On Exponential Fitting of Finite Difference Methods for Heat Equations
1C.E. Abhulimen		 2E.O. Tuggen
Department of Mathematics		Department of Mathematics
Ambrose Alli University		Ambrose Alli University
Ekpoma, Nigeria			Ekpoma, Nigeria
Email: cletusabhulimen@yahoo.co.uk Email:edtuggen@yahoo.com

Abstract
In this article, a new kind of finite difference scheme that is exponentially fitted, inspired from Fourier analysis, for a fourth space derivative was developed for solving diffusion problems. Dispersion relation and local truncation error of the method were discussed. Stability analysis of the method revealed that it is conditionally stable. Compared to the corresponding fourth order classical scheme in the literature, the proposed scheme is efficient and accurate.
Mathematics Subject Classification: 65L05, 65L06, 65L20
Keywords: Exponential fitting, finite difference, local truncation error, heat equations.
1 Introduction

In this paper, we shall be concerned with the numerical solutions of problems associated with the following reaction-diffusion system

where is a quantity being diffused in some domain . In physical applications, , may represent the temperature field, moisture content, vapour concentration etc. M is a matrix of diffusion coefficients and V is a vector valued function whose elements are the densities of the substances and represents reaction process. Finally, is the classical n-dimensional Laplace operator [7].
This article is ultimately aimed at developing an exponentially based discrete derivative formula for a fourth derivative, which can be used to model the fourth order diffusion equation in the form:

	Finite difference discretizations of ODEs and PDEs are widely used by researchers due to their easy analysis. Some of their implementation drawbacks include violation of positivity requirements and strict conditions on step sizes which are often encountered in the applications. Few variants of FD scheme have been developed over time. They include the nonstandard finite differences (NSFD) proposed by Mickens [4], whose rules are based on complicated denominators and nonlocal representation of nonlinear terms in the equation [7]. Another alternative is the exponentially fitted models which Paternoster[13] presented in his paper titled, ‘an overview of recent literatures in exponential fitting methods’. The similarities and differences between NSFD and EF methods are discussed by Erdoğan[6] and Gurski[7].
	EF method was originally proposed by Liniger and Willoughby [5] as described by Abhulimen[1]. The method includes a fitting parameter, the so called frequency that affects the convergence and stability properties of the method. For ordinary differential equations, the problem on how to choose fitting parameters are discussed in [8,9]. According to Erdogan [7], the full discretizations of partial differential equations has not been well studied.
	However, the aim of this paper is to develop an exponentially fitted scheme for (1.2) that can explicitly handle problems in the form of (1.1) numerically for a considerable number of time steps. The motivation behind this great attempt is credited to Erdogan [7] and R. J. Leveque [12] who in particular, mentioned the similarity in behavior that exists between (1.1) and (1.2) in his book.
Remark 1.1. It is important to note the second order diffusion equation (1.1) has an important property which the fourth order diffusion equation (1.2) in general does not possess: maximum principle.
2.	Derivatives of the scheme
We consider the differential equation

Using uniform mesh including m+1 points and , if is frozen at in the subinterval we get an approximation to (2.1):

Adding the terms giving exponential kernel, we obtain

where , and . Imposing the continuity conditions and , we obtain:

Therefore the new forward difference is

In the development of the fourth derivative, we consider the differential equation

if is frozen at in the subinterval we get an approximation to (2.4):

Adding the terms giving exponential kernel, we obtain

where . Now, we obtain the four fourth roots associated with the characteristic equation from (2.5) and treating each root as repeated roots, we obtain the general solution in each case as:

To obtain the exponentially fitted for (2.4), we shall impose some continuity conditions on each of equations in (2.6): , which will always lead to five (5) algebraic equations for each case. After a rigorous algebraic manipulations and simplifications, we obtain the required exponentially fitted fourth derivative quotient given by:

3.	Fourth Order Diffusion
 	
We shall consider

with initial condition and periodic boundary conditions. We shall assume a trial solution of the form where is a function of only and is a function of t only. The separation of variables method gives

Simplifying the above, we obtain the time and spatial components of the solution as (where,) and respectively. The relation between time and spatial components is called dispersion relation [7] and in this case it is given by

	The relation (3.1) is never taken into account explicitly in the classical finite difference methods as described by Erdoğan [7]. Our contribution here, is to consider (3.1) in the construction of finite difference schemes. We recall that exponentially fitted methods and nonstandard finite differences avail us with a useful tool in the form of denominators in terms of non-polynomial functions [7,4]. Therefore we present forward time derivative and fourth space derivative for (1.2) to obtain an explicit exponentially fitted scheme given by:

where and are evaluated at the mesh point.

