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ABSTRACT

We examined and compared forecasting ability of GARCH and Stochastic Volatility models represented
in the state space form using Kalman Filter as an estimator for the models. The models are applied in
the context of Indian stock market. For estimation purpose, daily values of Sensex from Bombay Stock
Exchange (BSE) are used as the input. The results confirmed the volatility forecasting capabilities of
both models. Finally, we interpreted that which model performs better in the out-of-sample forecast for
h-step ahead forecast. Forecast errors of the volatility were found in favour of SV model for a 30-day
ahead forecast. This also shows that Kalman filter can be used for better estimates and forecasts of
the volatility using state space models. Finally the numerical results make evident the effectiveness and
relevance of the proposed state space estimation.
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1. INTRODUCTION

Volatility in financial markets has been a growing area of interest of researchers seeking to understand
market dynamics. It has attracted the attention of policy makers and market traders, investors and
risk managers especially during the past two decades because it can be used as a measurement of risk.
Primarily the volatility receives a great deal of concern from financial market participants because
greater volatility in the stock, bond and foreign exchange markets raises important public policy issues
about the stability of financial markets.

Volatility forecasting is important for option pricing, portfolio management and risk management.
Nowadays, volatility has become the subject of trading. There are now exchange-traded contracts
written on volatility. Financial market volatility also has a wider effect on financial regulation, monetary
policy and macro economy. Therefore there is a need of research in financial market volatility modeling
and hence forecasting.

The two main sources of volatility forecasts are time-series models and implied volatilities which is
calculated from observed prices. The time-series models remain the major source of volatility forecast-
ing which can also be used to predict the time-varying beta. Accurate forecasting of time-varying beta
is important for several reasons. Firstly, the prediction of the beta value helps investors to make their
investment decisions easier. Secondly, for corporate financial managers, forecasts of the conditional
beta not only benefit them in the capital structure decision but also in investment appraisal.

Sensex is the most followed market index in the Indian stock market and consists of the 30 largest
and most actively traded stocks and representative of various sectors on the BSE. The Indian stock
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market has been an active area of research during the last few decades along with markets of other
emerging economies. In India, different variants of GARCH model have been considered to study
volatility forecasting and a large volume of literature focuses on modeling volatility using these models.
The present paper tests an alternate modeling technique for the estimation of the volatility in the
Indian stock market by using State Space (SS) model. Control engineers and physicists were the first
to introduce the State Space models for modeling of continuously changing unobserved state variable.
The unknown model parameters in such models were estimated by the Kalman filter (KF, popularly
named after Kalman (1960). The Kalman Filter algorithm plays an integral role in the modeling,
estimating and further predicting the states of State Space models[?].

Several studies have reported applications of SS Model in estimating price volatility [?]. These
models are becoming more popular because they are able to represent complex dynamics equations
through a simple structure of matrices. Further, it is easier to apply the Kalman Filter to SS Models
because they allow for certain relevant analysis that would otherwise be very difficult, such as modeling
samples with missing data or observation errors [?]. This approach has been applied for stochastic
volatility (SV) Model where the time-varying variance as a stochastic process was modeled in state
space form and further estimated using Quasi Maximum Likelihood methods [?, ?, ?] and [?].

However, GARCH type modeling has been an popular area of research. These models are also
widely used because their properties are somewhat similar to the observed properties of empirical
financial data which can capture various stylized facts [?]. Additionally, they are simple to model,
gives a better fit to the empirical financial data and are estimated by commonly used estimation
procedures like Maximum Likelihood (MLE) approaches. The concern while using the GARCH models
in forecasting is the errors occurring when the forecasts are computed [?]. To overcome this limitation,
an alternate parameter estimation approach proposed by (Jerez et.al.)[?] is used in this paper. The
state space GARCH-KF model is obtained by treating mean and variance equations internally in its
equivalent state-space formulation suitable for Kalman Filter estimation. This approach allows certain
computations and analysis that would otherwise not be possible by traditional estimation methods.

