analyzing series regime by regime. Therefore, nonlinear approaches become more preferable and popular in empirical investigations. Furthermore, studies indicating asymmetric structures of many macroeconomic variables in response to downturns and recoveries in a business cycle have also strengthened the popularity of nonlinear approaches. Furthermore, intensive investigations on nonlinear dynamics also trigger the development of asymmetric unit root tests. Various studies prove the fact that traditional unit root tests are inadequate to investigate stationarity for asymmetric dynamics. They only consider the linear stationarity case. Moreover, their powers decrease substantially for asymmetric structures. Therefore, development of a new unit root test which considers the existence of nonlinear stationarty becomes essential for asymmetric dynamics. Hence, developments of asymmetric unit root tests have gained considerable velocity as the nonlinear models become popular in econometric literature.
In the scope of this study, we analyzed Nigeria GDP data To mimic the usual approach, first conventional unit root tests are performed, and then asymmetric unit root test proposed by Enders and Granger is applied in order to test for stationarity. Traditional and asymmetric unit root tests support consistent stationarity results for growth of GDP. we estimate SETAR models since their dynamics shows SETAR type of adjustment according to the symmetry tests. We also constructed linear AR models for these variables in order to find the best fitted model. Nonlinear models exhibit better performance than the linear ones for both variables according to Akaike information criteria, sum of squared residuals and variance of residuals of estimated nonlinear models. In other words, nonlinear approaches represent the dynamics of both variables more properly than the linear ones.
Lastly the use of SETAR model is recommended for would be forecaster as its forecast ability at both lower and upper levels are fantastic.
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