	The assignment ofand and the relation between these parameters are of paramount importance. In this paper, we shall describe a parameter selection strategy that is based on dispersion relation and local error formula in consonance with the work of Erdogan []. The local error of (3.2) can be written as

Where the derivatives, and other higher derivatives are computed at the point.	
	The selections

That makes the first two terms zero in the local error formula is of importance here. This is because the selections give the dispersion relation () of the fourth order diffusion by considering

In the implementation of (3.5), the classical finite difference approximation of and might be employed as follows for computing k numerically:

However, in this paper rather than applying the frequency search algorithm in the implementation, we shall restrict our ambition by making use of settings for picking suitable values for and .

4. 	Stability Analysis

Definition 4.1. Stability is the property which a numerical method possesses that keeps its errors bounded as the computation advances, by Abhulimen [3].

Now, to establish the stability of our method, we must understand that both classical explicit finite difference scheme and our exponentially fitted scheme for the fourth order diffusion equation can be written as

Where; and

Stand for the Courant-Frederichs-Lewy (CFL) numbers and for classical finite difference and exponentially fitted schemes. After the dispersion relation is substituted into , we find that the limit

Hence just like the case for the second order diffusion [7], this tells us that the classical finite difference formulation is employed in the implementation in case very small k be noticed.

Now, we obtain the stability of our method by using

And assume that our numerical scheme admits solutions of the form:

Where k is the wave number and and define

as amplification factor which governs the growth of the Fourier component E(k). The Von Neumann [15], stability condition requires that the modulus of (4.4) must be less than or equal to unity. After a cumbersome algebraic manipulations, it is easy to verify that this requirement is satisfied when

From above, we can say that the new exponentially fitted method is conditionally stable and the method converges to the solution of (1.2) with rate of converges of, provided that

It should be noted that the stability of the method depends not only on the step sizes but also on the parameters of the method.

5.	Matrix representation of the method
	The proposed method is explicitly represented in the following matrix form for the purpose of application [12]. We first present the initial and boundary conditions associated with the method:

Hence, we have

Where B is the column matrix containing boundary values and is given by

which can be written as

The nearly pentadiagonal matrix on the right hand side of (5.2) is known (and constant) once the time-step, is chosen. The entries in the column matrix B are expected to be all zeros in this case. The known values of at , are multiplied by this nearly pentadiagonal matrix to obtain new values of at .

6.	Numerical examples
Problem 1

We consider the heat equation from Richard L. Burden and J. Douglas Faires (2011).

				

	The initial condition leads to the exact solution

We will use and, and compare our results at to the exact solution. In Table 6.1, the EF method with settings and gives an exact solution up to machine accuracy. We denote classical method and present method respectively by CM4 and AE4 in our numerical results.

Table 6.1: Table of solution values at t=0.0004.
	

xi
	Exact Solution (ES)

	

CM 4

	

AE 4
	

	

	0
	0
	0
	0
	0
	0

	0.1
	0.30889338
	0.30610277
	0.30895909
	2.791 × 10-3
	6.571 × 10-5

	0.2
	0.58755017
	0.58487103
	0.58772743
	2.679 × 10-3
	1.773 × 10-4

	0.3
	0.80869345
	0.80586006
	0.80893824
	2.833 × 10-3
	2.448 × 10-4

	0.4
	0.95067616
	0.94742368
	0.95096375
	3.252 × 10-3
	2.876 × 10-4

	0.5
	0.99960008
	0.99615138
	0.99990207
	3.449 × 10-3
	3.020 × 10-4

	0.6
	0.95067616
	0.94742368
	0.95096377
	3.252 × 10-3
	2.876 × 10-4

	0.7
	0.80869345
	0.80586006
	0.80893822
	2.833 × 10-3
	2.448 × 10-4

	0.8
	0.58755017
	0.58487103
	0.58772743
	2.679 × 10-3
	1.773 × 10-4

	0.9
	0.30889338
	0.30610278
	0.30895909
	2.791 × 10-3
	6.571 × 10-5

	1.0
	0
	0
	0
	0
	0

From the numerical results of Problem 1 presented in Table (6.1), we observed that for various step sizes our proposed scheme competes favorably with the existing classical method which is an existing method in the literature.
Problem 2

We consider the diffusion equation from Richard L. Burden and J. Douglas Faires (2011).

