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Abstract

In this paper, an extended Block Backward Differentiation Formula (BBDF) is
proposed for the valuation of options on a non-dividend-paying stock. The devel-
opment of the method is facilitated by the availability of a Continuous Backward
Differentiation Formula (CBDF) that is defined for all values of the independent
variable on the range of interest. Hence, discrete schemes which are recovered
from the CBDF as by-products are combined to form a BBDF, which is then
applied on the entire region as a single block matrix equation by solving a system
resulting from the semi-discretization of the Black-Scholes model. The stabil-
ity and convergence of the BBDF are discussed. It is demonstrated that the
American put values are obtained by incorporating an additional equation that
generates values for the early exercise boundary which are used to ensure that
the put option will be optimal. The performance of the method is tested on some
numerical examples.
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1 Introduction

The Black-Scholes Option Pricing model is one of the most celebrated achievements
in financial economics in the last four decades. The model gives the theoretical value
of European style options on a non-dividend-paying stock given the stock price, the
strike price, the volatility of the stock, the time to maturity, and the risk-free rate of
interest. However, since it is optimal to exercise early an American put option on a non-
dividend paying stock, the Black-Scholes formula cannot be used1. In fact, no analytic
formula for valuing American put options on non-dividend paying stocks exists. As a
result, numerous analytical approximation techniques as well as numerical procedures
are utilized. A discussion of some of these analytical approximation and numerical
techniques is found in Hull (2012).

In addition, several other analytical approximation procedures and numerical tech-
niques for solving the Black-Scholes model abound in the literature (Prékopa and
Szántai (2010), Chawla, Al-Zanaidia, and Evans (2003), and Khaliq, Voss, and Kazmi
(2006)). Since there is the possibility of an early exercise, Khaliq et al. (2006) con-
sider the pricing of an American put option as a free boundary problem. In effect, the
early exercise feature of the American put option transforms the Black-Scholes linear
differential equation into a non-linear type. In order to do away with the free and
moving boundary, Khaliq et al. (2006) add a small continuous penalty term to the
Black-Scholes equation and treat the nonlinear penalty term explicitly. They conclude
that their method maintains superior accuracy and stability properties when compared
to standard methods that are based on the Newton-type iteration procedure in valuing
American options.

Furthermore, Chawla et al. (2003) employ a technique based on the General-
ized Trapezoidal Formulas (GTF) and compare the computational performance of the
scheme obtained with the Crank-Nicolson scheme for the case of European option pric-
ing. They note that their GTF (1/3) scheme is superior to the Crank-Nicholson scheme.
While all these techniques try to accomplish the same goal by solving the Black-Scholes
differential equation for a particular derivative security, they are applied only after
transforming the model to be forward in time or the differential equation is transform
into an integral equation (Huang, Subrahmanyam, and Yu (1996)). In this paper, we
propose a BBDF that is L0-stable and apply it to solve the model in its original form
without transforming it into a forward parabolic equation or integral equation.

Thus, consider the Black-Scholes model

1Hull (2012) argues that it is never optimal for an American call option on a non-dividend-paying
stock to be exercised early. Therefore the Black-Scholes formula can be used to value American Style
call options on non-dividend-paying stocks
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∂V

∂S
− rV = 0, (1)

subject to the initial/boundary conditions

V (0, t) = X, V (S, t) = 0 if S > 0, V (S, T ) = max(X − S, 0)

where V (S, t) denotes the value of the option, σ the volatility of the underlying asset,
X the exercise price, T the option expiration date, and r the interest rate.

The method considered in this paper is facilitated by the method of lines approach
( Lambert (1991), Ramos and Vigo-Aguiar (2007), and Cash (1984)) which involves
seeking a solution in the strip [a, b] × [c, d], where a, b, c, d are real constants, by first
discretizing the variable S with mesh spacings ∆S = 1/M ,

Sm = m∆S, m = 0, 1, . . . ,M .

We then define vm(t) ≈ V (Sm, t), v(t) = [V0(t), V1(t), . . . , VM−1(t)]
T , and replace the

partial derivatives ∂2V (S, t)
∂S2 and ∂V (S,t)

∂S
occurring in (1) by central difference approxima-

tions to obtain

∂2V (Sm, t)
∂S2 = [v(Sm+1, t) − 2v(Sm, t) + v(Sm−1, t)]/(∆S)2; ∂V (Sm, t)

∂S
= [v(Sm+1, t) −

v(Sm−1, t)]/2∆S, m = 1, . . . ,M − 1.

