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1. Introduction 

GCS is one of the biggest in Europe and performs an important role connecting mainland to 

Greek islands1. Its contribution to GDP is € 13.6 billion or 7.4% of total GDP (2019). It employs 

approximately 332,000 people and contributes to public revenues with approximately € 3 billion 

(IOBE, 2020). It carries over 35 million Greeks and foreigners annually (including ferry lines), 

with its fleet accounting for about 7% of the global passenger shipping fleet. It covers about 17% 

of total passenger shipping in Europe, with more coastal lines than other countries (due to the 

plethora of islands). The sector is characterized by high seasonality with almost half of the 

transport traffic taking place in the period June-August (IOBE, 2014).  

The listed shipping companies, for the year 2019, employed 2,449 employees, launched 43 ships 

and served passenger traffic of 7,543,460 people. Respectively, they transported 1,041,574 cars 

and 555,241 trucks. They served about 36% of the total passenger traffic2 and 46% of the total 

vehicle traffic. The average age of their fleet is high, with 60% being over 22 years old and 25% 

of the total being over 30 years old (XRTC, 2004-2020).  

All the above show that GCS is of great importance for Greek economy and society. The volume 

of passenger traffic it serves is very high and its forecast is very significant for both business and 

government policy. Decisions on the number of routes served by shipping companies, on ships 

 
1 It connects about 115 inhabited islands to mainland in Greece. 
2 The remaining 64% for passengers and 54% for vehicles are serviced by smaller companies. For the year 2019, these companies 

launched 15 conventional and 21 high-speed vessels on all GCS routes. 
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by coastal line (number and size), on companies' pricing policy, on public service obligations3, 

on state port infrastructure policy and for barren lines4 are typical examples. 

The main goal of this study is to find an optimal forecasting method of passenger traffic in GCS 

by comparing Box-Jenkins ARIMA, smoothing and decomposition methods (Wardono, et al., 

2016; Ahmad & Ahmad, 2013; Trull, et al., 2020). The first methods seem to be effective in 

predicting passenger traffic in transport and the other two have not been preferred for research 

(Aivazidou, 2015). The basic assumption in all three of the above methods is that the available 

observations will continue to behave in the future as in the past (Shim & Siegel, 2001). 

In the period 2020-2021, due to the covid-19 pandemic, this did not happen and there was a 

sharp drop in passenger traffic. Therefore our forecast will start from the year 2020, ignoring this 

decrease so as not to create a problem in the time series forecasts for the coming years (and 

especially for the year 2022 when the situation is expected to return to regularity). 

2. Related work 

In relation to the forecasting efforts in the transport sector, about 60% of the publications 

concern forecasts for passenger transport (Aivazidou, 2015). These mainly concern air, road and 

urban transport. Similar scientific research on maritime passenger transport is absent from the 

international literature. The main reason is that in a few countries coastal shipping is a means of 

transport. Characteristic is only the research of Ortuzar and Gonzalez (2002), for the coastal line 

between the Canary Islands and Tenerife. 

In GCS, because it largely connects mainland to Greek islands, the research is more extensive. 

Attempts in this direction have been made by various authors, such as Psaraftis (1994) who tried 

to systematically analyze possible scenarios for passenger demand after deregulation of the 

market. Spathi (2005), attempted to find the function of passenger demand using the dynamic 

model with the error correction model mechanism (Ramanathan, 2001). A similar study was 

carried out by Tsekeri (2008) who presented an aggregate analysis of substitution and 

complementary relationship among all available transport modes for domestic travel in Greece. 

He proposed a model based on consumer demand theory. 

Simplistic efforts were made to forecast the financial statements and passenger traffic of coastal 

companies, with polynomial and hyperbolic functions having the best application (higher R 

squared)  (Sitzimis, 2012). An important research took place in 2014 (IOBE), which used the 

regression method for the estimation of demand elasticity for coastal shipping services with 

respect to the price of tickets and household disposable income. Various other forecasting 

approaches are performed by XRTC on annual basis (2004-2020). 

However, according to Aivazidou (2015) the basic forecasting methods used for other passenger 

transport are mainly time series analysis models and less combined time series and regression 

analysis models or pure regression analysis models. In fact, the most widely used models are those 

based on the Box-Jenkins ARIMA methodology, while very few are based on methods of 

 
3  Although the market is liberalized and a simple declaration to the Ministry of Maritime Affairs and Insular Policy is required to enter 

and exit, there are also obligations for shipping companies such as obligatory period of ten-month shipping, prohibition of interruption 

and change of routes without approval, mandatory crew compositions of ships. 
4 According to the Law 2923/2001, the State characterizes as "barren" those lines for which there is no expression of interest for their 

operation from coastal companies. 
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smoothing and time series decomposition. In other words, there is a gap in the relevant literature 

that we are going to fill with this research. 

3. Passenger traffic analysis in GCS 

Air, road and urban transport offer useful conclusions about the passenger demand forecasting 

to a transportation industry (Sitzimis, 2012; Sabry, et al., 2007; Tamber, et al., 2021; Dingari, et 

al., 2019). We could be based on them and reach to the congruent conclusions about GCS. 

