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Abstract

This note introduces a goodness-of-identifiability criterion. This criterion formalizes
the concept of identifying power of a parametric statistical model. Unlike the quali-
tative criterion for identifiability based only on the Fisher matrix, it applies to both
regular and irregular points of the Fisher matrix. Unlike the qualitative criterion based
only on the Hellinger distance, it quantifies set-identification.
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1. Introduction

The identifying power of a statistical model is the ability of the model to discriminate

points in the parameter space under hypothetical knowledge of the population. This note

proposes a novel goodness-of-identifiability criterion for quantifying the identifying power of

a parametric statistical model. The criterion measures the identifying power by taking the

difference between the log of (one plus) the minimum eigenvalue of the Fisher matrix and the

log of (one plus) the diameter of the identifiable set. We characterize the minimum eigen-

value of the Fisher matrix and the diameter of the identifiable set in terms of optimization

problems involving the Hellinger distance. This characterization for the identifying power

of a parametric statistical model seems new. It uncovers a new method for formalizing the

notion of identifying power using convex analysis and the Hellinger distance.

The goodness-of-identifiability criterion is the first numerical measure for quantifying the

identifying power of a parametric statistical model. The two existing criteria for identifiabil-

ity, the Fisher matrix and Hellinger distance criteria, fall short as numerical measures of iden-

tifying power. The Fisher matrix criterion cannot discriminate point- from set-identifiability

when the value of a parameter is an irregular point of the Fisher matrix. The Hellinger

distance criterion, in turn, cannot discriminate different degrees of set-identifiability. Mod-

els with irregular point in the parameter space include the normal instrumental variable

model (Hausman, 1974), the finite parametric mixture model (Tamer, Chen and Ponomareva,

2014), the normal sample selection model (Lee and Chesher, 1986), and the skew-normal lo-

cation scale model (Hallin and Ley, 2012). Models with different degrees of set-identifiability

include the normal switching regression model (Vijverberg, 1993). Unlike the Fisher matrix

criterion, the goodness-of-identifiability criterion can discriminate the identifying power at

regular and irregular points of the Fisher matrix. Unlike the Hellinger distance criterion,

the goodness-of-identifiability criterion can discriminate different degrees of set-identifying
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power.

Related Literature. The Fisher matrix and Hellinger distance criteria only provide qualita-

tive measures for identifying power. The Fisher matrix criterion was introduced by Rothen-

berg (1971). It was related to the Kullback-Lieber divergence by Bowden (1973). The

inability of the Fisher matrix criterion to discriminate identifiability from lack of it when the

value of a parameter is an irregular point was noticed by e.g., Stoica and Söderström (1982)

and Sargan (1983). Pacini (2022) shows that the Hellinger distance criterion, introduced by

Beran (1977), can discriminate identifiability from lack of it for irregular points of the Fisher

matrix. However, the Hellinger distance criterion, as already mentioned, cannot discriminate

different degrees of set-identifiability.

2. Definitions and Methods

2.1 Parametric Statistical Models. Let Yi denote a random variable. The available data

{Yi}Ni=1 are N independent and identically distributed replications of Yi. The random vari-

able Yi takes values on a sample space Y . Let Pθ be a probability function defined on the

measurable space (Y ,A) and index by a parameter θ ∈ Θ. The set A is the σ-field of Borel

subsets A ∈ Y . The parameter space Θ is a subset of RK for a positive integer K. Let

{Pθ}θ∈Θ be a family of probability functions. We assume that, for any θ ∈ Θ, Pθ is abso-

lutely continuous with respect to a σ-finite measure µ on (Y ,A). Let fθ = dPθ/dµ denote

the density of Pθ with respect to µ. The parametric statistical model is FΘ = {fθ}θ∈Θ. We

now impose the regularity conditions by Rothenberg (1971). We maintain them through the

rest of this note.