The problem (1) then leads to the resulting semi-discrete problem

dvi(t)

dt
= −1

2
σ2S2

i [vi+1(t)−2vi(t)+vi−1(t)]/(∆S)2−rSi[vi+1(t)−vi−1(t)]/(∆S)+rvi(t) = 0,

which can be written in the form

dv(t)

dt
= f(t,v), (2)

where f(y, u)=Au+g, A is an M − 1 × M − 1 matrix arising from the central
difference approximations to the derivatives of S, and g is a vector of constants. The
problem (2) is now a system of ordinary differential equations which is solved by the
BBDF. The implementation of the BBDF is different from the approach recently given
in Akinfenwa, Jator, and Yao, (2013).
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The rest of the paper proceeds as follows. In section 2, we construct the CBDF and
use it to produce the BBDF whose analysis is given in the same section. In Section 3,
the implementation of the method to solve the Black-Scholes model is given. Section 4
is devoted to numerical examples and the conclusion is given in Section 5.

2 Construction of CBDF and BBDF

In this section, we state the BBDF, which is recovered from a CBDF as by-products.
The BBDF is formed by combining the standard Backward Differentiation Formula
with additional methods. The main method is given by

k∑
j=0

αjvn+j = hβkfn+k (3)

and the additional methods are given by

k−1∑
j=0

αi,jvn+j = hβi,kfn+k + hβi,ifn+i, i = 1, . . . , k − 1, k = 4, (4)

where αj, αi,j, βj, βi,k, βi,i are coefficients. We note that vn+j is the numerical approxi-
mation to the analytical solution v(tn+j), fn+j = f(tn+j, vn+j), j = 0, . . . , 4. In order to
obtain equations (3) and (4), we seek an approximation U(t) to the exact solution v(t)
on the interval [tn, tn + 4h] of the form

U(t) = a0 + a1t+ . . .+ a4t
4 (5)

where aj, j = 0, 1, . . . , 4 are coefficients that must be uniquely determined. We then im-
pose that the interpolating function equation (5) coincides with the analytical solution
at the points tn+j, j = 0, 1 to obtain the equations

U (tn+j) = vn+j, j = 0, . . . , 3. (6)

We also demand that the function (4) satisfies the differential equation (2) at the end
point tn+4 to obtain the equation

U ′ (tn+4) = fn+4. (7)

Equations (6) and (7) lead to a system of five equations which is solved by Cramer’s
rule to obtain aj, j = 0, . . . , 4. Our continuous CBDF is constructed by substituting
the values of aj into equation (5). After some algebraic manipulation, the CBDF is
expressed in the form

U(t) = α0(t)vn + . . .+ α3(t)vn+3 + hβ4(t)fn+4 (8)
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whose first derivative is given by

U ′(t) =
d

dt
(α0(t)vn + . . .+ α3(t)vn+3 + hβ4(t)fn+4) (9)

where αj(t), j = 0, . . . , 3 and β4(t) are continuous coefficients. The continuous method
(8) is used to generate the main method of the form (3) and the additional methods of
the form (4) are provided by the method (9). Thus, evaluating (8) at t = tn+4 and (9)
at t = {tn+1, tn+2, tn+2}, we obtain the coefficients of (3) and (4) respectively.

2.1 Formulation of BBDF.

The methods (3) and (4) are used to form the BBDF as follows:

A1Yµ+1 = A0Yµ + h[B1Fµ+1 +B0Fµ] (10)

where Yµ+1 = (vn+1, vn+2, vn+3, vn+4)
T , Yµ = (vn−3, vn−2, vn−1, vn)T

Fµ = (fn+1, fn+2, fn+3, fn+4)
T , Fµ−1 = (fn−3, fn−2, fn−1, fn)T

for µ = 0, . . . Γ, where Γ = N/4 is the number of blocks and n = 0, 4, . . . , N − 4.

and Ai, Bi, i = 0, 1 are 4 by 4 matrices whose entries are given by the coefficients of
(3) and (4).