Many researchers have compared different time series data, daily exchange rate and stock prices
using variants of GARCH models to forecast the volatility. Their findings showed that most of the
advanced models did not provide better forecasts than GARCH (1,1) model[?]. Therefore, in this paper
we have selected GARCH(1,1) model for forecasting using the framework of E4 toolbox, referred in
Spanish as ’Estimacin de modelos Economtricos en Espacio de los Estado ’. This toolbox allows for
observation errors, missing data and GARCH error modeling in state space form.

The study described in present paper can be justified on following ideas. The evidence from other
developing markets provide mixed evidence of forecasting performances in volatility models[?, ?, ?].
However, there has been no comprehensive study of GARCH based State Space Modeling of volatility
in India. As a result, this paper aims to compare stochastic volatility, GARCH(1,1) and GARCH(1,1)-
KF model which is a state space approach, which substantially differ in terms of their computational
model from the traditional estimation methods.

The paper uses the daily closing values of BSE-Sensex for the period 01 January 2006 to 22 August
2013. The daily index values of Sensex are collected from the official websites of BSE[?]. The data set
considered, has enough number of observations to perform time-series analysis on the models to get
meaningful results. We have modeled the stochastic volatility (SV) forecasting models using a state
space modeling (SSM) toolbox for Matlab [?]. The GARCH models are represented in state space
form and the estimation is done by E4 toolbox for MATLAB. The estimation results of SV model are
presented and compared with out-of-sampling forecast of GARCH(1,1) model.
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The rest of paper is organized as follows. Section 2 gives a brief overview of the GARCH and
Stochastic volatility models along with the state space representation. Then, we estimate and analyze
the models by presenting the main results of the paper. In section 3, out-of-sample forecast of the
estimators are discussed. Section 4 explores the comparative performance of the various forecasting
models and a 30-day ahead forecast is given in tabular and graphical representation. Section 5 gives
the concluding remarks.

2. MODELS OVERVIEW & STATE SPACE REPRESENTATION

State space methods are tools which allows one to estimate the unknown parameters along with the
time varying states of linear models. It can also be used to forecast future states and observations even
if there is some missing data. The following section will review the basic model representation of State
Space. The results of model parameters estimation are briefly discussed in subsequent sections.

2.1 Linear Gaussian State Space Model

This section provides a brief review of linear Gaussian state space model. Let yt denote an p × 1
observation vector related to an m × 1 vector of unobservable components αt (states sequences), by
the so-called measurement equation eq:??,

yt = Ztαt + εt, εt ∼ N(0, Ht) (1)

αt+1 = ct + Ttαt +Rtηt, ηt ∼ N(0, Qt) (2)

The evolution of the states is governed by the process or state equation (??). Thus, the matrices Zt,
ct, Tt, Rt, Ht, Qt, a1, P1 are required to define a linear Gaussian state space model [?, ?]. The matrix
Zt is the state to observation linear transformation matrix, for univariate models it is a row vector m
× 1. The matrix ct is the same size as the state vector, and it is constant in the state update equation,
although it can be dynamic or dependent on model parameters. The square matrix Tt [m × m ] defines
the time evolution of states. The matrix Rt [m × r ] transforms general disturbance into state space and
exists to allow for more varieties of models. Ht [p × p ] and Qt [r × r ] are Gaussian variance matrices
governing the disturbances, and a1 and P1 are the initial conditions[?]. The specification of the state
space model is completed by the initial conditions concerning the distribution of α1 ∼ N(a1, P1),∀t.

