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Abstract  

A critical question that banking supervisors are trying to answer is what is the amount of capital 
or liquidity resources required by an institution in order to support the risks taken in the course of 

business.  The financial crises of the last several years have revealed that traditional approaches 
such as regulatory capital ratios to be inadequate, giving rise to supervisory stress testing as a 

primary tool.  A critical input into this process are macroeconomic scenarios that are provided by 
the prudential supervisors to institutions for exercises such as the Federal Reserve’s Comprehen-
sive Capital Analysis and Review (“CCAR”) program.  Additionally, supervisors are requiring 

that banks develop their own macroeconomic scenarios.  A common approach is to combine man-
agement judgment with a statistical model, such as a Vector Autoregression (“VAR”), to exploit 
the dependency structure between both macroeconomic drivers, as well between modeling seg-

ments.  However, it is well-known that linear models such as VAR are unable to explain the phe-
nomenon of fat-tailed distributions that deviate from normality, an empirical fact that has been 

well documented in the empirical finance literature.  We propose a challenger approach, widely 
used in the academic literature, but not commonly employed in practice, the Markov Switching 
VAR (“MS-VAR”) model.  We empirically test these models using Federal Reserve Y-9 filing 

and macroeconomic data, gathered and released by the regulators for CCAR purposes, respec-
tively.  We find the MS-VAR model to be more conservative than the VAR model, and also to 

exhibit greater accuracy in model testing, as the latter model can better capture extreme events 
observed in history.  .  
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1 Introduction 

 
In the aftermath of the financial crisis (insert footnote 3 and 4), regulators have utilized stress 

testing as a means to which to evaluate the soundness of financial institutions’ risk management 
procedures. The primary means of risk management, particularly in the field of credit risk (insert 

footnote 1), is through advanced mathematical, statistical and quantitative techniques and models, 
which leads to model risk. Model risk (insert footnote 2) can be defined as the potential that a 
model does not sufficiently capture the risks it is used to assess, and the danger that it may under-

estimate potential risks in the future. Stress testing (“ST”) has been used by supervisors to assess 
the reliability of credit risk models, as can be seen in the revised Basel framework (footnotes 6 

through 12) and the Federal Reserve’s Comprehensive Capital Analysis and Review (“CCAR”) 
program. 
 

ST may be defined, in a general sense, as a form of deliberately intense or thorough testing used 

to determine the stability of a given system or entity.  This involves testing beyond normal oper-

ational capacity, often to a breaking point, in order to observe the results.  In the financial risk 

management context, this involves scrutinizing the viability of an institution in its response to 

various adverse configurations of macroeconomic and financial market events, which may include 

simulated financial crises.  ST is closely related to the concept and practice of scenario analysis 

(“SC”), which in economics and finance is the attempt to forecast several possible scenarios for 

the economy (e.g. growth levels) or an attempt to forecast financial market returns (e.g., for bonds, 

stocks and cash) in each of those scenarios.  This might involve sub-sets of each of the possibili-

ties and even further seek to determine correlations and assign probabilities to the scenarios.  

Current risk models consider both capital adequacy and liquidity concerns, which regulators use 
to assess the relative health of banks in adverse potential scenarios. The assessment process can 

be further segmented into a consideration of capital versus liquidity resources, corresponding to 
right and left sides of the balance sheet (i.e., net worth versus the share of “liquid” assets), respec-

tively.  In the best case scenario, not only do supervisory and bank models result in similar out-
puts, but also both do not produce outputs that far exceed the regulatory floor. 

Prior to the-financial crisis, most of the most prominent financial institutions to fail (e.g., Lehman, 

Bear Stearns, Washington Mutual, Freddie Mac and Fannie Mae) were considered to be well-
capitalized according to the standards across a wide span of regulators Another commonality 
among the large failed firms included a general exposure to residential real estate, either directly 

or through securitization. Further, it is widely believed that the internal risk models of these insti-
tutions were not wildly out of line with those of the regulators13.  We learned through these unan-
ticipated failures that the answer to the question of how much capital an institution needs to avoid 

failure was not satisfactory.  While capital models accept a non-zero probability of default ac-
cording to the risk aversion of the institution or the supervisor, the utter failure of these constructs 

to even come close to projecting the perils that these institutions faced was a great motivator for 
considering alternative tools to assess capital adequacy, such as the ST discipline.  
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Bank Holding Companies (BHCs) face a number of considerations in modeling losses for whole-
sale and retail lending portfolios.  CCAR participants face some particular challenges in estimat-

ing losses based on scenarios and their associated risk drivers.  The selection of modeling meth-
odology must satisfy a number of criteria, such as suitability for portfolio type, materiality, data 

availability as well as alignment with chosen risk drivers.  

This paper shall proceed as follows.  Section 2 reviews the available literature on ST and scenario 
generation.  Section 3 presents the competing econometric methodologies for generating scenar-
ios, a time series Vector Autoregressive (“VAR”) and Markov Switching VAR (“MS-VAR”) mod-

els.  Section 4 presents the empirical implementation, the data description, a discussion of the 
estimation results and their implications.  Section 5 concludes the study and provides directions 

for future avenues of research. 

 

2 Review of the Literature 

Since the dawn of modern risk management in the 1990s, ST has been a tool used to address the 
basic question of how exposures or positions behave under adverse conditions.  Traditionally this 

form of ST has been in the domain of sensitivity analysis (e.g., shocks to spreads, prices, volatili-
ties, etc.) or historical scenario analysis (e.g., historical episodes such as Black Monday 1987 or 

the post-Lehman bankruptcy period; or hypothetical situations such as modern version of the Great 
Depression or stagflation).  These analyses are particularly suited to market risk, where data are 
plentiful, but for other risk types in data-scarce environments (e.g., operational, credit, reputationa l 

or business risk) there is a greater reliance on hypothetical scenario analysis (e.g., natural disasters, 
computer fraud, litigation events, etc.).   

Regulators first introduced ST within the Basel I According, with the 1995 Mark Risk Amendment 

(footnotes 14 and 15).  Around the same time, the publication of RiskMetricsTM in 199416 marked 
risk management as a separate technical discipline, and therein all of the above mentioned types 
of ST are referenced.  The seminal handbook on VaR, also had a part devoted to the topic of ST17, 

while other authors18,19 provided detailed discussions of VaR-based stress tests as found largely in 
the trading and treasury functions.  The Committee on Global Financial Systems (“CGFS”) con-

ducted a survey on stress testing in 2000 that had similar findings20.  Another study highlighted 
that the majority of the stress testing exercises performed to date were shocks to market observa-
bles based upon historical events, which have the advantage of being well-defined and easy to 

understand, especially when dealing with the trading book constituted of marketable asset clas-
ses21.  