2.2 Consistency of BBDF.

The consistency of (10) is accomplished by rewriting it as

Yµ+1 = A−11 A0Yµ + hA−11 [B1Fµ+1 +B0Fµ] (11)

and defining the local truncation error (LTE) of (11) as

 L[z(t);h] = Zµ+1 − (A−11 A0Zµ + hA−11 [B1F µ+1 +B0F µ]) (12)
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where

Zµ+1 = ((v(tn+1), v(tn+2), v(tn+3), v(tn+4))
T ,

F µ+1 = ((f(tn+1, v(tn+2)), f(tn+3, v(tn+4)), f(tn+1, v(tn+2)), f(tn+3, v(tn+4)))
T ,

Zµ = (v(tn−3), v(tn−2), v(tn−1), v(tn))T ,

F µ = ((f(tn−3, v(tn−3)), f(tn−2, v(tn−2)), f(tn−1, v(tn−1)), f(tn, v(tn)))T ,

and  L[z(x);h] = ( L1[z(x);h], . . . ,  L4[z(x);h])T is a linear difference operator. Thus,
assuming that the arbitrary function z(t) is the exact solution and is sufficiently dif-
ferentiable; we can expand the terms in (12) as a Taylor series about the point tn, to
obtain the expression for the local truncation error (LTE) as  L[z(t);h] = O(h5). LTE
vector is given by (14).

2.3 Stability of BBDF.

The Linear stability regions is obtained by applying (10) to the test equation y′ = λy
to give

Yµ+1 = M(q)Yµ , q = λh, (13)

where the stability matrix M(q) is given by

M(q) = (A1 − qB1)
−1(A0 + qB0)

Definition 2.1. A method is said to be (i) A-stable if for all q ε C−, M(q) has a
dominant eigenvalue qmax such that |qmax| ≤ 1; moreover, since qmax is a rational
function, the real part of the zeros of qmax must be negative, while the real part of
the poles of qmax must be positive; (ii) A0-stable if for all q ε < ⊂ C−, M(q) has a
dominant eigenvalue qmax such that |qmax| ≤ 1; (iii) L0-stable if it is A0-stable and
limq→−∞ qmax = 0; and (iv) L-stable if it is A-stable and limq→−∞ qmax = 0.

Remark 2.2. The method (10) is A0-stable since for qmax = − 12+18q+11q2+3q3

12−30q+35q2−25q3+12q4
,

|qmax| ≤ 1 with the zeros of qmax having negative real parts and the poles of qmax
having positive real parts. The method (10) is also L0-stable since it is A0-stable and
limq→−∞ qmax = 0.

Remark 2.3. The method (10) can be used to solve initial value systems in a block by
block fashion as in Akinfenwa, Jator, and Yao, (2013). In this paper, the approach in
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Figure 1: Stability Region for the BBDF confirming A0-stability

Figure 2: Plot confirming L0-stability

Akinfenwa et. al (2013) is modified by first generating the blocks on the entire interval
and then using these blocks to form a single block matrix equation which is solved to
provide the global solution of (2).

2.4 Block Extension

Convergence of BBDF. Since the block extension of (10) gives a global method, we
discuss its convergence in what follows.

Theorem 2.4. Let Y and Z be solution vectors formed by extending (10) from the
interval [t0, t4], to the intervals [t4, t8], . . . , [tN−4, tN ], and E = Z − Y , where Y is
interpreted as an approximation of the solution vector for the system formed from the
block extension of (10) whose exact solution is Z. If ei = |v(ti) − vi|, where the exact
solution v(t) is several times differentiable on [a, b] and if ‖E‖ = ‖Z − Y ‖, then, the
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BBDF is a fourth-order convergent method. That is ‖E‖ = O(h4).

Proof.

Let the matrices obtained from the block extension of (10) be defined as follows:

A =


A11

A22

. . .

ANN

,

where the elements of A are 4× 4 matrices given as

Aij =


−39

50
69
50

−17
50

0
−18

25
3
25

38
75

0
33
50

−93
50

197
150

0
16
25

−36
25

48
25

−1

 , i = j = 1, 2, . . . , N ,

B = h


B11

B22

. . .

BNN

, where the elements of B are 4× 4 matrices given as

Bij =


1 0 0 − 1

25

0 1 0 1
25

0 0 1 − 3
25

0 0 0 −12
25

 , i = j = 1, 2, . . . , N ,

C = (−13
50
v0,

7
75
v0,− 17

150
v0,− 3

25
v0, . . . , 0)T

The local truncation errors are given by


τi+1 = 29

500
h5y(5)(ti + θi) +O(h6),

τi+2 = − 31
750
h5y(5)(ti + θi) +O(h6),

τi+3 = 37
500
h5y(5)(ti + θi) +O(h6),

τi+4 = − 12
125
h5y(5)(ti + θi) +O(h6), i = 0, 4, . . . , N − 4, |θi| ≤ 1.