However, the market conditions differ between those industries. In GCS these assumptions cannot 

be unified and undivided (Goulielmos & Sambrakos, 2002). This market consists of several 

concentrated submarkets-coastal routes, which should be analyzed individually (Sitzimis, 2012; 

Goulielmos & Sitzimis, 2014; Goulielmos & Sitzimis, 2012). There are many studies that make 

the mistake of dealing the market GCS as a total (Tsekeris, 2008). We prefered the assiduous 

review of the real conditions of GCS, by analyzing it per coastal route. 

Coastal lines in Greece are characterized by intense seasonality with the largest percentage of 

passenger traffic (about 45%) taking place in the third quarter of each year, with the months of 

April to September accounting for about 70% of the total annual number of passengers (Sitzimis, 

2012; XRTC, 2004-2020). This fact reflects the strong tourist demand for island destinations 

(IOBE, 2014). August, is the month with the greatest traffic, leaving behind July, September and 

June. The lowest traffic of passengers traveling within their national borders, mostly appeares 

during February, January and November (XRTC, 2004-2020). 

In order to analyse the passenger traffic in the shipping itineraries of Greece, we remained in 13 

itineraries, which represented the biggest average percentage of total passenger traffic (diagram 

2). Those of Argosaronikos (A), Piraeus-Peloponnise (PP), Piraeus-Creta (PC), Piraeus-Creta-

Dodecanese (PCD), Piraeus-Dodecanese (PD), Piraeus-West Cyclades (PWC), Piraeus-East 

Cyclades (PEC), Piraeus-Mykonos-Tinos-Samos (PMTS), Piraeus-Chios-Mytilene (PCM), 

Patra-Akarnania-Ionian islands (PAII), Rafina-Euboea-Andros-Tinos (REAT), Volos-North 

Sporades-Kymi (VNSK) and the rest (L).  

The average annual rates of traffic alteration on these lines, between 1970-2000, increased at an 

impressive rate. Overall, an average increase of 4.2% was observed (Sitzimis, 2012). This was 

due to: (a) the growth of tourism in insular Greece, (b) the increase in GDP per capita of island 

inhabitants, (c) the general increase of the permanent population in Greece and (d) the greater 

dependence of islands from the mainland (due to the modern tendency for astyphilia) (Spathi, 

2005). The lines with the highest traffic were "A", "PEC" and "PC", while the highest growth rate 

appeared in the line "PEC" (7.2%), followed by the lines "PC" (7.1%) and "PWC" (6.5%) 

(Sitzimis, 2012). It is obvious that the "PWC" and "PEC" lines gathered the largest shipping traffic 

in GCS between 1970-2000. This was mainly due to the great growth of tourist arrivals that 

occurred in these islands after 1970. 

Comparing the years 2001-2019 (table 1 and Figure 1) it is obvious a very large increase of 

passenger traffic between the years 2001-2007 (35%), mainly due to the liberalization of the 

market (lifting of cabotage privilege), partly in 2002 and fully in 2006 (Law 2932/01, EU 

regulation 789/04, Presidential Decree 124/06) (Sitzimis, 2012; Goulielmos & Sitzimis, 2014). 

Also, in this increase contributed both the Olympic Games in Athens in 2004 and the increase of 

tourist flows to the country. Between 2006-2007 there is stabilization and a small percentage 
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decrease. In the period 2008-2013, passenger transport is significantly reduced due to the global 

financial crisis, with the percentage reduction reaching 25%. The decrease was caused by the 

descending course of income per capita of Greeks and by the overdraft of the Greek households. 

After 2014 and until 2019 the market is recovering but continues to be at lower levels than it was 

before the crisis. Despite the sharp increase in tourist traffic5, Greek coastal shipping does not 

benefit enough as most foreign tourist arrivals took place by air. Overall, for the years 2001-2019 

the average increase was about 10% (table 1). 

For 2020, the impact of the Covid-19 pandemic was clear. Greek coastal shipping was subject 

to a restriction on passengers’ transportation from March to May 2020 followed by state ceilings 

for transported passengers thereafter. If we take into account the big drop in tourism, the passenger 

reduction was significant (about 55%) (IOBE, 2020). 

The most popular destination and the greatest average traffic (2001-2019) (Figure 2) is 

presented in the shipping route "A" (having a part of 16.3% of passengers), followed by Piraeus-

Cyclades ("PEC" and "PWC", having a part of 15,5% of passengers), "PC" (a part of 13,7%) and 

"REAT" with 12.9%. This is normal because they constitute very popular touristic destinations. 

Especially after the deregulation of the market took place «cream skimming». This means that 

most shipping companies preferred the most lucrative coastal markets, mainly in the summer 

months. At the same time left non profitable markets in winter (Sitzimis, 2012; Goulielmos & 

Sambrakos, 2002). Also, the high levels of traffic are due to the fact that these itineraries are based 

on the part of demand with the least seasonality. So the higher levels of fullness and exploitation 

of ships are achieved. 

4. Methodology 

The main issue in this research was to predict passenger traffic on the main lines of Greek 

coastal shipping. To do this we had to choose between certain quantitative forecasting methods. 