However, in the case of the banking book (e.g., corporate / C&I or consumer loans), this approach 

of asset class shocks does not carry over as well, as to the extent these are less marketable there 
are more idiosyncracies to account for.  Therefore, stress testing with respect to credit risk has 
evolved later and as a separate discipline in the domain of credit portfolio modeling.  However, 

even in the seminal example of CreditMetricsTM22 and CreditRisk+TM23, stress testing was not a 
component of such models.  The commonality of all such credit portfolio models was subse-

quently demonstrated24, as well as the correspondence between the state of the economy and the 
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credit loss distribution, and therefore that this framework is naturally amenable to stress testing.  
In this spirit, a class of models was built upon the CreditMetricsTM framework through macroeco-

nomic stress testing on credit portfolios using credit migration matrices.25  

Stress testing supervisory requirements with respect to the banking book were rather undeveloped 
prior to the crisis, although it was rather prescriptive in other domains, examples including the 

joint policy statement on interest rate risk (SR 96-13)26, guidance on counterparty credit risk (SR 
99-03)27, as well as country risk management (SR 02-05)28.   

Following the financial crisis of the last decade, we find an expansion in the literature on stress 

testing, starting with a survey of the then extant literature on stress testing for credit risk29.  As 
part of a field of literature addressing various modeling approaches to stress testing, we find vari-
ous papers addressing alternative issues in stress testing and stressed capital, including the aggre-

gation of risk types of capital models31 and also with respect to validation of these models32.  Var-
ious papers have laid out the reasons why stress testing has become such a dominant tool for reg-

ulators, including rationales for its utility, outlines for its execution, as well as guidelines and opin-
ions on disseminating the output under various conditions33.  This includes a survey of practices 
and supervisory expectations for stress tests in a credit risk framework, and presentation of simple 

examples of a ratings migration based approach, using the CreditMetricsTM framework and loss 
data from the regulatory Y9 reports, wherein regulated financial institutions report their stress test 

losses, in conjunction with Federal Reserve scenarios,34.  Another set of papers argues for a 
Bayesian approach to stress testing, having the capability to cohesively incorporate expert 
knowledge model design, proposing a methodology for coherently incorporating expert opinion 

into the stress test modeling process.  In another paper, the author proposes a Bayesian casual 
network model, for stress testing of a bank35.  Finally, yet another recent study features the appli-
cation of a Bayesian regression model for credit loss implemented using Fed Y9 data, which can 

formally incorporate exogenous supervisory scenarios, and also quantify the uncertainty in model 
output that results from stochastic model inputs36.   

One of the previously mentioned stress test surveys highlights the 2009 U.S. stress testing exercise, 

the Supervisory Capital Assessment Program (“SCAP”) as an informative model33.  In that period 
there was incredible concern amongst investors over the viability of the U.S. financial system, 

given the looming and credible threat of massive equity dilution stemming from government ac-
tion, such as bailouts mandated by regulators.  The concept underlying the application of a macro-
prudential stress test was that a bright line, delineating failure or survival under a credibly severe 

systematic scenario, would convince investors that failure of one or more financial institutions was 
unlikely, thus making the likelihood of capital injections remote.  The SCAP exercise covered 19 

banks in the U.S., having book value of assets greater than $100 billion (comprising approximate ly 
two-thirds the total in the system) as of the year-end 2008.  The SCAP resulted in 10 of those 
banks having to raise a total of $75 billion in capital ($77 billion in Tier 1 common equity) in a six 

month period. 

Clark and Ryu (2013) note that CCAR was initially planned in 2010 and rolled out in 2011.  It 
initially covered the 19 banks covered under SCAP, but as they document, a rule in November 

2011 required all banks above $50 billion in assets to adhere to the CCAR regime.  The CCAR 
regime includes Dodd-Frank Act Stress Tests (“DFAST”), with the sole difference between CCAR 
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and DFAST being that DFAST uses a homogenous set of capital actions on the part of the banks, 
while CCAR takes banks’ planning distribution of capital into account when calculating capital 

ratios. The authors further document that the total increase in capital in this exercise, as measured 
by Tier 1 common equity, was about $400 Billion.  Finally, the authors highlight that stress testing 

is a regime that allows regulators to not only set a quantitative hurdle for capital that banks must 
reach, but also to make qualitative assessments of key inputs into the stress test process, such as 
data integrity, governance, and reliability of the models37. 

The outcome of the SCAP was rather different from the Committee of European Bank Supervisors 

(“CEBS”) stress tests conducted in 2010 and 2011, which coincided with the sovereign debt crisis 
that hit the periphery of the Euro-zone.  In 2010, the ECBS stressed a total of 91 banks, as with 

the SCAP covering about two-thirds of assets and one-half of banks per participating jurisdict ion.   
There are several differences between the CEBS stress tests and SCAP worth noting.  First, the 
CEBS exercise stressed the values of sovereign bonds held in trading books, but neglected to ad-

dress that banking books where in fact the majority of the exposures in sovereign bonds were 
present, resulting in a mild requirement of just under $5B in additional capital.  Second, in con-

trast to the SCAP, the CEBS stress testing level of disclosure was far less granular, with loss rates 
reported for only two broad segments (retail vs. corporate) as opposed to major asset classes (e.g., 
first-lien mortgages, credit cards, commercial real estate, etc.)  The 2011 European Banker’s As-

sociation (“EBA”) exercise, covering 90 institutions in 21 jurisdictions, bore many similarities to 
the 2011 EBA tests, with only 8 banks required to raise about as much capital in dollar terms as 

the previous exercise.  However, a key difference was the more granular disclosure requirements, 
such as a breakdowns of loss rates by not only major asset class but also by geography, as well 
availability of results to the public in a user-friendly form that admitted the application of analysts’ 

assumptions.  Similarly to the 2010 CEBS exercise, in which the CEBS test did not ameliorate 
nervousness about the Irish banks, the 2011 EBA version failed to ease concerns about the Spanish 

banking system, as while 5 of 25 passed there was no additional capital required37. 

The available public literature on scenario generation is rather limited to date.  Bidder and 
McKenna (2015) of the San Francisco Federal Reserve Bank argue that while in recent years ST 
has become an important component of financial and macroprudential regulation, nevertheless the 

techniques of stress testing are still being honed and debated.  The authors claim to contribute to 
the debate in proposing the use of robust forecasting analysis to identify and construct adverse 

scenarios that are naturally interpretable as stress tests.  Their scenarios emerge from a particular 
pessimistic twist to a benchmark forecasting model, referred to as a “worst case distribution”, 
which they argue offers regulators a method of identifying vulnerabilities, while at the same time 

acknowledging that their models are mis-specified in possibly unknown ways.  Frame et al (2015) 
of the Atlanta Federal Reserve Bank present a case study of a failed U.S. experience in tying stress 

test results to capital requirements was a spectacular failure due to issues associated with the spec-
ification of stress scenarios, namely the Office of Federal Housing Enterprise Oversight's (OF-
HEO) risk-based capital stress test for Fannie Mae and Freddie Mac.  The authors study a key 

component of OFHEOs model, the 30-year fixed-rate mortgage performance, and identify two key 
problems.  They point out that OFHEO had left the model specification and associated parameters  

static for the entire time the rule was in force, and furthermore that the house price stress scenario 
was insufficiently dire, resulting in a significant underprediction of mortgage credit losses and  
associated capital needs at Fannie Mae and Freddie Mac during the housing bust. 
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3 Time Series VAR Methodologies for Scenario Generation 