Assumption 1. FΘ is such that: (i) Θ is an open set in RK . (ii) fθ ≥ 0 and
∫
fθdµ = 1 for
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all θ ∈ Θ. (iii) supp(fθ) := {y ∈ Y : fθ(y) > 0} is the same for all θ ∈ Θ. (iv) For all θ in a

convex set containing Θ and for all y ∈ supp(fθ), the functions θ 7→ fθ and θ 7→ `(θ) := ln fθ

are continuously differentiable a.e.µ. (v) The elements of the matrix E[O`(θ)O`(θ)>] are

finite and are continuous functions of θ everywhere in Θ.

Pacini (2022) presents examples and counterexamples illustrating Assumption 1.

2.2 Local Identifiability and Regular Points. The Fisher matrix I(θ) is the variance-covariance

of the score

O`(θ) := O ln fθ, where I(θ) := E[O`(θ)O`(θ)>]− E[O`(θ)]E[O`(θ)>].

The following definitions, of local identifiability and regular point to a matrix, are from

Rothenberg (1971).

Definition 1. A parameter point θo ∈ Θ is locally identifiable if there exists an open neigh-

borhood of θo containing no other θ ∈ Θ such fθ = fθo .

Definition 2. A parameter point θo ∈ Θ is a regular point of the matrix I(θ) if there exists

an open neighborhood of θo in which I(θ) has constant rank.

Lewbel (2019) presents examples illustrating the concept of local identifiability. The next

example illustrates the concept of regular point.

Example 1 (Normal Squared Location Model). Set Y = R and Θ = R. Consider the normal
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squared location model

fθ(y) = (
√

2π)−1 exp
[
− (y − θ2)2/2

]
.

This model would arise, for example, if Y is the difference between a matched pair of ran-

dom variables whose control and treatment labels are not observed. The Fisher matrix is

I(θo) = 4θ2
o. For θo = 2, I(2) = 16 is a non-singular matrix. For θo = 2, I(0) = 0 is a

singular matrix. θo = 0 is a regular point of the Fisher matrix. θo = 0 is an irregular point

of the Fisher matrix. �

2.3 The Fisher Matrix Criterion. We have, see e.g., Rothenberg (1971, Theorem 1), the

following characterization of local identifiability for regular points of the Fisher matrix.

Lemma 1 (Rothenberg, 1971, Theorem 1). Let θo be a regular point of I(θ). θo is

locally identifiable if and only if I(θo) is non-singular.

All the proofs are in the Appendix. Lemma 1 does not apply to irregular points in the

parameter space.

2.4 Coming Results. We are going to investigate how one can obtain a characterization of

local identifiability applying to all the points of the parameter space and not only to points

regular to the Fisher matrix. We find convenient to make use of the following three concepts:

Hellinger distance, the diameter of a set in RK , and equivalent class. We next review them

for the sake of completeness.
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2.5 Hellinger Distance. Fix θo ∈ Θ. The Hellinger distance between densities fθ and fθ0 is

ρ(θ) :=
1

2

∥∥∥f 1/2
θ − f 1/2

θo

∥∥∥
L2(µ)

=
1

2

∫ [
f

1/2
θ − f 1/2

θo

]2
dµ.

We have the following result.

Lemma 2. ρ can take values from 0 to 1, which are independent of the choice of the domi-

nating measure µ, and ρ(θ) = 0 if and only if fθ = fθo .

The following example illustrates the Hellinger distance.

Example 1 (Continued). For the normal squared location model, the Hellinger distance is

ρ(θ) = 1− exp(−(θ2 − θ2
o)

2/8).

The derivation of this expression is in Pacini (2022). �

2.6 Diameter. Let S be a nonempty convex set in RK . Let S = {q ∈ RK : ‖q‖ = 1} denote

the unit sphere in RK . The support δS(q) and width ωS(q) functions of S in the direction

q ∈ S are

δS(q) := sup
s∈S
〈q, s〉 and ωS(q) := δS(q) + δS(−q).