				

	The initial condition leads to the exact solution

We will use and , and compare our results at to the exact solution. In Table 5.3, the EF method with settings and gives an exact solution up to machine accuracy. We denote classical method and present method respectively by CM 4 and AE 4 in our numerical results.

Table 6.2: Table of solution values at t=0.0012.
	

xi
	Exact
Solution (ES)

	
CM 4

	
AE 4
	

	

	0
	0
	0
	0
	0
	0

	0.2
	0.46503395
	0.46337838
	0.46499753
	1.656 × 10-3
	3.642 × 10-5

	0.4
	0.89600465
	0.89472917
	0.89634827
	1.275 × 10-3
	3.436 × 10-4

	0.6
	1.2619011
	1.2606032
	1.2624133
	1.298 × 10-3
	5.122 × 10-4

	0.8
	1.5375249
	1.5359892
	1.5381360
	1.536 × 10-3
	6.111 × 10-4

	1.0
	1.7056954
	1.7040638
	1.7063602
	1.632 × 10-3
	6.648 × 10-4

	1.2
	1.7586903
	1.7571570
	1.7593575
	1.533 × 10-3
	6.672 × 10-4

	1.4
	1.6987860
	1.6975054
	1.6994052
	1.281 × 10-3
	6.192 × 10-4

	1.6
	1.5378515
	1.5369562
	1.5383787
	8.953 × 10-4
	5.272 × 10-4

	1.8
	1.2960384
	1.2956242
	1.2964399
	4.142 × 10-4
	4.015 × 10-4

	2.0
	0.99970004
	0.99981569
	0.99995475
	1.157 × 10-4
	2.547 × 10-4

	2.2
	0.67874559
	0.67938846
	0.67884740
	6.429 × 10-4
	1.018 × 10-4

	2.4
	0.36369089
	0.36480622
	0.36364819
	1.115 × 10-3
	4.270 × 10-5

	2.6
	0.08269244
	0.084179256
	0.082527206
	1.487 × 10-3
	1.652 × 10-4

	2.8
	-0.14114166
	-0.13942139
	-0.14139662
	1.720 × 10-3
	2.550 × 10-4

	3.0
	-0.29190605
	-0.29011118
	-0.29221063
	1.795 × 10-3
	3.046 × 10-4

	3.2
	-0.36230704
	-0.36063375
	-0.36261862
	1.673 × 10-3
	3.116 × 10-4

	3.4
	-0.35419242
	-0.35278725
	-0.35447301
	1.405 × 10-3
	2.806 × 10-4

	3.6
	-0.27815594
	-0.27682947
	-0.27834355
	1.326 × 10-3
	1.876 × 10-4

	3.8
	-0.15225887
	-0.15064370
	- 0.15215777
	1.615 × 10-3
	1.011 × 10-4

	4.0
	0
	0
	0
	0
	0

From the numerical results of Problem 2 presented in Table (6.2), we observed that for various step sizes, our proposed scheme competes favorably with the classical method which is an existing method in the literature.

7.	Conclusion
Following the numerical results presented so far in this article, simply show that our newly derived EF method that is first order in time and fourth order in space which has a second order accuracy dominance and competes favorably with the classical method of the fourth order diffusion equation with same order of accuracy and do behave much like the second order heat equation. 	
In conclusion, our new EF method can adequately solve heat problems for a considerable number of initial time steps. Though, time stepping is generally the only major challenge for the explicit method of solving heat problems using the fourth order diffusion equation.

References

[1] C.E. Abhulimen and G.E. Omeike, A sixth-order exponentially fitted scheme for the numerical solution of systems of ordinary differential equations, Journal of Applied Mathematics & Bioinformatics, vol., no. 1, 2011, 175-186.

[2] C.E. Abhulimen and S.A. Okunuga, Exponentially fitted second derivative multiple method for stiff initial value problem for ODEs, Journal of Engineering Science and Applications, 5, (2008), 36-49.

[3] C.E Abhulimen, On exponentially fitted multi-derivative numerical methods for stiff initial values problems in ODEs. (Ph.D. Thesis), Dept. of Mathematics, University of Benin, Nigeria, (2006).

[4] R.E. Mickens, Nonstandard finite difference models of differential equations, World Scientific, Singapore, 1994.