In macroeconomic forecasting, there are 4 basic tasks that we set out to do: characterize macroe-

conomic time series, conduct forecasts of macroeconomic or related data, make inferences about 

the structure of the economy, and finally advise policy-makers38.  In the stress testing application, 

we are mainly concerned with the forecasting and policy advisory functions, as stressed loss pro-

jections help banker risk manager and bank supervisors make decisions about the potential viabil-

ity of their institutions during periods of extreme economic turmoil.  Going back a few decades, 

these functions were accomplished by a variety of means, ranging from large-scale models featur-

ing the interactions of many variables, to simple univariate relationships motivated by stylized and 

parsimonious theories (e.g., Okun’s Law or the Phillips Curve). However, following the economic 

crises of the 1970s, most established economic relationships started to break down and these meth-

ods proved themselves to be unreliable.  In the early 1980s, a new macroeconometric paradigm 

started to take hold, vector autoregression (“VAR”), a simple yet flexible way to model and fore-

cast macroeconomic relationships39.  In contrast to the univariate autoregressive model40, 41, 42, a 

VAR model is a multi-equation linear model in which variables can be explained by their own 

lags, as well as lags of other variables.  As in the CCAR / stress testing application we are inter-

ested in modeling the relationship and forecasting multiple macroeconomic variables, the VAR 

methodology is rather suitable to this end.       

Let  1 ,...,
T

t t ktY YY  be a k -dimensional vector valued time series, the output variables of inter-

est, in our application with the entries representing some loss measure in a particular segment, that 

may be influenced by a set of observable input variables denoted by  1 ,...,
T

t t rtX XX , anr -di-

mensional vector valued time series also referred as exogenous variables, and in our context rep-

resenting a set of macroeconomic factors.  We say that that
tY  follows a multiple transfer function 

process if it can be written in the following form:   
 

       *

0

t j t j t

j







 Y Ψ X N                               (3.1)
  

  

Where
*

jΨ  are a sequence ofk r dimensional matrices and tN is a k -dimensional vector of noise 

terms which follow an stationary vector autoregressive-moving average process, denoted by 

 , ,VARMA p q s :
 

   t tB BΦ N Θ ε                            (3.2) 

Where  
1

p
j

r j

j

B B


 Φ I Φ and  
1

q
j

r j

j

B B


 Θ I Θ are autoregressive lag polynomials of re-

spective orders p and q , and B is the back-shift operator that satisfies
i

t t iB X X  for any process
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 tX .  It is common to assume that the input process tX is generated independently of the noise 

process tN .  In fact, the exogenous variables  tX can represent both stochastic and non-sto-

chastic (deterministic) variables, examples being sinusoidal seasonal (periodic) functions of time, 

used to represent the seasonal fluctuations in the output process tY , or intervention analysis mod-

eling in which a simple step (or pulse indicator) function taking the values of 0 or 1 to indicate the 

effect of output due to unusual intervention events in the system.            

Now let us assume that the transfer function operator can be represented by a rational factorization 

of the form      * * 1 *

0

j

j

j

B B B B






 Ψ Ψ Φ Θ , where  * *

0

s
j

j

j

B B


Θ Θ is of order s and *

jΘ are 

k r matrices.  Ths implies that 
tY follows a vector autoregressive-moving average process with 

exogenous variables, denoted by  , ,VARMAX p q s , which is motivated by assuming that the 

transfer function operator in (3.1) can be represented as a rational factorization of the form:   

            
1

* * 1 * *

0 1 1

ps s
j j j

j r j j

j j j

B B B B B B





  

   
      

   
  Ψ Ψ Φ Θ I Φ Θ         (3.3)

  
    

Where  * BΘ is of order s and * k r

j R Θ are k r matrices.  Without loss of generality, we as-

sume that the factor  
1

p
j

r j

j

B B


 Φ I Φ is the same as the AR factor in the model for the noise 

process
tN .  This gives rise to the  , ,VARMAX p q s representation, where X stands for the se-

quence of exogenous (or input) vectors:  

       *

1 1 1

p qs

t j t j j t j t j t j

j j j

   

  

     Y Φ Y Θ X Θ                  (3.4) 

Note that the VARMAX model (3.4) could be written in various equivalent forms, involving a 
lower triangular coefficient matrix for

tY at lag zero, or a leading coefficient matrix for
t at lag 

zero, or even a more general form that contains a leading (non-singular) coefficient matrix for
tY

at lag zero that reflects instantaneous links amongst the output variables that are motivated by 
theoretical considerations (provided that the proper identifiability conditions are satisfied43, 44).  In 

the econometrics setting, such a model form is usually referred to as a dynamic simultaneous equa-
tions model or a dynamic structural equation model. The related model in the form of equation 

(3.4), obtained by multiplying the dynamic simultaneous equations model form by the inverse of 
the lag 0 coefficient matrix, is referred to as the reduced form model. In addition, (3.4) has the state 
space representation of the form45: 
 

 
1 1t t t t

t t t t

   

  

Z ΦZ BX a

Y HZ FX N
                         (3.5)     
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The ARMAX model (3.3)-(3.4) is said to be stable if the roots of   det 0B Φ all possess an 

absolute value greater than unity.  In that case, if both the input tX and the noise tN processes 

are stationary, then so is the output process tY having the following convergent representation:   
 

       *

0 0

t j t j j t j

j j

 

 

 

  Y Ψ X Ψ ε                         (3.6)
  

  

Where      1

0

i

i

i

B B B B






 Ψ Ψ Φ Θ  and      * * 1 *

0

j

j

j

B B B B






 Ψ Ψ Φ Θ .  The transition 

matrices *

jΨ  of the transfer function  * BΨ represent the partial effects that changes in the exoge-

nous (or input variables; macroeconomic variables or scenarios in our application) variables have 

on the output variables
tY  at various time lags, and are sometimes called response matrices.  The 

long-run effects or total gains of the dynamic system (3.6) is given by the elements of the matrix:     
 

        * *

0

1 j

j





 G Ψ Ψ                           (3.7)
  

  

And the entry ,i j
G represents the long-run (or equilibrium) change in the ith output variable that 

occurs when a unit change in the jth exogenous variable occurs and is held fixed at some starting 

point in time, with all other exogenous variables held constant.  In econometric terms, the ele-

ments of the matrices *

jΨ  are referred to as dynamic multipliers at lag j, and the elements ofG  are 

referred to as total multipliers.  In this study we consider a vector autoregressive model with ex-

ogenous variables (“VARX”), denoted by  ,VARX p s , which restricts the Moving Average 

(“MA”) terms beyond lag zero to be zero, or * 0j k k j Θ 0 :  

       
1 1

p s

t j t j j t j t

j j

 

 

   Y Φ Y Θ X                      (3.8) 

The rationale for this restriction is three-fold.  First, in MA terms were in no cases significant in 

the model estimations, so that the data simply does not support a VARMA representation.  Sec-

ond, the VARX model avails us of the very convenient DSE package in R, which has computa-

tional and analytical advantages45.  Finally, the VARX framework is more practical and intuit ive 

than the more elaborate VARMAX model, and allows for superior communication of results to 

practitioners.   