(14)

We further define the following vectors:
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Z = (v(t1), . . . , v(tN))T , Y = (v1, . . . , vN)T , F = (f1, . . . , fN)T , L(h) = (τ1, . . . , τN)T ,
E = Y − Z = (e1, . . . , eN)T ,

where L(h) is the local truncation error.

The exact form of the system given by the block extension of (10) is

AZ −BF (Z) + C + L(h) = 0, (15)

and the approximate form of the system is given by

AY −BF (Y ) + C = 0, (16)

where Y is the approximation of the solution vector Z. Subtracting (16) from (17) we
obtain

AE −BF (Y ) +BF (Z) = L(h), (17)

Using the mean-value theorem, we write (18) as

(A−BJ)E = L(h),

where the Jacobian matrix J is a diagonal matrix defined as follows:

J =


∂f1
∂v1

. . .
∂fN
∂vN

,

Let M = −BJ be a matrix of dimension N . We have

(A+M)E = L(h), (18)

and for sufficiently small h, A+M is a monotone matrix and thus invertible ( Jain and
Aziz (1983); Jator and Li (2012)). Therefore,

(A+M)−1 = D = (di,j) ≥ 0, and
N∑
j=1

di,j = O(h−1). (19)
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If ‖E‖ is the norm of maximum global error and from (19), E = (A+M)−1L(h), using
(20) and the truncation error vector L(h), it follows that

‖E‖ = O(h4).

Therefore, the BBDF is an fourth-order convergent method.

3 Implementation

We summarize the process as follows:

Recall that the system of ODEs is obtained on the partition

πM : {c = S0 < S1 < . . . < SM = d, Sm = Sm−1 + ∆S}

∆S = d−c
M

is a constant step-size of the partition of πM , m = 1, 2, . . . ,M , M is a positive
integer and m the grid index.

The resulting system of ODEs (3) is then solved on the partition

πN : {a = t0 < t1 < . . . < tN = b, tn = tn−1 + h}

h = ∆t = b−a
N

is a constant step-size of the partition of πN , n = 1, 2, . . . , N , N is a
positive integer and n the grid index.

We emphasize the block extension of (10) lead to a single matrix of finite difference
equations, which is solved to provide all the solutions of (2) on the entire grid given by
the rectangle [a, b]× [c, d].

Step 1: Use the block extension of (10) to generate from the rectangles [t0, t4]×[c, d],
to the rectangle [t4, t8]× [c, d], . . . , [tN−4, tN ]× [c, d].

Step 2: Solve the system obtained in step 1 to obtain vn = [V0,n, V1,n, . . . , VM−1,n]T , n =
1, 2, . . . , N .

Step 3: The solution of (1) is approximated by the solutions in step 2 as v, where
v(tn) = [V (S0, tn), V (S1, tn), . . . , V (SM−1, tn)]T , n = 1, 2, . . . , N , where v(tn) = vn.
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4 Numerical example

In this section, we give a numerical example to illustrate the accuracy of the BBDF.
Computations were carried out using Mathematica 8.0 enhanced by the featureNSolve[ ].

Example 4.1. Consider a five-month European call and put options on a non-dividend-
paying stock when the stock price is $50, the strike price is $50, the risk-free interest
rate is 10% per annum, and the volatility is 40% per annum. This example is taken
from Hull (2012). In order to compute the call and put options, we use the standard
notations to denote X = 50, S = 50, r = 0.10, σ = 0.40, and T = 0.4167. The
theoretical solutions for the prices of the European call and put options are given in
Hull (2012) as follows.

c = SN(d1)−Xe−r(T−t)N(d2)

p = Xe−r(T−t)N(−d2 − SN(−d1)

where d1 = ln(S/X)+(r+σ2/2)(T−t)
σ
√
T−t , d2 = ln(S/X)+(r−σ2/2)(T−t)

σ
√
T−t = d1 − σ

√
T − t,

and N(x) is the cumulative probability distribution function for the standard normal
variable.

The following acronyms are used in the Figures:

• BBDFC is Block Backward Differentiation Formula for the call option

• BBDFP is Block Backward Differentiation Formula for the put option

• ECALL is the exact solution for the call option

• EPUT is the exact solution for the put option
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Figure 3: Call Curves for Example 1.