2.2 GARCH Model

The GARCH(1,1)-model includes one lag of the conditional variance given by following equation:

yt = εtht (3)

h2t = φ+ αy2t−1 + βh2t−1 (4)

εt is an IID process with zero mean and variance of unity. In most applications εt is assumed to be
NID(0,1). To ensure the existence of the conditional variance and for avoiding the degeneration of the
process φ > 0 and α, β ≥ 0 must hold, yt|Ωt−1 ≈ iidN(0, h2t ) such that the conditional variance h2t ,
follows a GARCH(1,1) equation:

Defining vt = y2t − h2t , it follows that previous equation can be rewritten as

(1− αB − βB)y2t = φ+ (1− βB)vt (5)
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where B is the backshift operator. This equation is analogous to an ARMA equation

y2t = σ2 + nt (6)

[1− (α+ β)B]nt = (1− βB)vt (7)

with parameters (α+ β) and β. Here σ2, the variance, is given by[?]:

σ2 ≡ E(y2t ) =
φ

(1− (α+ β))

hence the estimation procedure for time series models based on the state space KF can be used. It is
shown in [?] that for GARCH processes, it is possible to have a state space formulation i.e. GARCH-
KF. In order to obtain an efficient estimation for the parameters and hence predictions, the approach
is based on the Kalman Filter.

2.3 Stochastic Volatility Model

Stochastic volatility is a popular modeling technique for non-linear/ non-Gaussian state-space models
and hidden Markov models. It is probably an important volatility model for daily currency and equity
indices returns, with forecast properties similar to ARCH or GARCH.

The stochastic volatility(SV) model in discrete time for a observation asset log-returns yt is for-
mulated in this section. The Stochastic volatility can be appropriately represented by the unobserved
state variable as shown in equation (??) and (??).

yt = µ+ σ∗exp

(
1

2
ht

)
εt, εt ∼ IID(0, 1), (8)

with

ht+1 = φht + ηt, ηt ∼ IID(0, σ2η), h1 ∼ N(0, σ2η/(1− φ2)), (9)

for t = 1, . . . , T . The parameter µ denotes the unconditional expectation of the return process yt. The
scaling parameter σ∗ is the average standard deviation with σ∗ > 0. The unobserved log-volatility
process is denoted by ht = log(σ2t ) [?].

Here, the logarithm ensures positivity of (σ2t ). The regression parameter φ is 0 < φ < 1 [?] and is
usually reported to take on values greater than 0.8. The constant µ will be treated as fixed and set to
zero as shown by [?]. Here, ht is modeled as a first-order autoregressive process. For details see [?].
The disturbances εt and ηt are Gaussian white noise[?] where, εt represents the new information ; ηt
reflects the shocks to the newsflow’s intensity.

The SV model in (??) and (??) are commonly referred as the log-normal SV model. It represents
a state space model where the observation equation describes the relationship between the univari-
ate vector of observations, y = (y1, . . . , yT )

′
, and the state vector. The hidden volatility process

θ = (h1, . . . , hT )
′

is specified in the state equation, which models the dynamic properties of ht. As
εt and ht, are stochastic (both enter the multiplication in the mean equation), the basic SV model is
nonlinear, hence linear approach cannot be used.

In the estimation problem there is no closed expression for the likelihood function. Therefore, the
parameters of the SV model cannot be estimated by directly applying standard maximum likelihood
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techniques. The estimation has to be conducted by approximation of Likelihood or using simulation-
based techniques based on observable past information[?]. There are methods proposed [?, ?] to
linearize the SV model by squaring the returns and taking logarithms as shown in equation (??) and
(??):

logy2t = ht + logσ2∗ + logε2t , (10)

ht+1 = φht + ηt, (11)

where the disturbance term, ηt, is assumed to be uncorrelated in the transformed model. Taking
logarithm leads to a heavily skewed distribution of log ε2t with a long left-hand tail.