We now consider the MS-VAR (or more generally MS-VARMAX) generalization of the VAR (or 

more generally (ARMAX) methodology with changes in regime, where the parameters of the 

VARMAX system  *, ,
T

T T T p q sR  Β Φ Θ Θ  will be time-varying.  However, the process 
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might be time-invariant conditional on an unobservable regime variable  1,...,ts M , denoting 

the state at time t out ofM feasible states.  In that case, then the conditional probability density of 

the observed time series
tY is given by:   

 

 

 

 

1 1

1

, 1

,

, ,

t t t

t t t

t t M t

f if s

p s

f if s M





 


 
 


y Ψ Β

y Ψ

y Ψ Β

                    (3.9)  
 

Where
mΒ is the VAR parameter in regime  1,...,m M  and 

1tΨ  are the observations  
1t j j



 
y

.  Therefore, given a regime
ts , the conditional  , tVARX p s s system in expectation form can be 

written as:     

    1

1 1

,
p s

t t t j t j t j t t j

j j

E s s s  

 

      y Ψ Φ Y Θ X                 (3.10) 

We define the innovation term as:     

 ,t t t t tE s     y y Ψ                           (3.11) 

The innovation process t  is a Gaussian, zero-mean white noise process having variance-covar i-

ance matrix  tsΣ :     

   ~ ,t tNID s 0 Σ                            (3.12)  

If the  , tVARX p s s process is defined conditionally upon an unobservable regime
ts as in equation 

(3.9), the description of the process generating mechanism should be made complete by specifying 

the stochastic assumption of the MS-VAR model.  In this construct, the
ts follows a discrete state 

homogenous Markov chain:   
 

       1 1 1
Pr , Prt t j t j t jj j j

s s s
  

    
y ρ                  (3.13)  

Whereρ denotes the parameter vector of the regime generating process. 

The MS-VAR paradigm is based for the most upon three schools of thought.  The first of these 

traditions is the linear time-invariant VAR model, as introduced and discussed at the beginning of 

this section.  This framework analyzes the relationships of random variables in a dynamic system, 

the dynamic propagation of innovations the system, and the effects of regime change.  The second 
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foundation is the statistics of probabilistic functions of Markov chains introduced by Baum and 

Petrie (1966) and Baum et al (1970).  Furthermore, the MS-VAR model also encompasses the 

even older traditions of mixtures of normal distributions (Pearson, 1984) and the hidden Markov-

chain of Blackwell and Koopmans (1957) and Heller (1965).  Finally, another root can be found 

in the construction of rather basic Markov-chain regression models in econometrics (Goldfeld and 

Quandt, 1973).  The first holistic approach to the statistical analysis to the statistical analysis of 

the Markov-switching model can be found in Hamilton (1988, 1989).  Finally, the treatment of 

the MS-VAR model as a Gaussian autoregressive process conditioned on an exogeous regime 

generating process is closely related to the theory of a doubly stochastic processes (Tjostheim, 

1986)    

 

4 Empirical Implementation 

As part of the Federal Reserve's CCAR stress testing exercise, U.S. domiciled top-tier BHCs are 
required to submit comprehensive capital plans, including pro forma capital analyses, based on at 
least one BHC defined adverse scenario.  The adverse scenario is described by quarterly trajecto-

ries for key macroeconomic variables (MVs) over the next nine quarters or for thirteen months to 
estimate loss allowances.  In addition, the Federal Reserve generates its own supervisory stress 

scenarios, so that firms are expected to apply both BHC and supervisory stress scenarios to all 
exposures, in order to estimate potential losses under stressed operating conditions.  Firms en-
gaged in significant trading activities (e.g., Goldman Sachs or Morgan Stanley) are asked to esti-

mate a one-time trading-related market and counterparty credit loss shock under their own BHC 
scenarios, and a market risk stress scenario provided by the supervisors. Large custodian banks are 
asked to estimate a potential default of their largest counterparty.  In the case of the supervisory 

stress scenarios, the Federal Reserve provides firms with global market shock components that are 
one-time, hypothetical shocks to a large set of risk factors.  During the last two CCAR exercises, 

these shocks involved large and sudden changes in asset prices, rates, and CDS spreads that mir-
rored the severe market conditions in the second half of 2008. 

Since CCAR is a comprehensive assessment of a firm's capital plan, the BHCs are asked to conduct 
an assessment of the expected uses and sources of capital over a planning horizon.  In the 2009 

SCAP, firms were asked to submit stress losses over the next two years, on a yearly basis.  Since 
then, the planning horizon has changed to nine quarters.  For the last three CCAR exercises, BHCs 
are asked to submit their pro forma, post-stress capital projections in their capital plan beginning 

with data as of September 30, spanning the nine-quarter planning horizon.  The projections begin 
in the fourth quarter of the current year and conclude at the end of the fourth quarter two years 

forward.  Hence, for defining BHC stress scenarios, firms are asked to project the movements of 
key MVs over the planning horizon of nine quarters.  As for determining the severity of the global 
market shock components for trading and counterparty credit losses, it will not be discussed in this 

paper, because it is a one-time shock and the evaluation will be on the movements of the market 
risk factors rather the MVs. In the 2011 CCAR, the Federal Reserve defined the stress supervisory 

scenario using nine MVs:  

 Real GDP (“RGDP”) 
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 Consumer Price Index (“CPI”) 

 Real Disposable Personal Income (“RDPI”) 

 Unemployment Rate (“UNEMP”) 

 Three-month Treasury Bill Rate (“3MTBR”) 

 Ten-year Treasury Bond Rate (“10YTBR”) 

 BBB Corporate Rate (“BBBCR”) 

 Dow Jones Index (“DJI”) 

 National House Price Index (“HPI”)  

In CCAR 2012, the number of MVs that defined the supervisory stress scenario increased to 14.  
In addition to the original nine variables, the added variables were: 

 Real GDP Growth (“RGDPG”) 

 Nominal Disposable Income Growth (“NDPIG”) 

 Mortgage Rate (“MR”) 

 CBOE’s Market Volatility Index (“VIX”) 

 Commercial Real Estate Price Index (“CREPI”)  

Additionally, there is another set of 12 international macroeconomic variables, three macroeco-
nomic variables and four countries / country blocks, included in the supervisory stress scenario.  