Qualitative forecasting methods are based more on human judgment than on the analysis of 

existing data (Shim & Siegel, 2001). We had quarterly data on passenger traffic between the years 

2004-2019, so we chose the quantitative methodology. In each case we processed our data with 

the statistical package SPSS 22. Exception took place for the calculation of time series 

decomposition where the minitab 19 software was used. Also the calculation of the augmented 

Dickey-Fuller test was done through eviews 11. The reason was that SPSS did not have these 

features clearly. 

In order to make a prediction for our dependent variable we could use regression analysis 

(Petropoulos & Asimakopoulos, 2013). In this way we would recognize the quantitative and 

causal relationship between the variables involved in the interpretation of our problem. 

Unfortunately, this method is difficult to apply here as the independent variables that affect 

passenger traffic are not completely clear, it is difficult to find relevant statistic data and time 

series analysis models seem to be better applied in these cases (Sabry, et al., 2007; Wu, et al., 

2013; Tsui, et al., 2014; Rashidi & Ranjitkar, 2015). 

 
5 In 2004 there were 13 million tourist arrivals, whereas in 2019 the number was 34 million. 
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For these reasons we could rely on known smoothing methods or Box-Jenkins ARIMA models, 

considering only the existing observations and not the possible relationship with other variables 

(Ahmad & Ahmad, 2013; Munarsih & Saluza, 2019; Yonar, et al., 2020).  

Starting with smoothing methods, they are easy to apply and have a low degree of computational 

difficulty. The basic logic is that we use timeless data, that is, past observations of equal 

successive time periods. These time series are not affected by the small amount of available data 

and provide satisfactory forecasts in the short term (Petropoulos & Asimakopoulos, 2013). As is 

well known, when we do not have a trend and seasonality (stationary time series) for a short 

forecast range, the simple moving average and simple exponential smoothing models are best 

applied. Respectively, if there is a trend but not seasonality, for a long range of forecasts, the trend 

analysis or the exponential smoothing with adaptation to the trend (Holt's method) are suitable. 

For a smaller range the double exponential smoothing (Brown's method) or the double moving 

average method (double moving average or linear moving average) are more preferable (Chalkos, 

2020).  

The passenger traffic data available at GCS were quarterly and therefore there were indications 

of seasonality and no stationarity. As shown in Figure 3 in all examined lines there is a strong 

increase in traffic in the 3rd quarter of the year, with a slightly decreasing or increasing trend over 

the years 2004-2019. This means that we could not use prediction techniques such as the above. 

Repeated seasonal fluctuations and quarterly available observations made the Winters model 

(Winter's triple exponential smoothing) (indicated when we have seasonality rather than a short-

term forecast), the time series decomposition (suitable when we have a trend and seasonality for 

a long range of forecasts), the simple seasonal model (suitable when we do not have a trend, but 

only a stable seasonal result) and the seasonal ARIMA models suitable for our case (Chalkos, 

2020; Petropoulos & Asimakopoulos, 2013).  
 

  
Figure 1: Fluctuations of total passenger traffic in GCS 

(2001-2019) 

Figure 2: Average passenger traffic per route in GCS 

(2001-2019) 

Source: Hellenic Statistical Authority, 2000-2020. Our elaboration. 
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Table 1: Total passenger traffic in GCS (for the 13 main itineraries) (2001-2019). 

Year Passengers Average 
% 

alteration 

2001 13,852,000 

16,422,862 34.79% 

2002 13,124,000 

2003 14,905,000 

2004 17,306,000 

2005 18,257,159 

2006 18,844,396 

2007 18,671,482 

2008 18,068,255 

15,729,890 -24.72% 

2009 17,442,121 

2010 16,587,040 

2011 15,071,705 

2012 13,608,289 

2013 13,601,930 

2014 14,463,293 

15,598,306 20.40% 

2015 14,323,032 

2016 14,542,183 

2017 15,938,427 

2018 16,909,512 

2019 17,413,388 
Average (2001-

2019) 15,943,643  10.16% 

Source: Hellenic Statistical Authority, 2000-2020. Our elaboration. 

 

 

4.1 Measures of forecasting accuracy 

 

The basic selection criterion we followed is which method best suited our data, that is, it led to 

the smallest values of discrepancies between predicted ( t ) and actual values ( t ) of the time 

series (forecast error). By studying the time behavior of forecast error values, we were able to 

arrive at both the evaluation of our forecasting methods and the choice between alternatives 

(Agiakloglou & Oikonomou, 2019; Karmaker, et al., 2017).  

We used the following precision measures: 

a) The mean absolute percentage error (MAPE), which expresses the percentage accuracy. 