Example 2. This example illustrates the support and width functions of a convex set. First,

set S = {s} to be a singleton. We have δ{s}(q) = q>s and the width ω{s}(q) = q>s− q>s is

zero. Set now S to the Euclidean unit ball B = {s ∈ RK ; ‖s‖ ≤ 1}. The support function

is δB(q) = ‖q‖ = 1, which is constant along any direction. The width is the same for any

direction and equal to ωB(q) = ‖q‖+‖−q‖ = 2‖q‖ = 2 the diameter of B. Set now S to be an
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ellipse in R2 (see Figure 1). The width is equal to the length of a chord in a given direction. �

q

δS
(q)

S

Figure 1a. Support Function at q

S S

s1

s2

q

−q

ωS
(q)

Figure 1b. Width Function at q

We use the support function to characterize the diameter of the argmin set of a contin-

uous function f : RK → R. We resort to the conjugate f ? of the lower semi-continuous

regularization of the extended-value extension of f defined by

f ? = sup
x∈cl(C)

{〈x, y〉 − f(x)}.

We have the following result.

Lemma 3. Let f : RK → [0, 1] be a continuous function that is convex relative to the

non-empty open convex set C ⊆ RK with inf f = minx∈C f(x). Then, the set of minimizers

arg minx∈C f(x) is a non-empty convex set with diameter

diam
(

arg min
x∈C

f(x)
)

= sup
q∈S

ω∂f?(0)(q),

where ∂f ?(0) is the sub-differential of f ? evaluated at 0.
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2.7 Equivalence Class. Let s and s̃ be two points in a set S. A binary relation s ∼ s̃ is an

equivalence relation if and only if it is reflexive (s ∼ s for any s ∈ S), symmetric (s ∼ s̃ if

and only if s̃ ∼ s for any s, s̃ ∈ S), and transitive (if so ∼ s̃ and s̃ ∼ s, then so ∼ s for any

so, s̃, s ∈ S). The equivalence class of s ∈ S under ∼ is defined as [s] = {s̃ ∈ S : s̃ ∼ s}.

Example 3. This example illustrates the notion of equivalence class. Two parameter points

θo and θ are said to be observational equivalent if fθ = fθo . Let denote this binary relation-

ship as θ ∼
oe
θo. ∼

oe
is an equivalence relation. The equivalence class [θ] = {θ̃ ∈ Θ : θ̃ ∼

oe
θ} is

known as the identified set. �

3. Main Result

3.1 Identifying Negentropy. We now relate the concept of local identifiability in Definition

1 to the eigenvalues of the Fisher matrix. This matrix, being a variance-covariance matrix,

is positive semi-definite. Since a positive semi-definite matrix is non-singular if and only its

smallest eigenvalue is positive, one can restate Lemma 1 as follows.

Lemma 4. Let θo be a regular point of I(θ). θo is locally identifiable if and only if

ιn(θo) := ln[1 + min eigen(I(θo))]︸ ︷︷ ︸
’identifying negentropy’

> 0.

The ’identifying negentropy’ is a numerical measure, certainly not the only one, associated to

the ability of a model to discriminate nearby values of the parameter of interest.2 It misses

however the inability of a model to discern nearby values of the parameter of interest. We

2As an alternative measure of ’identifying negentropy’, one could use, for instance, the determinant of
the Fisher Matrix.
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next measure this inability by the ’identifying entropy’.

3.2 Identifying Entropy. Let ΘO be an open convex subset of Θ such that θo ∈ ΘO and

ρ : ΘO → [0, 1] is a convex function. We have the following result.

Lemma 5. The equivalent class [θo] = {θ ∈ ΘO : θ ∼
oe
θo} is a non-empty convex subset in Θ.