For CCAR 2013, the Federal Reserve System used the same set of variables to define the supervi-
sory adverse scenario as in 2012.  For the purposes of this research, let us consider the supervisory 

base and severely adverse scenario in 2015, focusing on 5 of the 9 most commonly used national 
Fed CCAR MVs, and one prevalent non-Fed MV: 

 High Yield Spread (“HYS”) 

 Real GDP Growth (“RGDPG”) 

 Unemployment Rate (“UNEMP”) 

 BBB Corporate Credit Spread (“BBBCS”) 

 Commercial Real Estate Price Index (“CREPI”) 

 CBOE’s Market Volatility Index (“VIX”) 

This historical data, 87 quarterly observations from 2Q94 to 4Q15, are summarized in Table 4.1 

of this section, and in Figures 7.1 through 7.12 of Appendix 1.  In this study we focus on 6 mac-

roeconomic variables: HYS, RDIG, UNEMP, CREPI, BBBCS and VIX.  The summary statistics 

of HYS are shown in the 1st column of Table 4.1, levels in the top panel and percent changes in 

the bottom panel, with the corresponding time series plots and histograms shown in Figures 7.1 

and 7.2.  The level of the HYS over the historical period averages 5.20%, with a median of 4.69, 

displaying significant departures from normality in terms of right skewness (2.09) and fat-tails 

(kurtosis of 5.5).  The series is rather volatile, displaying a coefficient of variation of 47.6%, and 

ranging from 2.39% to 16.27% over the sample period.  On the other hand, the percent of the 

HYS over the historical period averages 2.17%, with a median of -0.81%, displaying significant 

departures from normality in terms of right skewness (2.23) and fat-tails (kurtosis of 8.11), in  
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Table 4.1: Summary Statistics of Historical Macroeconomic Variables  

 

 

excess of the raw variable.  The percent change of the series is also extremely volatile, displaying 

a coefficient of variation of 881.1%, and ranging from -26.37% to 101.9% over the sample period.        

The summary statistics of RDIG are shown in the 2nd column of Table 4.1, levels in the top panel 

and percent changes in the bottom panel, with the corresponding time series plots and histograms 

shown in Figures 7.3 and 7.4.  The level of the RDIG over the historical period averages 2.80%, 

with a median of 2.90, displaying significant departures from normality in terms of left skewness 

(-1.61) and fat-tails (kurtosis of 7.45).  The series is extremely volatile, displaying a coeffic ient 

of variation of 133.6%, and ranging from -15.9% to 10.9% over the sample period.  On the other 

hand, the percent of the HYS over the historical period averages -0.92%, with a median of 0.00%, 

displaying significant departures from normality in terms of left skewness (0.87) and fat-tails (kur-

tosis of 5.93), in excess of the raw variable.  The percent change of the series is also extremely 

volatile, displaying a coefficient of variation of 64,617.5%, and ranging from -2,860.0% to 

1,860.0% over the sample period. 
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The summary statistics of UR are shown in the 3rd column of Table 4.1, levels in the top panel and 

percent changes in the bottom panel, with the corresponding time series plots and histograms 

shown in Figures 7.5 and 7.6.  The level of the RDIG over the historical period averages 5.97%, 

with a median of 5.50, displaying some departures from normality in terms of right skewness 

(1.05) and fat-tails (kurtosis of 0.02).  The series is only somewhat volatile, displaying a coeffi-

cient of variation of 27.66%, and ranging from 3.90% to 9.90% over the sample period.  On the 

other hand, the percent change of the UR over the historical period averages -0.13%, with a median 

of -1.75%, displaying significant departures from normality in terms of right skewness (1.92) and 

fat-tails (kurtosis of 4.49), in excess of the raw variable.  The percent change of the series is also 

extremely volatile, displaying a coefficient of variation of -3,630.3%, and ranging from -7.46% to 

20.29% over the sample period. 

The summary statistics of CREPI are shown in the 4th column of Table 4.1, levels in the top panel 

and percent changes in the bottom panel, with the corresponding time series plots and histograms 

shown in Figures 7.7 and 7.8.  The level of the RDIG over the historical period averages 166.7, 

with a median of 160.0, displaying rather mild departures from normality in terms of right skew-

ness (0.23) and thin-tails (kurtosis of -0.99).  The series is only somewhat volatile, displaying a 

coefficient of variation of 31.42%, and ranging from 88.0 to 273.4 over the sample period.  On 

the other hand, the percent of the CREPI over the historical period averages 1.40%, with a median 

of 1.54%, displaying some departures from normality in terms of left skewness (-1.0) and fat-tails 

(kurtosis of 4.13), in excess of the raw variable.  The percent change of the series is also extremely 

volatile, displaying a coefficient of variation of 292.9%, and ranging from -14.83% to 12.09% over 

the sample period. 

The summary statistics of BBBCS are shown in the 5th column of Table 4.1, levels in the top panel 

and percent changes in the bottom panel, with the corresponding time series plots and histograms 

shown in Figures 7.9 and 7.10.  The level of the BBBCS over the historical period averages 

6.35%, with a median of 6.50%, displaying very mild departures from normality in terms of left 

skewness (-0.04), and only moderate deviations from a Gaussian distribution with respect to thin-

tails (kurtosis of -0.81).  The series is only somewhat volatile, displaying a coefficient of variation 

of 21.31%, and ranging from 3.9% to 9.4% over the sample period.  On the other hand, the percent 

of the BBBCS over the historical period averages -0.45%, with a median of -1.37%, displaying 

significant departures from normality in terms of right skewness (-1.32) and fat-tails (kurtosis of 

5.21), far in excess of the raw variable.  The percent change of the series is also extremely volatile, 

displaying a coefficient of variation of -1460.3%, and ranging from -17.07% to 30.56% over the 

sample period. 

The summary statistics of VIX are shown in the 6th column of Table 4.1, levels in the top panel 

and percent changes in the bottom panel, with the corresponding time series plots and histograms 

shown in Figures 7.11 and 7.12.  The level of the VIX over the historical period averages 27.26, 

with a median of 23.60, displaying significant departures from normality in terms of right skew-

ness (1.73), as well as material deviations from a Gaussian distribution with respect to fat-tails 
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(kurtosis of 4.92).  The series is only somewhat volatile, displaying a coefficient of variation of 

41.49%, and ranging from 12.7 to 80.9 over the sample period.  On the other hand, the percent of 

the VIX over the historical period averages 4.50%, with a median of -1.42%, displaying significant 

departures from normality in terms of right skewness (1.37) and fat-tails (kurtosis of 1.82), far in 

excess of the raw variable.  The percent change of the series is also extremely volatile, displaying 

a coefficient of variation of 741.3%, and ranging from -49.45% to 115.34% over the sample period. 