Our model-based estimated actual volatility is fitted well, by the Gaussian distribution using Quasi
Maximum Likelihood. The estimates of volatility [?] are obtained by

σ2t|T ≡ V ar(yt|YT ) (12)

E(exp(ht)|YT ) = exp(µt|T + s2t|T /2)

with variance

V ar(σ2t|T ) = E(exp(2ht)|YT )− {E(exp(ht)|YT )}2 (13)

= exp(2µt|T + 2s2t|T )
{

1− exp(−s2t|T )
}

The smoothing estimates of the square root of volatiltiy are also calculated by

σ∗t|T ≡ E(exp(ht/2)|YT ) (14)

= exp(µt|T /2 + s2t|T /8)

with variance

= exp(µt|T + s2t|T /2)
{

1− exp(−s2t|T /4)
}

(15)

2.4 Kalman Filter

The general form of a state space model is defined by an observation (or measurement) equation and
a state transition (or state) equation. The structure and dynamics are similar to linear state space
gaussian model with noise [?]. The measurement equation describes the relation between observed
sequences and unobserved (hidden) state variables. State transition equation describes the dynamics
of the state variables based on information from the past. The forecast of the next state can be
completely described by the knowledge of the present state and the future input.

The Kalman filter method, is an iterative computational algorithm which is used to calculate
forecasts and forecast variances for state space models. The algorithm is as follows: First, in each step
of the process, the next observation is forecasted based on the previous observation and the estimate
of the previous observation. Second, one step ahead forecast is computed by updating the previous
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Figure 1. Kalman Filter Recursion

forecast. Finally, the above process is repeated again. Figure ?? explains the recursion process in an
easy and convenient flowchart form [?].

The updates for each forecast are weighted averages of the previous observation and the previous
forecast error. The weights are also known as the Kalman gain. In the algorithm, the kalman gain is
chosen such that the forecast variances are minimized in least square sense.

The KF recursively computes the states predictions of yt, which is conditional on past information
and also on the variance of their prediction error. The vector, vt, is the time t innovation. i.e. the
new information in yt that could not be predicted from knowledge of the past, is the one-step-ahead
prediction error.

The normal Kalman filter recursion are as follows
Measurement Update:

vt = yt − Ztat,
Ft = ZtPtZ

T
t ,

Kt = TtPtZ
T
t F
−1
t ,

Lt = Tt −KtZt.

Time Update:

at+1 = ct + Ttat +Ktvt,

Pt+1 = TtPtL
T
t +RtQtR

T
t .

The matrix Kt is referred as the Kalman gain and the models uses it extensively for forecasting.
Kalman filter can additionally be used to improve upon the measurement of current and past volatility
estimates using filtering and state smoothing which are not used in this paper.
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3. ESTIMATION AND MODEL ANALYSIS

This study uses daily closing value of SENSEX from the time period starting from 01 January 2006 to
22 August 2013. All the stock market index data are collected from the official website of BSE. The
daily returns are calculated for each series shown in equation (??).

rt = (log(Pt)− log(Pt−1)) ∗ 100 (16)
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Figure 2. Sensex Closing Index
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Figure 3. Sensex Return

where rt is the daily return series, Pt is the current stock price and Pt−1 is the stock price of the
previous period. Figures ?? and ?? respectively plot the price and the index returns over the sample
period. Our final working sample consists of 1900 data points for Sensex. In order to make forecasts,
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the whole sample is divided into two parts comprising of 1870 in-sample observations from 01 January
2006 to 07 July 2013 and 30 out-of-sample observations from 08 July 2013 to 22 August 2013 which
are used for model performance evaluation.

Descriptive Statistics(SENSEX)

Period 1/1/2006 to 22/8/2013

Mean 0.00039114

Median 0.00097652

Maximum -0.1160

Minimum 0.1599

Kurtosis 10.1986

Skewness 0.1321

Std. Dev 0.0171
Table 1. Descriptive Statistics

Descriptive statistics for the Sensex returns series are shown in Table ??. It shows the mean,
median, maximum, kurtosis, skewness and standard deviation of the series. As expected for a time
series of returns, the mean is close to zero. The mean daily return is 0.00039114. The sample maximum
is 0.1599 which happened on 18 May 2009. The volatility (measured as a standard deviation) is 0.0171.
The returns are positively skewed (skewness= 0.1321) which indicates that there are more positive
than negative outlying returns in Indian Stock Market. The kurtosis coefficient is positive, having high
value for the return series(Kurtosis = 10.1986) which indicates leptokurtosis or fat taildness in the
underlying distribution.