Defined as:  

n

x
Yt

tYYt

MAPE

100
−



=  
(1) 

where n is the number of measurements. 
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b) The mean squared deviation (MSD or MSE) calculated as: 

n

tYYt
MSD

2)( −
=  (2) 

Mean squared error expresses the mean value of the squared deviations and is considered 

statistically more reliable, so it is used more often. Because its interpretation is difficult to 

understand we mainly used the root mean squared error (RMSE) (Agiakloglou & Oikonomou, 

2019).  

c) The mean absolute error (MAE), which expresses a measure of the accuracy of the forecast 

against the actual values, maintaining the units of measurement of the original time series. It is 

set as: 

n

FiYi
MAE

|−
=  (3) 

and its high values show bias of the method. 

d) The Bayesian information criterion, developed by Schwarz (1978) (or BIC) selects the model 

that minimizes: 

r
n

n
BIC

ln
ln

2

+=   (4) 

where σ2 is the sum of the squares of the residuals, n is the number of observations and r is the 

total number of parameters with the constant term. 

For all forecasting accuracy measures we considered that the lower the price the better the model 

in terms of estimation (Chalkos, 2020). We also accepted that MAPE values below 10% describe 

an extremely accurate forecast, below 20% a relatively good forecast and below 30% a marginally 

accurate forecast (Dingari, et al., 2019).  

 

4.2 Winter’s triple exponential smoothing 

 

Winter’s triple exponential smoothing has three smoothing parameters. The parameter α for the 

smoothing of time series values (level), the parameter β for the smoothing of trend (slope) and 

the parameter γ for seasonality smoothing. These components are either additive or multiplicative. 

The multiplication model is selected when the seasonal pattern in the data depends on the size of 

the data. In other words, the size of the seasonal pattern increases as the series goes up and 

decreases as the series goes down. The additive one is selected when the seasonal pattern in the 

data does not depend on the size of the data. In other words, the size of the seasonal pattern does 

not change as the time series goes up or down (Hansun, et al., 2019; Dingari, et al., 2019).  

The smoothing of the time series values in the additive model is done through the function: 

𝛢𝑡 = 𝑎(𝛶𝑡−𝑆𝑡−𝐿) + (1 − 𝑎)(𝛢𝑡−1 + 𝑇𝑡−1) (5) 

whereas in the multiplicative through the function: 

𝛢𝑡 = 𝑎
𝑌𝑡

𝑆𝑡−𝐿
+ (1 − 𝑎)(𝛢𝑡−1 + 𝑇𝑡−1) (6) 

where α is the smoothing constant (0≤α≤1), Αt the smoothed values of time series, St is the 

seasonal factor of the period t and L is the periodicity of the seasonality.  
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In the additive model the smoothing of the trend follows the equation: 

𝛵𝑡 = 𝛽(𝛢𝑡 + 𝐴𝑡−1) + (1 − 𝛽)𝛵𝑡−1 (7) 

where β is the trend smoothing constant (0≤β≤1) and Τt the smoothed values of trend. The 

equation in multiplicative model is transformed as: 

𝛵𝑡 = 𝛽(𝛢𝑡/𝐴𝑡−1) + (1 − 𝛽)𝛵𝑡−1 (8) 

The seasonality smoothing in additive model follows the equation: 

𝑆𝑡 = 𝛾[𝑌𝑡 − 𝐴𝑡] + (1 − 𝛾)𝑆𝑡−𝐿 (9) 

and in multiplicative the equation: 

𝑆𝑡 = 𝛾
𝑌𝑡

𝛢𝑡
+ (1 − 𝛾)𝑆𝑡−𝐿 (10) 

where γ is the smoothing constant of seasonality (0≤γ≤1).  

The forecast is: 

𝑌̅𝑡+ℎ = (𝐴𝑡 + ℎ𝑇𝑡)𝑆𝑡+ℎ−𝐿 (11) 

where h=1,2,3…L is the future periods of first year and 

𝑌̅𝑡+ℎ = (𝐴𝑡 + ℎ𝑇𝑡)𝑆𝑡+ℎ−2𝐿 (12) 

where h=L+1,L+2,L+3…2L is the future periods of second year etc.  

Initialization of the method according to Chatfield (2003) is required. For t=1,2,..,L-1 the values 

At are not determined, while for t=L the AL is defined as: 

𝛢𝐿 =
𝑌1 + 𝑌2 + ⋯ + 𝑌𝐿

𝐿
 (13) 

For t=1,2,…,L-1 the values Τt are not determined, for t=L we set ΤL=0 and for t=1,2,…,L the 

values of the seasonal coefficients St are calculated as: 

𝑆𝑡 =
𝑌𝑡

𝐴𝐿
 (14) 

The optimal values of α, β and γ were calculated automatically by minimizing the RMSE 

criterion in SPSS and for all possible combinations of parameter values in the time series data 

(Chalkos, 2020; Dhali, et al., 2019; Ravinder, 2013; Tamber, et al., 2021).  

 

4.3 Τime series decomposition and Simple seasonal exponential smoothing 

 

The objective of time series decomposition is to identify the mechanism by which time series 

values are formed. The decomposition method is used to separate a time series into the trend 

component, the seasonality component, the cyclical component and the irregular component to 

make predictions (Chalkos, 2020).  