In Figure 4.2 we display the correlation matrices of the macroeconomic variables.  First, we note 

that there is a diversity of magnitudes in with respect to the correlations amongst the pairs, although 

for the most part they are sizable.  In looking at the levels, we see high correlations (i.e., >50%) 

in the HYS / VIX (78.8%) and CREPI / BBBCS (-62.2%) pairs, and low correlations (i.e., <10%) 

in the RDIG / BBBCS (9.6%) and RDIG / VIX (-9.5%) pairs.  In looking at the percent changes, 

we see high correlations in the HYS / VIX (54.7%) and CREPI / BBBCS (-62.2%) pairs, and low 

correlations in the RDIG / BBBCS (1.2%) and RDIG / VIX (-0.3%) pairs.  In general, we also 

note that correlations are lower amongst the variables in percent rather than in level form.  How-

ever, to that point we further observe that in some case the signs of the correlations are not always 

intuitive (highlighted in red in Table 4.2), and this is more of a problem with the variables in level 

form – in 6 out of 15 (e.g., negative and positive for CREPI vs. RDIG and UNEMP, respectively) 

pairs in the latter as opposed to 2 pairs in the former (HYS/CREP and RDIG/BBBCS are positive).   

These considerations of magnitude and direction of relationships will have a bearing on the cross-

equation restrictions that we will impose in the VAR estimation. 

In Table 4.3 we display the Augmented Dickey-Fuller (“ADF”) statistics of the macroeconomic 

variables under consideration.  We observe that we only reject the null hypothesis of a unit root 

process (or of non-stationarity) in one case for the variables in level for, whereas in percent change 

for we are able to reject this in all cases at the 5% confidence level or better.  Taken in combination 

with the observations regarding the correlation analysis of Table 4.2, this leads to the choice of 

modeling the percent changes in the macroeconomic variables in order to generate base and stress 

scenarios.  As a practice, when modeling in a time series framework, it is preferable to work with 

data that are jointly stationary.  

A critical modeling consideration for the MS-VAR estimation is the choice of process generation 

distributions for the normal and the stressed regimes.  As described in the summary statistics of 

table 4.1, we find that when analyzing the macroeconomic data in percent change form, there is 

considerable skewness in the direction of adverse changes (i.e., right skewness for variables where 

increases denote deteriorating economic conditions such as UNEMP, and left skewness in varia-

bles where declines are a sign of weakening conditions such as RDIG).  Furthermore, in normal 

regimes where percent changes are small we find a normal distribution to adequately describe the 

error distribution, whereas when such changes are at extreme levels in the adverse direction we 

find that a log-normal distribution does a good job of characterizing the data generating process.   

Table 4.2:  Historical Correlations of Macroeconomic Variables  



15 

 

  

H
ig

h
 Y

ie
ld

 

S
p
re

a
d

R
e
a
l 

D
is

p
o
s
a
b
le

 

In
c
o
m

e
 G

ro
w

th

U
n
e
m

p
lo

y
m

e
n
t 

R
a
te

C
o
m

m
e
rc

ia
l 

R
e
a
l E

s
ta

te
 

In
d
e
x

B
B

B
 C

o
rp

o
ra

te
 

C
re

d
it S

p
re

a
d

M
a
rk

e
t 

V
o
la

tility
 In

d
e
x

H
ig

h
 Y

ie
ld

 

S
p
re

a
d

R
e
a
l 

D
is

p
o
s
a
b
le

 

In
c
o
m

e
 G

ro
w

th

U
n
e
m

p
lo

y
m

e
n
t 

R
a
te

C
o
m

m
e
rc

ia
l 

R
e
a
l E

s
ta

te
 

In
d
e
x

B
B

B
 C

o
rp

o
ra

te
 

C
re

d
it S

p
re

a
d

M
a
rk

e
t 

V
o
la

tility
 In

d
e
x

H
ig

h
 Y

ie
ld

 S
p
re

a
d

1
-

-
-

-
-

-
-

-
-

-
-

R
e
a
l D

is
p
o
s
a
b
le

 In
c
o
m

e
 G

ro
w

th
-1

8
.5

6
%

1
                   

-
-

-
-

-
-

-
-

-
-

U
n
e
m

p
lo

y
m

e
n
t R

a
te

3
7
.4

1
%

-2
3
.6

3
%

1
                   

-
-

-
-

-
-

-
-

-

C
o
m

m
e
rc

ia
l R

e
a
l E

s
ta

te
 In

d
e
x

1
6
.7

6
%

-1
6
.0

3
%

1
6
.0

7
%

1
                   

-
-

-
-

-
-

-
-

B
B

B
 C

o
rp

o
ra

te
 C

re
d
it S

p
re

a
d

2
6
.8

0
%

9
.5

5
%

-3
6
.7

4
%

-6
2
.1

9
%

1
                   

-
-

-
-

-
-

-

M
a
rk

e
t V

o
la

tility
 In

d
e
x

7
8
.8

3
%

-9
.5

0
%

1
9
.0

6
%

1
8
.4

2
%

3
0
.2

2
%

1
-

-
-

-
-

-

H
ig

h
 Y

ie
ld

 S
p
re

a
d

3
0
.2

0
%

-4
.6

3
%

-2
1
.4

0
%

1
8
.4

2
%

1
7
.7

8
%

5
5
.4

1
%

1
-

-
-

-
-

R
e
a
l D

is
p
o
s
a
b
le

 In
c
o
m

e
 G

ro
w

th
-1

.2
7
%

-5
.7

5
%

9
.6

6
%

-4
.2

2
%

-2
.4

8
%

-1
1
.3

9
%

-2
6
.2

8
%

1
                   

-
-

-
-

U
n
e
m

p
lo

y
m

e
n
t R

a
te

7
1
.9

2
%

-2
5
.2

9
%

1
0
.6

6
%

4
.9

1
%

4
4
.5

4
%

5
6
.8

2
%

2
1
.5

0
%

-8
.9

0
9
%

1
                   

-
-

-

C
o
m

m
e
rc

ia
l R

e
a
l E

s
ta

te
 In

d
e
x

-4
5
.0

8
%

1
0
.4

5
%

-2
2
.3

5
%

5
.5

9
%

-2
7
.6

3
%

-1
9
.6

5
%

7
.6

3
%

5
.8

4
8
%

-4
2
.9

4
%

1
                   

-
-

B
B

B
 C

o
rp

o
ra

te
 C

re
d
it S

p
re

a
d

5
.6

9
%

5
.1

2
%

-2
5
.5

2
%

1
6
.3

6
%

1
7
.9

7
%

1
8
.7

2
%

3
9
.1

0
%

1
.1

9
%

2
.2

0
%

1
2
.6

0
%

1
                   

-

M
a
rk

e
t V

o
la

tility
 In

d
e
x

6
.3

4
%

-6
.1

3
%

-7
.6

4
%

1
2
.4

4
%

2
.8

4
%

4
5
.6

0
%

5
4
.6

9
%

-0
.3

4
8
%

5
.2

3
%

2
1
.2

8
%

2
7
.3

7
%

1

P
e
rc

e
n
t  C

h
a
n
g
e
s

L
e
ve

ls

L
e
ve

ls

P
e
rc

e
n
t  

C
h
a
n
g
e
s



16 

 

Table 4.3:  Augmented Dickey-Fuller Stationarity Test Statistics of Macroeconomic Varia-

bles  

 

 

This is similar to the finding of Loregian and Meucci (2016) I the context of modeling the U.S. 