3.1 Unit root test

Augmented Dickey Fuller(ADF) test is used to test for the presence of unit root in the returns series.
The ADF test statistics is tested for the null hypothesis of unit root at 1% level of significance. A
formal application of ADF test on log returns, rejects the null hypothesis of a unit root in the return
series. The value of ADF statistics is much lower than the critical value for the model with trend
(-2.5691) and without trend (-1.9416) at all the 4-lags shown in Table ??. Hence, the hypothesis that
the daily volatility in the Sensex index over the period from January 2006 to July 2013 has a unit root
is rejected.

ADF Test on SENSEX

With Trend Without Trend

Lags stat value stat value p-value

0 -40.3126 -40.3126 0.001

1 -40.3146 -30.2715 0.001

2 -40.2924 -25.3026 0.001

3 -40.2708 -22.4195 0.001

4 -40.2496 -20.3959 0.001
Table 2. ADF Test

3.2 Model Estimation

Maximum Likelihood estimation is performed for identification of parameters in both the models. Log
likelihood is maximized numerically using the kalman covariance, details are given by Durbin and

8



Koopman(2001) [?] and [?]. Recently, full asymptotic solver based on maximum likelihood estimation
of state space models has been provided by Aston and Peng(2011) [?] in SSM Toolbox of Matlab. The
estimate and kalman functions of SSMODEL class were used to perform the estimate and 1-step ahead
prediction for SV Model. The GARCH models are estimated using E4 toolbox which is based on exact
maximum likelihood optimization. Model specification and forecasting was also performed using the
E4 toolbox [?]. The model estimates of GARCH(1,1) model after estimation are:

GARCH(1,1) model Parameter Estimates

Parameter Estimate Std. Error t-test

φ 0.027385 0.00593 4.6180

α 0.10127 0.0091045 11.1231

β 0.89225 0.008909 100.1522
Table 3. Garch(1,1) model Estimation

The model estimates of GARCH(1,1)-KF model in state space form after estimation are:

GARCH(1,1)-KF model Parameter Estimates

Parameter Estimate Std. Dev. t-test Gradient

σt 2.6820 0.8377 3.2015 0.0000

(α+ β) 0.9898 0.0047 -210.7738 0.0053

β 0.8971 0.0122 -73.4885 -0.0029
Table 4. Garch model Estimation with Kalman Filter

The model becomes y2t = 2.6820 + nt with [1− .9898B]nt = (1− 0.8971B)vt

0 2 4 6 8 10 12 14 16 18 20
−0.5

0

0.5

1

 Lag

 A
C

F

 ACF of Squared Innovations SENSEX

0 2 4 6 8 10 12 14 16 18 20
−0.5

0

0.5

1

 Lag

  P
A

C
F

 PACF with Bounds for SENSEX Squared Innovations

Figure 4. ACF & PACF

The ACF and PACF are used as identification tools as they provide some indication of the broad
correlation characteristics of the returns [?]. Figure ?? shows graphically the ACF and PACF of squared
innovations of GARCH model, there is little indication of correlation in the residuals, which is clear
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as there are no significant spikes. To conclude, the residuals of the GARCH models are consistent
with white noise. The figure shows that ACF die out quickly, indicating that the GARCH process
innovations are close to stationary. This is an indication that GARCH models is adequate model class
for this data set.

The QML estimation method is used to estimate the model parameters of SV. This is implemented
by combining predefined observation Gaussian noise with constant and autoregressive model using
model concatenation in SSMODEL class in the toolbox. Hence, the estimates are obtained by the
Kalman filter by treating εt and ηt as though they were normal and by minimizing the prediction-error.
To solve the QML estimates, estimate and kalman function operations are performed on return series
with the specified SV Model parameters.