[5] W. Liniger and R.A. Willoughby, Efficient integration methods for stiff systems of ordinary differential equations, SIAM J. Numer Annal,7,(1970), 47-65.

[6] U. Erdoğan and T. Özis, A smart nonstandard finite difference scheme for second order nonlinear boundary value problems, Journal of Computational Physics, 230, (2011), 6464-6474.

[7] U. Erdoğan, K. Akarbulut and N.O. Tan, Exponentially fitted finite difference schemes for reaction- diffusion equations, Mathematical and Computational Applications, 2016, 21-32.

[8] U. Erdoğan and H. Kocak, Numerical study of the asymptotics of the second Painlevé by a functional fitting method, Math. Methods Appl. Sci. 2013, 36, 2347-2352.

[9] H. Ramos, J. Vigo-Aguiar, On the frequency choice in trigonometrically fitted methods, Appl. Math. Lett., 2010, 23, 1378-1381.

[10] G. Tadesse and P. Kalyani, Numerical Solution of Convection Diffusion Problem using nonstandard finite difference methods and comparison with standard finite difference methods, IOSR Journal of Mathematics (IOSR-JM), vol. 12, (109), 94-109.

[11] D.M. Causon and C.G. Mingham, Introductory finite difference methods for PDEs, Ventus Publishing ApS, 2010.

[12] R. J. Leveque, Finite difference methods for ordinary and partial differential equations, Society for industrial and applied mathematics, University science center, Philadelphia, 2007.

[13] B. Paternoster, Present state-of-the-art in exponential fitting: A contribution dedicated to Liviu Ixaru on his 70th birthday, Comput. Phys. Commun., 2012, 183, 2499-2512.

[14] R.L. Burden and J.D. Faires, Numerical Analysis, Brooks/Cole, Cengage Learning, 2011.

[15] G.D. Smith, Numerical solutions of partial differential equations: finite difference methods, Clarendon Press, Oxford, 1985.

oleObject2.bin

oleObject49.bin

image46.wmf
(

)

(

)

(

)

(3.3)

,

)

(

)

(

)

(

)

(

2

2

4

4

6

2

1

x

t

O

u

k

u

x

u

u

t

T

j

i

xxxx

j

i

j

i

xxxxxx

c

j

i

t

j

i

j

i

tt

j

i

D

D

+

×

+

D

+

×

-

D

=

w

oleObject50.bin

image47.wmf
j

i

t

u

)

(

oleObject51.bin

image48.wmf
j

i

x

u

)

(

oleObject52.bin

image49.wmf
)

,

(

j

i

t

x

oleObject53.bin

image50.wmf
(3.4)

)

(

)

(

and

)

(

)

(

4

j

i

t

j

i

tt

j

i

j

i

xxxx

j

i

xxxxxxxx

j

i

u

u

u

u

k

=

-

=

w

image3.wmf
n

Â

Ì

W

oleObject54.bin

image51.wmf
(3.5)

)

(

)

(

)

(

)

(

4

2

j

i

j

i

xxxx

j

i

xxxxxxxx

j

i

t

j

i

tt

j

i

ck

u

c

u

c

u

u

-

=

-

=

=

w

oleObject55.bin

image52.wmf
xxxxxxxx

u

oleObject56.bin

image53.wmf
xxxx

u

oleObject57.bin

image54.wmf
(

)

(3.6)

,

4

6

4

84

1344

4096

5670

4096

1344

84

576

1

4

2

1

1

2

8

4

2

1

1

2

4

8

4

4

j

i

j

i

j

i

j

i

j

i

j

i

j

i

j

i

j

i

j

i

j

i

j

i

j

i

j

i

j

i

j

i

j

i

ck

u

u

u

u

u

u

u

u

u

u

u

u

u

u

x

k

-

=

+

-

+

-

÷

÷

ø

ö

ç

ç

è

æ

+

-

+

-

+

-

+

-

×

D

=

-

-

+

+

-

-

-

-

+

+

+

+

a

oleObject58.bin

image55.wmf
k

oleObject3.bin

oleObject59.bin

image56.wmf
a

oleObject60.bin

image57.wmf
(4.1)

)

4

6

4

(

2

1

1

2

1

j

i

j

i

j

i

j

i

j

i

j

i

j

i

u

u

u

u

u

u

u

-

-

+

+

+

+

-

+

-

-

=

l

oleObject61.bin

image58.wmf
4

x

t

c

FD

D

D

=

=

l

l

oleObject62.bin

image59.wmf
4

2

2

2

2

6

)