Treasury yields.  We observe that this mixture well characterizes the empirical distributions of 

the data. 

The final modeling consideration is the methodology for partitioning the space of scenario paths 

across our 6 macroeconomic variables for a Base and for a Severe Scenario.  In the case of the 

Severe scenario, we choose to identify such a path in which all six macroeconomic variables ex-

ceed their historical 99.0th percentile in at least a single quarter, and then in that set for each vari-

able we take an average across such paths in each quarter.  It is our view that this is a reasonable 

definition of a Severe scenario, and in our risk advisory practice we have observed similar defini-

tions in the industry.2  In the case of the Base scenario, we take an average across all paths in a 

given quarter for a given variable.   

The main findings of our study are shown in Figures 4.1 through 4.6 where we show for each 

macroeconomic variable the Base and Severe scenarios for the VAR and MS-VAR models3, and 

also compare this to the corresponding Fed scenarios, along the historical time series.  We make 

the following general conclusions: 

  

                                                                 
2 We have performed a sensitivity analysis, available upon eques, using the 95th and 99.9th percentiles, and the re-

sults are not greatly changed.  
3 Estimation results for the VAR and MS-VAR model are available upon request.  The models are all convergent 

and goodness of fit metrics in with industry standards.  Signs of coefficient estimates are in line with economic in-

tuition and estimates are all significant at conventional levels.  We use the “dse”, “tseries” and MSBVAR libraries 

in R in order to perform the estimations(R Development Core Team, 2016) 
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Figure 4.1: Historical Time Series, Base and Severe Scenarios for the VAR, MS-VAR and 

Fed Models – High Yield Spread 

  

Figure 4.2: Historical Time Series, Base and Severe Scenarios for the VAR, MS-VAR and 

Fed Models – Real Disposable Income Growth 
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 In the Severe scenario, the MS-VAR model is far more conservative than the VAR model, 

and always at least match and in some cases can well exceed historical peaks or troughs in 

the adverse direction. 

 

 In terms of magnitude, the VAR model is similar to the Fed scenarios, but the trajectories 

of either the VAR or MS-VAR model tend to be more regular, rising at a more gradual 

pace into the forecast period.  

 

 In the Base scenarios, the Fed model is rather similar to the VAR model, but in all cases 

the MS-VAR model produces a higher base, which is driven by the skewness of the mixture 

error distribution. 

The scenario projections for the HYS are shown in Figure 4.1.  The HYS has ranged in around 

3% to 8% in benign periods, and peaked during the financial crisis at around 16%.  The Fed severe 

scenario for the HYS peaks just below the latter historical spike at around 14% at a year into the 

forecast period, declining linearly to around the level of the jump-off period in the 4th quarter of 

2015 of about 5%.  The VAR model does not quite achieve this level of stress but is close, peaking 

at just below 14% 2 years into the forecast period and then declining in a steeper and similar ly 

linear fashion to around the pre-stress levels.  In contrast, the MS-VAR model in the severe sce-

nario exhibits far more extreme levels, peaking at just over 23% (about 50% greater than either 

the VAR or the Fed model) a year into the forecast period, and remaining elevated for another year 

before reverting to the pre-forecast period levels.  Finally, with regard to the Base scenario, the 

VAR and Fed models are similar in trajectory, rising somewhat in the first year and then reverting 

to the levels of the period just prior to the forecast, although the former is somewhat higher peaking 

at around 10% vs. around 9% for the latter. 

The scenario projections for the RDIG are shown in Figure 4.2.  The RDIG has ranged in around 

-5% to 5% in benign periods, and unlike the other macroeconomic variables, had its most adverse 

levels twice, during the financial crisis (in early 2013) at around -9% (-16%).  The Fed severe 

scenario for the RDIG reaches a trough quite below the first and milder historical trough at around 

-4% at around a year into the forecast period, then increasing in an s-shape to around the level of 

the jump-off period in the 4th quarter of 2015 of about 4%.  The VAR model does not quite achieve 

the most level of stress for RDIG but exceeds the financial crisis value in absolute terms, a trough 

at around -12% 1 year into the forecast period and then increasing smoothly to around the pre-

stress levels.  In contrast, the MS-VAR model in the severe scenario exhibits far more extreme 

levels, declining to just about the historical trough of -15% (about 20% and 5 times greater in 

magnitude than the VAR and Fed models, respectively) a year into the forecast period.  Finally,     
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Figure 4.3: Historical Time Series, Base and Severe Scenarios for the VAR, MS-VAR and 

Fed Models – Unemployment Rate 

 

Figure 4.4: Historical Time Series, Base and Severe Scenarios for the VAR, MS-VAR and 

Fed Models – Commercial Real Estate Price Index 
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with regard to the Base scenario, the VAR and MS-VAR models are similar in trajectory, dipping 

somewhat in the first year and then stabilizing to levels somewhat below that of the period just 

prior to the forecast, although the latter is somewhat lower.  On the other hand, the Fed model 

appears to be rather different, dipping slightly and remaining flat at levels somewhat below the 

levels of 2015. 

The scenario projections for the UNEMP are shown in Figure 4.3.  The UNEMP has ranged in 

around 4% to 8% in benign periods, and peaked during the financial crisis at around 10%, exactly 

where the Fed severe scenario peaks around six weeks into the forecast period and then declining 

linearly to around the level of 2011 of about 9% and well short of recovery by the end of the 

forecast period.  The VAR model exceeds this level of stress, peaking at just above 12% 2 years 

into the forecast period, and then declining in a similarly linear fashion to a still distressed level of 

around 11% by the end of the forecast period.  In contrast, the MS-VAR model in the severe 

scenario exhibits far more extreme levels, peaking at about 18% (about 50% and about 80% greater 

than the VAR or the Fed models, respectively) a year into the forecast period, and remaining ele-

vated at no less than about 15% by the end of the forecast period.  Finally, with regard to the Base 

scenario, the VAR and Fed models are rather similar in trajectory, dipping somewhat and then 

flattening out throughout the forecast period to a level about 1% lower than in the late 2015, with 

the VAR model being slight below the Fed model.  In contrast, the MS-VAR model starts off with 

a similar trajectory to the VAR and Fed models, but diverges toward the end of the forecast period 

to end slightly higher. 

The scenario projections for the CREPI are shown in Figure 4.4.  The CREPI has ranged in around 

200 to 250 in benign periods and had its most adverse levels at 150 during the financial crisis.  