Table ?? shows the estimates of Stochastic Volatility model in state space form:

T =

[
1 0
0 0.9887

]
, R =

[
0
1

]
, Z =

[
1 1

]
, Ht = [4.834] , Q = [0.02138] (17)

SV Model Parameters Estimates

Variables SV Model

φ1 0.9887

ζ 0.02138

ε 4.834
Table 5. SV Model Parameter Estimate

3.3 Evaluation Measures

Four measures are used to evaluate the forecast accuracy of the models, namely, the mean square
error (MSE), the root mean square error (RMSE), the mean absolute error (MAE) and mean absolute
percentage error (MAPE). They are defined by:

MSE =
1

n

n∑
t=1

(σ̂t − σt)2

RMSE =

√√√√ 1

n

n∑
t=1

(σ̂t − σt)2

MAE =
1

n

n∑
t=1

|σ̂t − σt|

MAPE =
1

n

n∑
t=1

(|σ̂t − σt)/σt| (18)

where, σ̂t is the forecast value and σt is the actual value calculated using equation(??). Statistically,
actual volatility is often estimated as the sample standard deviation

σ̂ =

√√√√ 1

T − 1

T∑
t=1

(rt − µ)2 (19)
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where rt is the return on day t, and µ is the average return over the T -day period. In this context,
the model which has minimum forecast error using the evaluation measure techinques mentioned above,
is considered to be the best volatility forecasting model. Table ?? clearly shows that both the models
has less forecast error values by using all four evaluation measures.

Forecast Error Statistics

GARCH(1,1) GARCH-KF SV Model

MSE 0.0985 0.0790 0.0340

RMSE 0.3138 0.2811 0.1843

MAE 0.2828 0.2487 0.1552

MAPE 0.3017 0.2695 0.1619
Table 6. Forecast Error Statistics

The result of the estimated volatility values by using Garch(1,1) and SV model is shown in figure
??
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4. COMPARISON OF OUT OF SAMPLE FORECAST

After obtaining the daily volatility series, the 1-day ahead forecasts are chosen for the forecasting
horizon of 30 days. Furthermore, a period has to be chosen for estimating parameters and a period for
predicting volatility. The data series of period starting from 1/1/2006 to 7/7/2013 is used to estimate
the models. Therefore, the first day for which an out-of sample forecast is obtained is 08/07/2013.

Using the estimated models, sequential 1-day ahead forecasts are made. Hence, in total 30 daily
volatility values are forecasted. With this setup, the models are required to predict volatility for the
above mentioned period. The out of sample forecast for GARCH(1,1) and Stochastic Volatility models
are shown in figure ??.

Figure ?? shows the 30-day ahead point forecast of both the models plotted along with the actual
volatility, which is used as benchmark calculated using equation (??). The graph shows that stochastic
volatility has more appropriate forecast as it has lesser residual errors when both models are estimated
using maximum-likelihood based technique.
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Figure 7. Volatility Forecast Comparison

5. CONCLUSION

This paper examined the performance of state space methods for forecasting stock market volatility of
the Sensex index. The important models considered here are the GARCH(1,1), GARCH(1,1)-KF and
SV models. GARCH(1,1)-KF is an alternative estimation of GARCH(1,1) model using the Kalman
filter approach with the model representation in state space form.

To investigate the forecasting ability of the models we fit the models to daily closing returns and
estimate the models using SSM and E4 toolbox in Matlab. Forecast errors based on return forecasts
of the estimates and the actual volatility are used to evaluate the out-of-sample forecasting ability of
the three models. It was found that the SV model forecasts are more precise based on the evaluation
measures for 30-day ahead forecast. The results also show evidence in favour of the Kalman filter
approach as compared to GARCH(1,1) estimation methods.

The empirical results of this paper provide strong support for the application of the state space
model in volatility forecasting. Finally, we have presented a simple forecasting application of the
Kalman Filter, which has proved useful to forecast the stock market data. For future research, it
would be interesting to explore different fat tailed distribution and time varying KF model to fit the
above models in state space form.
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