2

cosh(

)

2

cos(

2

)

cosh(

)

cos(

8

1

j

i

j

i

j

i

j

i

j

i

j

i

t

EFM

k

x

k

x

k

x

k

x

k

c

j

i

-

D

D

-

D

D

-

×

=

=

D

w

l

l

w

l

oleObject63.bin

image60.wmf
l

image4.wmf
)

,

(

t

x

u

oleObject64.bin

image61.wmf
4

j

i

j

i

ck

-

=

a

oleObject65.bin

image62.wmf
EFM

l

oleObject66.bin

image63.wmf
)

2

.

4

(

lim

4

0

FD

EFM

k

x

t

c

j

i

l

l

=

D

D

=

®

oleObject67.bin

image64.wmf
)

4

6

4

(

2

1

1

2

1

j

i

j

i

j

i

j

i

j

i

EFM

j

i

j

i

u

u

u

u

u

u

u

-

-

+

+

+

+

-

+

-

-

=

l

oleObject68.bin

image65.wmf
)

3

.

4

(

)

(

imkh

n

n

m

k

E

Z

l

=

oleObject4.bin

oleObject69.bin

image66.wmf
1

-

=

i

oleObject70.bin

image67.wmf
)

4

.

4

(

)

(

)

(

)

(

1

k

E

k

E

k

G

n

n

+

=

oleObject71.bin

image68.wmf
(

)

)

5

.

4

(

0

provided

,

1

cos

2

1

2

¹

-

£

kh

kh

EFM

l

oleObject72.bin

image69.wmf
)

(

4

x

t

D

+

D

oleObject73.bin

image70.wmf
(

)

2

4

1

cos

2

1

-

£

D

D

kh

x

t

c

image5.wmf
0

,

>

Î

t

x

y

oleObject74.bin

image71.wmf
(5.1)

1

,...,

2

,

1

,

0

0

0

1

,

,...,

2

,

1

,

0

;

)

(

3

1

2

1

2

2

1

1

0

0

0

ï

ï

þ

ï

ï

ý

ü

+

=

=

+

=

+

=

=

+

=

+

=

+

=

=

+

-

+

+

-

-

n

j

u

u

u

u

u

u

u

u

u

u

m

m

i

x

u

u

j

m

j

m

j

m

j

m

j

m

j

j

j

j

j

i

i

oleObject75.bin

image72.wmf
B

u

u

u

u

u

u

u

u

u

u

u

u

u

u

j

m

j

m

j

m

j

j

j

j

j

m

j

m

j

m

j

j

j

j

+

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ë

é

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ë

é

+

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

+

=

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ë

é

-

-

+

+

-

+

-

+

+

+

+

1

2

4

3

2

1

1

1

1

1

1

1

4

1

3

1

2

1

1

)

4

1

(

6

4

4

)

6

1

(

4

4

)

6

1

(

4

4

)

6

1

(

4

4

)

6

1

(

4

4

)

6

1

(

4

4

6

)

4

1

(

M

O

O

O

O

O

M

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

oleObject76.bin

image73.wmf
T

j

m

j

m

j

m

j

m

j

j

j

j

u

u

u

u

u

u

u

u

B

)]

(

)

(

0

...

0

)

(

)

(

[

2

3

1

2

2

1

1

+

+

-

-

-

+

-

+

-

+

-

+

-

=

l

l

l

l

oleObject77.bin

image74.wmf
)

2

.

5

(

B

AU

F

+

=

oleObject78.bin

image75.wmf
t

D

oleObject5.bin

oleObject79.bin

image76.wmf
u

oleObject80.bin

image77.wmf
m

i

x

f

u

i

j

i

,...,

1

),

(

=

=

oleObject81.bin

image78.wmf
u

oleObject82.bin

image79.wmf
1

+

j

i

u

oleObject83.bin

image80.wmf

image6.wmf
Ñ

×

Ñ

º

Ñ

2

oleObject84.bin

image81.wmf
.

1

0

),

(

cos

)

0

,

(

condition

initial

and

,

0

,

0

)

,

1

(

)

,

0

(

conditions

boundary

with

;

0

,

1

0

,

0

1

2

1

2

2

2

£

£

-

=

<

=

=

<

<

<

=

¶

¶

-

¶

¶

x

x

x

u

t

t

u

t

u

t

x

x

u

t

u

p

p

oleObject85.bin

image82.wmf
).