It is necessary to choose whether the seasonality works addictively or multiplicatively to the 

trend. If it works addictively, the model has the form: 

Υt = Tt+St+Ct+It (15) 

where Υt is the real observation in time t, Τt is the trend, St is the seasonality, Ct is the circularity 

and It is the randomness. This model is more difficult for further computational analysis and 

assumes independence between the factors. This assumption applies to natural phenomena, but 

not to business or economic applications, where the trend also affects seasonal fluctuations 
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(Agiakloglou & Oikonomou, 2019). In the case of the multiplicative model the above relation is 

transformed as: 

Υt = Tt·St⋅Ct⋅It (16) 

It works well when the fluctuations depend on the level of values, which is usually the case 

(Kyriakidis, 2018).  

The simple seasonal exponential smoothing is suggested for series with no trend and a seasonal 

effect that is constant over time. It has two smoothing parameters, level (α) and season (δ). It is 

very similar to an ARIMA model with zero orders of autoregression, one order of differencing, 

one order of seasonal differencing, and orders 1, p, and p + 1 of moving average, where p is the 

number of periods in a seasonal interval (for quartely data, p = 4) (IBM, 2021). The model 

equation is: 

𝑌𝑡 = 𝜇𝑡 + 𝑆𝑡,𝑝 + 𝑎𝑡 (17) 

and the smoothing equations are: 

𝐿𝑡 = 𝑎(𝑦𝑡 − 𝑆𝑡−𝑃 ) + (1 − 𝑎)𝐿𝑡−1 (18) 

𝑆𝑡 = 𝛿(𝑦𝑡 − 𝐿𝑡) + (1 − 𝛿)𝑆𝑡−𝑃 (19) 

The h-stem-ahead equation is: 

𝑌̅𝑡+ℎ = 𝐿𝑡 + 𝑆𝑡−𝑃+ℎ (20) 

h=1.2…, where μt is the mean of the observed time series at period t, St-P+h is the seasonal 

component, p is the seasonality periodicity, h is the number of periods in forecasting and at is the 

forecast error at period t. 

 

4.4 ARIMA: Auto-Regressive Integrated Moving Average  

 

In relation to the Box-Jenkins ARIMA models, we would say again that in all coastal lines 

appear seasonal data that have a distinct pattern which is repeated every year (Figure 3). Our data 

are quarterly, so the length of the seasonal period is S = 4. This means that there are observations 

that are correlated both within the year and between different years. In these cases, seasonal 

ARIMA (SARIMA) models that contain non-seasonal and seasonal autoregressive and moving 

average terms are applied (Wardono, et al., 2016; Ma, et al., 2018; Sim, et al., 2019). In fact, in 

non-stationary series, a seasonal difference is usually used to completely determine the model. 

(Wardono, et al., 2016; Ma, et al., 2018; Sim, et al., 2019).  

These models are denoted as ARIMA (p,d,q)(P,D,Q)s where: p are non-seasonal autoregressive 

terms, d are regular differences, q are non-seasonal moving average terms, P are seasonal 

autoregressive terms, D are seasonal differences, Q are the seasonal terms of moving average and 

s is seasonality. Indicatively a SARIMA model is written: 

𝛷𝜌(Β)𝛷𝜌(𝐵𝑆)(1 − 𝐵)𝑑(1 − 𝐵𝑠)𝐷𝑦𝑡 = 𝜃𝑞(Β)𝛩𝑄(𝐵𝑆)𝜀𝑡 (21) 

where φ and θ, are parameters of autoregressive (AR) and moving average (MA), while Φ and Θ, 

are parameters of seasonal autoregressive (SAR) and seasonal moving average (SMA) 

respectively. Β is lag operator which defined as BKYt=YT-K (18) (Wang, et al., 2013; Suhartono, 

2011). 
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In particular, to implement SARIMA modeling and forecasting in GCS we followed 4 basic 

steps (table 2). The first stage was the "recognition" of the model whenever we initially 

ascertained the existence or not of stationarity in the time series data. When the series were not 

stationary (in the sequence chart the values were not around zero) we applied the method of 

differences. In some cases, both first regular differences (ΔΥt = Yt-Yt-1) and seasonal quarterly 

differences (ΔΥt = Yt-Yt-4), that is of order S = 4, were needed. After the differences if the 

autocorrelation function of the time series were declining rapidly and were zero, we considered 

this to be a sign of stationarity. In order to determine whether the time series actually became 

stationary we applied the augmented Dickey-Fuller test, which had as null hypothesis that the 

data are not stationary (p-value <5% in order to reject the null hypothesis) (Makatjane & Moroke, 

2016). We used eviews software for this unit root test.  

In the resulting stationary time series, through minitab 19 we checked the importance of the 

time series autocorrelation coefficients per lag. We used the t-student distribution, with n-1 

degrees of freedom, 95% confidence interval for one-tailed test and null hypothesis that the 

coefficients are not autocorrelated (Gujarati & Porter, 2018). The autocorrelation of the 

coefficients is desirable, so our goal was to accept the alternative hypothesis (that is approximately 

for values t <2). At the same time, we checked the autocorrelation for all Lags, where we used 

the Ljung - Box Q statistics through the chi-square distribution, with the same degrees of freedom 

as the lags, 95% confidence level, one-tailed test and null hypothesis that the data is random and 

without apparent trend (LBQ>chi-squared). That is, not all autocorrelation coefficients are 

statistically different from zero (Gujarati & Porter, 2018). The same test was performed through 

SPSS where the p-value <5% for the Box-Ljung statistic criterion was required. 