We now define the identifying entropy in terms of the diameter of [θo] as

ιe(θo) = ln[1 + diam([θo])],

where we set ln(∞) =∞. The ’identifying entropy’ is a measure, certainly not the only one,

of the inability of a model to discern nearby values of the parameter of interest.3

3.3 A Goodness-of-Identifiability Criterion. Define the local goodness-of-identifiability crite-

rion ι : Θ → R̄ evaluated at θo by taking the difference between the identifying negentropy

and entropy:

ι(θo)︸︷︷︸
’goodness-of-identifiability’

:= ln[1 + min eigen(I(θo))]︸ ︷︷ ︸
’identifying negentropy’

− ln[1 + diam([θo])]︸ ︷︷ ︸
’identifying entropy’

.

Using this criterion, we have the following result.

Lemma 6. θo is locally identifiable if and only if the identifying negentropy is greater or

equal than the identifying entropy: ι(θo) ≥ 0.

3As an alternative measure of ’identifying entropy’, one could use, for instance, the volume of [θo].
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This result characterizes local identifiability for any point in the parameter space and not

just for regular points of the Fisher matrix, c.f. the Lemma 6 with Lemmas 1 and 4. It

generalizes the main result in Rothenberg (1971, Theorem 1).

We now would like to characterize ι(θo) in terms of the Hellinger distance. The following

result relates the Fisher matrix to the Hellinger distance.

Lemma 7. Assume that θ 7→ f
1/2
θ is continuously differentiable a.e.µ. Then, I(θo) =

4O2ρ(θo).

The assumption on the differentiability of θ 7→ f
1/2
θ is mild given that we have already as-

sumed that θ 7→ ln fθ is continuously differentiable. Since I(θo) is a positive semi-definite

matrix, it follows from this Lemma, by the characterization of a convex function in Rock-

afellar and Wets (1998, Theorem 2.14), that θ 7→ ρ(θ) is a convex function relative the

non-empty open convex set ΘO. Since this function is, by Lemma 2, also bounded between

0 and 1 and attains a minimum, one is then justified to use Lemma 3 to characterize local

identifiability in terms of the Hellinger distance and its conjugate as follows.

Theorem 1. Let Assumption 1 hold. Let us assume that θ 7→ f
1/2
θ is continuously differen-

tiable a.e.µ. θo is locally identifiable if and only if:

min
q:‖q‖=1

〈q, 4O2ρ(θo)q〉 ≥ sup
q:‖q‖=1

ω∂ρ?(0)(q).

Two remarks are in order. First, Theorem 1 applies to all the points in the parameter space

and not only to regular points of the Fisher matrix. When ρ : Θo → [0, 1] has a unique
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minimizer, ω∂ρ̆?(0)(q) = 0 and θo is locally identifiable even if the Fisher matrix is singular.

Second, the objective functions in the optimization problems in the characterization in The-

orem 1 are both convex functions. One could use this result, for instance, for constructing a

test for the local identifiability of θo. This construction, which is of practical importance in

applications for which identifiability is costly to deduce, is out of the scope of this note and

it is left for future research.

4. Conclusion

This note provides a novel criterion formalizing the notion of identifiability power of

a parametric statistical model. This criterion, unlike the existing identifiability criterion

based on the Fisher matrix, applies to all the points in the parameter space. It also offers

a characterization of the set of observational equivalent values in the parameter space in

terms of the Hellinger distance. These are both novel theoretical advances towards the

quantification of the identifying power of econometric models.

11



References

Beran, R. (1977): ”Minimum Hellinger Distance Estimates for Parametric Models”, Annals

of Statistics.

Bowden, R. (1973): ”The Theory of Parametric Identification”, Econometrica.

Hallin, M. and C. Ley (2012): ”Skew-Symmetric Distributions and Fisher Information: The

Double Sin of the Skew-Normal”, Bernoulli .

Hausman, J. (1974): ”Full Information Instrumental Variables Estimation of Simultaneous

Equation Systems”, Annals of Economic and Social Measurement.

Lee, L. and A. Chesher (1986): ”Specification Testing when Score Test Statistics are Iden-

tically Zero”, Journal of Econometrics.