(

cos

)

,

(

2

1

-

=

-

x

t

x

u

t

p

l

oleObject86.bin

image83.wmf
1

.

0

=

D

x

oleObject87.bin

image84.wmf
00004

.

0

=

D

t

oleObject88.bin

image85.wmf
0004

.

0

=

t

oleObject6.bin

oleObject89.bin

image86.wmf
1

=

k

oleObject90.bin

image87.wmf
6

10

-

=

w

oleObject91.bin

image88.wmf
)

0004

.

0

,

(

i

x

u

oleObject92.bin

image89.wmf
4

CM

ES

-

oleObject93.bin

image90.wmf
4

AE

ES

-

image7.wmf

0

)

,

(

)

,

(

and

0

)

,

0

(

)

,

0

(

:

conditions

boundary

and

)

(

)

0

,

(

:

condition

initial

with

)

2

.

1

(

]

,

0

[

,

]

,

0

[

,

4

4

=

¢

=

=

¢

=

=

Î

Î

¶

¶

-

=

¶

¶

t

L

u

t

L

u

t

u

t

u

x

u

x

u

T

t

L

x

x

u

c

t

u

o

oleObject94.bin

oleObject95.bin

image91.wmf
.

4

0

),

cos

2

1

(

sin

)

0

,

(

condition

initial

and

,

0

,

0

)

,

4

(

)

,

0

(

conditions

boundary

with

;

0

,

4

0

,

0

4

4

4

2

2

2

£

£

+

=

<

=

=

<

<

<

=

¶

¶

-

¶

¶

x

x

x

x

u

t

t

u

t

u

t

x

x

u

t

u

p

p

p

oleObject96.bin

image92.wmf
.

sin

sin

)

,

(

4

2

4

x

x

t

x

u

t

t

p

p

-

-

+

=

l

l

oleObject97.bin

image93.wmf
2

.

0

=

D

x

oleObject98.bin

image94.wmf
0004

.

0

=

D

t

oleObject99.bin

oleObject7.bin

image95.wmf
0012

.

0

=

t

oleObject100.bin

oleObject101.bin

image96.wmf
4

10

-

=

w

oleObject102.bin

image97.wmf
)

0012

.

0

,

(

i

x

u

oleObject103.bin

image98.wmf
4

CM

ES

-

oleObject104.bin

image99.wmf
4

AE

ES

-

image8.wmf
(2.1)

)

,

(

y

x

f

y

=

¢

oleObject105.bin

oleObject8.bin

image9.wmf
b

x

x

x

x

a

m

m

=

<

<

<

<

=

+

1

1

...

o

oleObject9.bin

image10.wmf
1

+

-

=

m

a

b

h

oleObject10.bin

image11.wmf
f

oleObject11.bin

image12.wmf
i

x

x

=

oleObject12.bin

image13.wmf
)

,

(

1

1

+

-

i

i

x

x

oleObject13.bin

image14.wmf
i

f

y

=

¢

~

oleObject14.bin

image15.wmf
)

2

.

2

(

~

~

~

i

i

i

y

f

y

y

a

a

-

=

-

oleObject15.bin

image16.wmf
)

,

(

i

i

i

y

x

f

f

=

oleObject16.bin

image17.wmf
i

i

y

x

y

~

)

(

~

=

oleObject17.bin

image18.wmf
)

,

(

1

1

+

-

Î

i

i

x

x

a

oleObject18.bin

image19.wmf
i

i

y

x

y

~

)

(

~

=

oleObject19.bin

image20.wmf
1

1

~

)

(

~

+

+

=

i

i

y

x

y

oleObject20.bin

image21.wmf
i

h

i

i

f

y

y

=

-

-

+

a

w

1

~

~

1

l

oleObject21.bin

image22.wmf
)

3

.

2

(

1

~

~

~

1

a

w

-

-

=

¢

+

h

i

i

y

y

y

l

oleObject22.bin

image23.wmf
(2.4)

)

,

(

~

y

x

f

y

iv

=

oleObject23.bin

oleObject24.bin

oleObject25.bin

image24.wmf
)

,

(

2

2

+

-

i

i

x

x

oleObject26.bin

image25.wmf
i

iv

f

y

=

~

oleObject27.bin

image26.wmf
)

5

.