The final identification of the appropriate model per coastal line was made by comparing the 

ACF and PACF calculated from the data with the theoretical ACF and PACF for the various 

ARIMA models. The general logic was that if the sample autocorrelations exponentially drop to 

zero and some are interrupted, the model will require autoregressive terms. If the sample 

autocorrelations are interrupted and some of them decrease the model will also require moving 

average terms (Kyriakidis, 2018). By counting the number of significant sample autocorrelations 

and the partial autocorrelations we determined the classes of MA and AR terms. 

For instance, in itinerary "A" we got a regular and a seasonal difference, because through the 

sequence chart and the ACF diagram of the original series we found no stationarity in the data. 

After the differences, the autocorrelations of the time series decreased rapidly and were zero, 

which was a sign of stationarity for us. The Augmented Dickey-Fuller test statistic gave a p-

value<5%, which means that the null hypothesis is rejected and indeed the time series was 

stationary. Because we wanted our data to have the desired autocorrelation, using the t-statistic 

for a significance level of 5%, one-tailed test, and n-1 degrees of freedom, we found that the 

autocorrelation coefficients were statistically different from zero. The same conclusions were 

emerged by the chi-squared statistic (zero hypothesis rejection), showing that the time series data 

as a whole were not random. 

So we decided to proceed with the modeling of the seasonal ARIMA model. We definitely had 

1 nonseasonal difference (d) and 1 seasonal difference (D). In nonseasonal AR (p) we tested 

values 1 and 2 because we had lags which are significantly correlated and in seasonal AR (P) the 

value 1 as it is sufficient for most seasonal patterns (IBM, 2021). Considering that sample 
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autocorrelation ceases after the 1st lag and partial autocorrelation decreases, we used values 1 and 

2 as nonseasonal MA (q) and obtained value 1 as seasonal MA (Q) as it is sufficient for most 

seasonal patterns (IBM, 2021).  

The second stage concerned the "assessment" of the model and specifically its parameters. 

Based on the previous analysis for line "A" we checked several models, keeping the differences 

constant. The model with the lowest RMSE, MAE, MAPE and normalized BIC was the SARIMA 

(0,1,1) (1,1,0)4. 

In the third stage and before using the models for prediction, we checked them for their 

"adequacy". Adequate is the model whose residuals are random and independent (Gujarati & 

Porter, 2018). Through minitab 19 we relied on a chi-square test, based on Ljung-Box statistics 

with number of lags minus number of parameters degrees of freedom. If p-value>5% for all 

individual values (lags), the residual autocorrelations were considered to express consistent and 

random errors (white noise). At the same we performed a comprehensive check of the adequacy 

of the model, through the chi-square test based on Ljung-Box statistics (SPSS). For line "A" it 

appeared that the errors had white noise behavior. Then, the statistical significance of the 

parameters of the selected model was checked. In line "A" because p-value<5% the coefficients 

were statistically significant and were maintained in the model. Finally, the interpretive power of 

the model was investigated through stationary R squared. Given the adequacy of the models, we 

adhered to the principle of parsimony and on every case, we chose the simplest model that 

provided an adequate description of the main characteristics of the data (Kyriakidis, 2018). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



12 

 

 

Table 2: Basic steps for SARIMA forecasting in GCS (2004-2019). 

STEP 1: 

Model recognition 

STEP 2: 

Model 

estimation 

STEP 3: 

Model 

adequacy 

STEP 4: 

Model 

forecasting and 

feedback 

1. Are data 

stationary? 
2. Now the data 

are stationary: 

1. Which is the 

best fitted model 

per route? 

1. Is the best 

fitted model 

statistically 

adequate? 

1. Which are the 

quarterly 

forecasts of 

passenger traffic 

for years 2020-

2022? 

a. Check 

sequence chart 

a. Αre the 

autocorrelation 

coefficients 

statistically 

different from 

zero? 

a. Check which 

model has the 

lowest result in 

MAPE, RMSE, 

MAE and 

normalized BIC 

a. Check the 

residuals 

whether are 

random and 

independent. 

a. We must 

forecast 

passenger traffic 

only for year 

2022 cause 

COVID-19. 

b. Check ACF, 

PACF diagrams 

b. Are time series 

data as a whole 

random? 

 

b. Check model 

interpretive 

power 

b. Compare the 

predictive values 

to the actuals 

c. If there is no 

stationarity take 

a normal or both 

a normal and a 

seasonal 

difference 

c. Which are the 

possible values 

of SARIMA 

trend and 

seasonal 

components? 

   

d. Check again 

sequence chart 
    

e. Check again 

ACF, PACF 

diagrams 

    

f. Use 

augmented 

Dickey-Fuller 

test 

    

 

In the last stage and after determining the adequacy of the models, we made forecasts for the 

years 2020,2021,2022 per quarter and we compared the predictive values to the actuals.  