The Fed severe scenario for the RDIG fails to reaches a trough at this level and only goes as low 

as around 180 at around a year and a half into the forecast period, then increasing gradually to 

around 200, far from the level of the jump-off period in the 4th quarter of 2015 of about 270.  The 

VAR model has a rather similar trajectory, albeit both declining and recovering at a slower pace.  

In contrast, the MS-VAR model in the severe scenario exhibits far more extreme levels, declining 

to somewhat below the historical trough at around 125, or about 15% lower than the VAR and Fed 

models, two years into the forecast period.  Finally, with regard to the Base scenario, the VAR 

and Fed models are similar in trajectory, rising linearly throughout the forecast period from about 

275 to around 300 and 320, with the VAR model lower.  On the other hand, the MS-VAR model 

appears to be rather different, increasing only slightly by the end of the forecast period to about 

280.   

The scenario projections for the BAACR are shown in Figure 4.5.  The HYS has ranged in around 

2.5% to 3.5% in benign periods, and peaked during the financial crisis at around 5.5%.  The Fed 

severe scenario for the HYS peaks above the latter historical spike at around 6.5% at a year into 

the forecast period, declining linearly to 4.6%, quite above the 3.3% level of the jump-off period  
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Figure 4.5: Historical Time Series, Base and Severe Scenarios for the VAR, MS-VAR and 

Fed Models – Baa Corporate Credit Spread 

  

Figure 4.6: Historical Time Series, Base and Severe Scenarios for the VAR, MS-VAR and 

Fed Models – VIX Equity Market Volatility Index 

 



22 

 

in the 4th quarter of 2015.  The VAR model does not quite achieve this level of stress, rising more 

gradually peaking at 5.5% 2 years into the forecast period, and then declining to about the level 

where the Fed model ends up quite above the pre-stress levels.  In contrast, the MS-VAR model 

in the severe scenario exhibits far more extreme levels, peaking nearly 10% (about 35% and 45% 

greater than the Fed and VAR models, respectively) a little over a year into the forecast period, 

and remaining elevated for the remainder of the forecast period with a decline to a little over 7.5%.  

Finally, with regard to the Base scenario, the MS-VAR and Fed models are similar in trajectory, 

rising throughout the forecast period to about 5.5%, although the Fed model remains above the 

MS-VAR model forecast until the end.  In contrast, the VAR model rises far more gradually than 

either the MS-VAR or Fed models, reaching around only 4.4% by the end of the forecast period.  

The scenario projections for the VIX are shown in Figure 4.6.  The VIX has ranged in around 15 
to 30 in benign periods, and peaked during the financial crisis at just above 75.  The Fed severe 

scenario for the VIX peaks just below 75 at the start of the forecast period, declining linear ly 
thereafter to the level of the jump-off period in the 4th quarter of 2015.  The VAR model slightly 

this level of stress, rising more gradually peaking at around 80 at 6 quarters into the the forecast 
period, and then declining to about the level where the Fed model ends up near the pre-stress levels.  
In contrast, the MS-VAR model in the severe scenario exhibits far more extreme levels, peaking 

nearly just over 135 (about 80-90% greater than either the Fed and VAR models) in about the same 
timeframe of the VAR model and then declining to slightly lower levels as during the jump -off 

period.  Finally, with regard to the Base scenario, the MS-VAR and VAR models are similar in 
trajectory, rising gradually throughout the forecast period to about 30-35, with the MS-VAR model 
remaining above the VAR model forecast until the end.  In contrast, the Fed model gradually 

declines throughout the projection, ending up at somewhat lower by the end of the forecast period.  
 
 

5 Conclusion and Future Directions 

In this study we have examined a critical input into the process stress testing process, the macroe-
conomic scenarios provided by the prudential supervisors to institutions for exercises such as the 
Federal Reserve’s CCAR program.  In particular, we have addressed the supervisory requirements 

that banks develop their own macroeconomic scenarios.  We have analyzed a common approach 
of a VAR statistical model that exploit the dependency structure between both macroeconomic 

drivers, as well between modeling segments, and addressed the well-known phenomenon that lin-
ear models such as VAR are unable to explain the phenomenon of fat-tailed distributions that 
deviate from normality, an empirical fact that has been well documented in the empirical finance 

literature.  We have proposed a challenger approach, widely used in the academic literature, but 
not commonly employed in practice, the MS-VAR model.  We empirically tested these models 

using Federal Reserve macroeconomic data, gathered and released by the regulators for CCAR 
purposes, respectively.   

We find the MS-VAR model to be more conservative than the VAR model, and also to exhibit 
greater accuracy in model testing, as the latter model can better capture extreme events observed 

in history.  In the Severe scenario, the MS-VAR model is far more conservative than the VAR 
mod-el, and always at least match and in some cases can well exceed historical peaks or troughs 
in the adverse direction.  In terms of magnitude, the VAR model is similar to the Fed scenarios, 
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but the trajectories of either the VAR or MS-VAR model tend to be more regular, rising at a more 
gradual pace into the forecast period.  In the Base scenarios, the Fed model is rather similar to the 

VAR model, but in all cases the MS-VAR model produces a higher base, which is driven by the  
skewness of the mixture error distribution.   

There are several directions in which this line of research could be extended, including but not 
limited to the following: 

 More granular classes of credit risk models, such as ratings migration or PD / LGD score-

card / regression 
 

 Alternative data-sets, for example bank or loan level data 

 

 More general classes of regression model, such as logistic or semi-parametric 

 

 Applications related to ST, such as RC or EC  
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7 Appendix 1: Time Series Plots and Smoothed Histograms of Macroeco-
nomic Variables 

Figure 7.1: Time Series and Kernel Density Plot – High Yield Spread (Levels)  

 

Figure 7.2: Time Series and Kernel Density Plot – High Yield Spread (Percent Changes) 
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Figure 7.3: Time Series and Kernel Density Plot – Real Disposable Income Growth (Levels) 

 

Figure 7.4: Time Series and Kernel Density Plot – Real Disposable Income Growth (Per-

cent Changes) 
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Figure 7.5: Time Series and Kernel Density Plot – Unemployment Rate (Levels) 

 

 

Figure 7.6: Time Series and Kernel Density Plot – Unemployment Rate (Percent Changes) 
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Figure 7.7: Time Series and Kernel Density Plot – Commercial Real Estate Index (Levels) 

 

Figure 7.8: Time Series and Kernel Density Plot – Commercial Real Estate Index (Percent 

Changes) 
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Figure 7.9: Time Series and Kernel Density Plot – BBB Corporate Bond Yield (Levels) 

 

Figure 7.10: Time Series and Kernel Density Plot – BBB Corporate Bond Yield (Percent 

Changes) 
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Figure 7.11: Time Series and Kernel Density Plot – Equity Market Volatility Index (Levels) 

 

Figure 7.12: Time Series and Kernel Density Plot – Equity Market Volatility Index (Per-

cent Changes) 

 