2

(

~

~

~

4

4

i

i

iv

y

k

f

y

k

y

+

=

+

oleObject28.bin

image27.wmf
)

,

(

2

2

4

+

-

Î

i

i

x

x

k

oleObject29.bin

image28.wmf
(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

)

6

.

2

(

~

)

(

~

~

)

(

~

~

)

(

~

~

)

(

~

4

3

4

2

3

2

1

4

3

4

2

3

2

1

4

3

4

2

3

2

1

4

3

4

2

3

2

1

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

ï

ï

ï

ï

þ

ï

ï

ï

ï

ý

ü

+

+

+

+

+

=

+

+

+

+

+

=

+

+

+

+

+

=

+

+

+

+

+

=

-

-

-

-

-

-

-

-

-

-

-

-

+

-

+

-

+

-

+

-

+

+

+

+

i

i

x

x

x

x

i

i

x

x

x

x

i

i

x

x

x

x

i

i

x

x

x

x

y

k

f

x

c

x

c

x

c

c

x

y

y

k

f

x

c

x

c

x

c

c

x

y

y

k

f

x

c

x

c

x

c

c

x

y

y

k

f

x

c

x

c

x

c

c

x

y

ik

k

ik

k

ik

k

ik

k

ik

k

ik

k

ik

k

ik

k

ik

k

ik

k

ik

k

ik

k

ik

k

ik

k

ik

k

ik

k

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

oleObject30.bin

image29.wmf
2

2

1

1

1

1

2

2

~

)

(

~

and

~

)

(

~

,

~

)

(

~

,

~

)

(

~

,

~

)

(

~

+

+

+

+

-

-

-

-

=

=

=

=

=

i

i

i

i

i

i

i

i

i

i

y

x

y

y

x

y

y

x

y

y

x

y

y

x

y

oleObject31.bin

image30.wmf
)

7

.

2

(

6

)

2

cosh(

)

2

cos(

2

)

cosh(

)

cos(

8

~

~

4

~

6

~

4

~

)

(

~

4

2

2

2

2

2

1

1

2

k

kh

kh

kh

kh

y

y

y

y

y

f

x

y

i

i

i

i

i

i

i

iv

-

-

+

-

+

-

=

=

-

-

+

+

oleObject32.bin

image31.wmf
p

p

<

<

-

¶

¶

-

=

¶

¶

x

x

u

c

t

u

,

4

4

image1.wmf
(1.1)

,

)

(

2

n

u

u

V

u

M

t

u

Â

Ì

Î

+

Ñ

=

¶

¶

y

oleObject33.bin

image32.wmf
)

(

)

0

,

(

x

u

x

u

o

=

oleObject34.bin

image33.wmf
),

(

)

(

)

,

(

t

T

x

X

t

x

u

=

oleObject35.bin

image34.wmf
)

(

x

X

oleObject36.bin

image35.wmf
x

oleObject37.bin

image36.wmf
)

(

t

T

oleObject1.bin

oleObject38.bin

image37.wmf
4

)

(

)

(

)

(

)

(

k

x

X

x

X

t

cT

t

T

iv

-

=

-

=

¢

oleObject39.bin

image38.wmf
t

t

ck

T

a

l

l

=

=

-

4

oleObject40.bin

image39.wmf
4

ck

-

=

a

oleObject41.bin

image40.wmf
(

)

kx

D

kx

C

kx

B

kx

A

cosh

sinh

cos

sin

+

+

+

oleObject42.bin

image41.wmf
)

1

.

3

(

4

ck

-

=

a

image2.wmf
)

,

(

t

x

u

oleObject43.bin

image42.wmf
(3.2)

6

)

2

cosh(

)

2

cos(

2

)

cosh(

)

cos(

8

4

6

4

1

4

2

2

2

2

2

1

1

2

1

j

i

j

i

j

i

j

i

j

i

j

i

j

i

j

i

j

i

j

i

j

i

t

j

i

j

i

k

x

k

x

k

x

k

x

k

u

u

u

u

u

c

u

u

j

i

-

D

D

-

D

D

+

-

+

-

×

-

=

-

-

-

-

+

+

D

+

a

a

l

oleObject44.bin

image43.wmf
a

oleObject45.bin

image44.wmf
k

oleObject46.bin

image45.wmf
th

j

i

)

,

(

oleObject47.bin

oleObject48.bin