5. Analysis and results 

As we said, the quarterly data for most of the coastal lines show a marginally decreasing or 

increasing trend and a relatively stable seasonality (repeated) (Figure 1). Using SPSS statistical 

software we calculated Winters ’additive and multiplicative model and the additive and 

multiplicative model of decomposition in every significant route of GCS. Also we analyzed 

SARIMA models and simple seasonal exponential smoothing models per route. Especially for 

decomposition method we calculated both trend and seasonality or only seasonality. So the results 

concluded a linear trend and seasonal indices per quarter. 
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Figure 3: Sequence charts of passenger traffic of the main coastal itineraries in Greece (2004-2019) (data on quarterly basis).
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The time series on the coastal lines of Greece were examined for the first time, so we considered 

it expedient to find the optimal parameters for each method used. That is, those values that 

minimize the RMSE criterion (table 3). With SPSS finding the best values of α, β, γ is no longer 

the problem (Tamber, et al., 2021). An exception was the SARIMA method where the approach 

was done step by step, as described in the methodology. In this case too, however, the exported 

model was compared with the excellent one via SPSS (through SPSS modeler). In case of 

conflicting results our main selection criteria were RMSE and normalized BIC. Moreover, 

through the stationary R squared we performed the interpretation power of the selected model and 

with the use of the Ljung Box test we checked its adequacy. Then we made a forecast for the year 

2022, which was our final goal, as in theory there will be a return to normality (after the COVID-

19 pandemic). 
 

             Table 3: Best fitted forecasting methods for all lines in GCS (2004-2019). 

ROUTE 
BEST  

METHOD 

OPTIMAL 

PARAMETERS  

OR FORECASTING 

EQUATIONS 

Decision Criteria 

Stationary 

R2 

 Forecast (2022) 

MAPE MAE RMSE BIC 
Ljung-

Box (sig) 
Q1 Q2 Q3 Q4 

T WM 

α (level)=0.306 

β (trend)=0.000 

γ (seasonal)=0.686 

6.039 215260.3 294890.3 25.384 0.482 0.913 1540000 4370000 8710000 2220000 

A WM 

α (level)=0.357 

β (trend)=0.000 

γ (seasonal)=0.686 

6.749 39243.2 53079.5 21.954 0.538 0.748 259080 623203 1020000 324689 

PP SS 
α (level)=0.110 

δ (seasonal)=0.872 
82.142 6054.2 10448.6 18.638 0.403 0.840 5822 13977 30044 6825 

PC WM 

α (level)=0.285 

β (trend)=0.001 

γ (seasonal)=0.020 

8.019 42879.3 61744.5 22.256 0.733 0.412 278050 388919 688388 348976 

PCD SS 
α (level)=0.118 

δ (seasonal)=0.596 
27.673 12782.6 27146.1 20.548 0.493 0.977 34561 146343 62183 65877 

PD DMTS 

☑ Υt=303722-2287t 

☑ Seasonal indices 

per quarter: 

1: 0.60398 

2: 1.08655 

3: 1.63551 

4: 0.67396 

29.765 - 108750.6 - - - 82617 146142 216239 87566 

PWC WM 

α (level)=0.152 

β (trend)=0.000 

γ (seasonal)=0.566 

15.982 19917.6 32556.8 20.976 0.646 0.359 31786 195435 552708 55475 

PEC WM 

α (level)=0.341 

β (trend)=0.000 

γ (seasonal)=0.375 

23.695 80663.3 115526.3 23.509 0.595 0.769 253116 942605 1960000 349748 

PMTS WM 

α (level)=0.228 

β (trend)=0.000 

γ (seasonal)=0.768 

12.544 31153.9 44033.5 21.580 0.568 0.051 111435 205063 478801 121487 

PCM SS 
α (level)=0.800 

δ (seasonal)=0.940 
20.379 34210.7 50724.4 21.798 0.437 0.966 69395 122896 257577 107133 

PAII WM 

α (level)=0.800 

β (trend)=0.001 

γ (seasonal)=0.899 

24.531 21330.1 28319.9 20.698 0.630 0.426 51579 128663 281568 60866 

REAT SS 
α (level)=0.211 

δ (seasonal)=1.000 
10.632 47950.9 70316.0 22.451 0.416 0.972 144073 684704 1340000 297672 

VNSK SS 
α (level)=0.299 

δ (seasonal)=0.000 
12.430 17012.7 26667.9 20.512 0.573 0.008 64477 177411 525451 77157 

L WM 

α (level)=0.209 

β (trend)=0.000 

γ (seasonal)=0.411 

13.749 58622.3 86110.2 22.922 0.702 0.831 95890 588148 1310000 242620 

 

 

Most forecasts gave us MAPE below 20%, so the best fitted methods describe relatively good 

forecasts. Particularly, our analysis revealed that surprisingly eight of fourteen itineraries 

(including total passenger traffic) integrated better to Winters ’multiplicative method (figure 4 

and table 3). It proved the better model for the short - term quarterly seasonality as many 

researchers have shown (Makatjane & Moroke, 2016; Dingari, et al., 2019). Other itineraries 
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fitted better to SS model and only in "PD" the best method was DMTS. No line led to better 

results through the SARIMA models. The choice of SS and WM methods shows that the 

smoothing methods show satisfactory accuracy rates in relation to the SARIMA models and in 

general in relation to more complex forecasting methods (Petropoulos & Asimakopoulos, 2013). 