The call and put options obtained using BBDF and the analytical solution are
presented in Figure 3 and Figure 4. It is observed from Figure 3 and Figure 4 that the
BBDF fairly approximates the analytical solution.
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Figure 4: Put Curves for Example 1.

Figure 5: Approximate and exact solutions for the call option for Example 4.1, h =
1/12,∆S = 20.

Example 4.2. As our second test example, we solve the given stiff parabolic equation
given in Cash (1984).

∂V

∂t
= κ

∂2V

∂S2
, u(0, t) = u(1, t) = 0, u(S, 0) = sin πS + sinωπS, ω � 1.

The exact solution V (S, t) = e−π
2κt sin πS + e−ω

2π2κt sinωπS.

According to Cash (1984) as ω increases, equations of the type given in example 4.2
exhibit characteristics similar to model stiff equations. Hence, the methods such as the
Crank-Nicolson method which are not L0-stable are expected to perform poorly. Since
the BBDF is L0-stable it performs very well when applied to this problem. In Table 1,
we display the results for κ = 1 and a range of values for ω.

In order to test for convergence, example 4.2 was solved for various values of h =
∆S and the results for the global maximum absolute errors (Err = Max|vm(tn) −

12



Figure 6: Approximate and exact solutions for the put option for Example 4.1, h =
1/12,∆S = 20.

∆S = 1/10, h = 1/12 ∆S = 1/10, h = 1/10

ω (BBDF) Crank-Nicolson Cash(abc)

1 8.47× 10−6 6.20× 10−5 1.5× 10−5

2 5.17× 10−6 3.83× 10−5 7.4× 10−6

3 7.89× 10−6 9.30× 10−3 7.4× 10−6

5 4.61× 10−6 1.80× 10−1 7.4× 10−6

10 4.24× 10−6 6.10× 10−1 7.4× 10−6

Table 1: A comparison of errors of methods for Example 4.2 at t = 1 and ω = 1.

V (Sm, tn)|) are reproduced in Table 2. We also give the rate of convergence (ROC)
which is calculated using the formula ROC = log2(Err

2h/Errh), Errh is the error
obtained using the step size h. In general, the ROC shows that the order of the method
is slightly greater than 2. This is expected since the central difference method used for
the spatial discretization is of order 2 and hence affects the convergence of the BBDF
which is of order 4 with respect to the time variable. In Fig. 7, the solutions obtained
using the BBDF are plotted versus S and t and compared with the plots given by the
standard finite difference method (FDM). It is obvious from Figure 7 that the BBDF
is more accurate as it produces smaller errors.

Example 4.3. As our third test example, we solve example 1 for the American put by
incorporating an additional equation given by (20) that generates values for the early
exercise boundary and hence, ensures that the put option will be optimal. We restate
(1) as given in Huang et. al (1996).

13



EBBDF FDM

∆S = h Err ROC Err ROC

8 6.47× 10−2 1.34× 10−1

16 1.14× 10−2 2.51 4.26× 10−2 1.65
32 1.10× 10−3 3.38 1.18× 10−2 1.85
64 1.80× 10−4 2.61 3.03× 10−3 1.96
128 3.91× 10−5 2.21 7.64× 10−4 1.99
256 9.36× 10−6 2.06 1.91× 10−4 2.00

Table 2: A comparison of errors of methods for Example 4.2 at t = 1 and ω = 1.

Figure 7: Approximate and exact solutions for Example 4.2, h = 1/64,∆S = 1/16.

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0,

subject to the initial/boundary conditions

limS→∞ V (S, t) = 0

V (S, T ) = max(X − S, 0)
V (S, t) = X − St,

∂V (S,t)
∂S

= −1, S = St,

(20)

where St is the free boundary separating the holding and the early exercise regions.
14



The strike prices were computed by solving the system generated by incorporating
(20) into (10). The critical strike price was specified as the lowest price St at which
the put is exercised early, Carr and Hirsa (2003). In this example, St = Max(X −
V (St, t)) = $45 and the corresponding put value was determined to be $5. In Figure 8,
we plot American-style put values against strike price and time.

Figure 8: Put values against strike and time for Example 3.

5 Conclusion

We have proposed a BBDF for solving the the Black-Scholes partial differential equa-
tion. It is shown that the American put values given in Figure 8 are obtained by incor-
porating an additional equation that generates values for the early exercise boundary
which are used to ensure that the put option will be optimal. It is also shown that the
method is L0-stable and convergent of order 4, hence the BBDF is viable candidate for
large stiff systems.
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