This is because they are not affected by the peculiarities of the data patterns or by occasionally 

occurring extreme values 

What we noticed is that in all the lines selected by the WM method the trend parameter β was 

almost zero, which means that the passenger traffic trend does not change over time. The slope 

of the trend line was constant during the observation period. In some lines the value of the 

parameter α (level) was quite large (eg "PAII") which shows that in this case more weight is given 

to the most recent observations and very little weight to the most remote (Agiakloglou & 

Oikonomou, 2019; Trull, et al., 2020). In the lines where the value of α was lower, the smoothing 

of the time series was more intense, with the respective forecasting models fluctuating around the 

initial level and being slow to follow large changes in the historical data. The high weighting 

parameter γ for seasonal components showed for the majority of itineraries that seasonal factor 

has great influence. This is reasonable because of the observed seasonality in GCS. An exception 

is the "PC" line where the low value of γ indicates a stable seasonal effect (Vujko, et al., 2018). 

For all coastal lines the Ljung - Box statistical criterion showed that the errors had white noise 

behavior and the models were adequate. Also, in all lines the coefficient of determination R 

squared was relatively high, which shows the good interpretive power of the models.  

The lines that SPSS showed SS as the best model, the conclusions vary. The rule is that the 

seasonal factor has a significant influence, except for the "VNSK" line where there is a constant 

seasonal effect. The smoothing parameter of level differs per route, considering the importance 

of older or newer data. The resulting models, outside the "VNSK" line, are adequate and with 

relatively high data adaptability. "PD" line was the only one that gave DMTS as the best model. 

The -2287 slope of the linear trend equation shows an average decrease of 2287 passengers per 

quarter. The corresponding values of the seasonal indices show that passenger traffic is increased 

in the second and third quarters and decreased in the first and fourth. However, the MAPE clarifies 

a marginally good forecast. 

In conclusion, by comparing predictive values to the actuals, interesting results emerged. For 

the first quarter of 2020, when covid-19 pandemic had not fully prevailed, in eight to fourteen 

lines the percentage deviation was under 30%. In "PDM" line was -0.72%. Also, in all lines the 

actual passenger traffic was inside the upper and low bound of the forecast. Taking into account 

firstly that the forecasting methods gave more positive results than the real ones, because of the 

long-term upward trend of tourist arrivals and secondly that the Greek government took the first 

restrictive decisions for passenger traffic in March of 2020 (a month of the first quarter), we have 

to do with a relatively good forecasting result. 

6. Conclusions and discussion 

GCS is one of the biggest in Europe and covers about 17% of total passenger shipping. It plays 

an important role for Greek economy and society. There are not a lot of scientific efforts in 

forecasting passenger traffic in Greece. In order to fill this gap, the main goal of this study was to 

find an optimal forecasting method, by comparing Box-Jenkins ARIMA, smoothing and 
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decomposition methods. As GCS consists of several concentrated submarkets (lines) we remained 

in fourteen popular itineraries (including total passenger traffic). Taking into consideration the 

high seasonality and no stationarity that characterizes those routes we limited our analysis to 

Winter’s triple exponential smoothing, the time series decomposition method, the simple seasonal 

model and the seasonal ARIMA models. 

Even if we followed a careful step by step approach for SARIMA models (“recognition”, 

“assessment”, “adequacy”, “forecasting and feedback”) no coastal line led to better results by this 

method. In fact, eight of fourteen itineraries integrated better to WM, five of fourteen to SS and 

only one to DTMS. Especially for WM it emerged from the analysis that traffic trend did not 

change over time, in some lines the smoothing of the time series was more intense, and the 

seasonal factor had great influence. The suggested models were adequate with relatively high 

interpretative power. About SS method the smoothing parameter of level differed per route and 

seasonality was of great significance. The resulting models presented high data adaptability. In 

"PD" line, where DTMS model seemed the best one, the -2287 slope of the linear trend equation 

shew an average decrease of 2,287 passengers per quarter. 

In general, most forecasts gave as MAPE below 20%, so the best fitted methods described 

relatively good forecasts. Of course, the results should be treated with caution since COVID-19 

pandemic does not allow safe conclusions for the forecasting period 2020-2022 in GCS. However, 

the forecasting of the first quarter of 2020, when pandemic had not fully prevailed, gave 

encouraging results with little deviations between predicted and actual values.  
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                  Figure 4: Best fitted method and forecasting results for the main coastal itineraries in Greece (2020-2022) (data on quarterly basis). 
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Nomenclature  

GCS Greek Coastal Shipping 

WM Winters’ Multiplicative method 

DTMS Decomposition Multiplicative Trend and Seasonal method 

SS Simple Seasonal method 

SARIMA Seasonal ARIMA models 

ACF Autocorrelation 

PACF Partial autocorrelation 

GDP Gross domestic product 
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