Lewbel, A. (2019): ”The Identification Zoo: Meanings of Identification in Econometrics”,

Journal of Economic Literature.

Pacini, D. (2022): ”Identification in Parametric Models: The Hellinger Distance Criterion”,

Econometrics.

Rockafellar, T. and R. Wets (1998): Variational Analysis, Springer.

Rothenberg, T. (1971): ”Identification in Parametric Models”, Econometrica.

Sargan (1983): ”Identification and Lack of Identification”, Econometrica.
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Appendix: Proofs

Proof of Lemma 1. As already indicated in the text, this result was established by Rothenberg

(1971, Theorem 1). For the sake of completeness, we replicate the proof in Rothenberg

(1971). By the Mean Value Theorem, there is θ? between θ and θo such that

`θ − `θo = O`θ(θ?)
>(θ − θo).

Assume that θo is not locally identifiable. Then, there is a sequence {θj}j converging to

θo such that `θj = `θo . This implies O`θ(θ?)>qj = 0, where qj = (θj − θo)/‖θj − θo‖. The

sequence {qj}j belongs to the unit sphere and therefore is convergent to a limit qo. As θj

approaches θo, qj approaches qo and in the limit q>o O`θ(θo). But this implies that

q>I(θo)q = q>E[O`θ(θo)O`θ(θo)
>]q = 0,

and, hence, I(θo) must be singular.

To show the converse, suppose that I(θ) has constant rank r < K in a neighborhood of

θo. Consider then the eigenvector vθ associated to one of the zero eigenvalues of Iθ. Since

0 = v>θ I(θ)vθ, we have for all θ near θo

v>θ O`θ = 0.

Since I(θ) is continuous and has constant rank, the function θ 7→ vθ is continuous in a

neighborhood of θo. Consider now the curve γ : [0, t?] → RK defined by the function θ(t)

which solves the differential equation ∂θ(t)
∂t

= vθ with θ(0) = θo for 0 ≤ t ≤ t?. The log

density function is differentiable in t with

∂`θ(t)
∂t

= v>θ(t)O`θ(θ(t)).

13



But by the preceding display this is zero for all 0 ≤ t ≤ t?. Thus θ 7→ `θ is constant on the

curve γ and θo is not locally identifiable. �

Proof of Lemma 2. Write

ρ(θ) =
1

2
‖f 1/2

θ − f 1/2
θo
‖L2(µ) =

1

2

∫
(f

1/2
θ − f 1/2

θo
)2d = 1−

∫
f

1/2
θ f

1/2
θo
dµ.

Hence, ρ(θ) = 0 if and only if fθ = fθo and ρ(θ) = 1 if and only if fθfθo = 0. To show that

ρ(θ) does not depend on the choice of the dominating measure µ, let gθ and gθo denote the

densities of Pθ and Pθo relative to another dominating measure ν. Let h and k denote the

densities of µ,ν relative to µ + ν. The density of Pθ relative to µ + ν is fθh and also gθk.

Thus, fθh = gθk and also fθoh = gθok. Hence, (fθfθo)
1/2h = (gθgθo)

1/2k and

∫
(gθgθo)

1/2dν =

∫
(gθgθo)

1/2kd(ν + µ) =

∫
(gθgθo)

1/2hd(ν + µ) =

∫
(fθfθo)

1/2dµ

which completes the proof. �

Proof of Lemma 3. The set of minimizers arg minx∈C f(x) is non-empty because we have

assumed that inf f = minx∈C f(x). Define the lower semi-continuous (lsc) regularization of

f as

f(x) = lim inf
x̃→x

f(x), x ∈ C,

and define the extended-valued extension of f as

f̃(x) :=


f(x) if x ∈ C

∞ if x 6∈ C

Since f is convex relative to C, f̃ is a proper lsc convex function. It follows then that the set

of minimizers arg minx∈C f(x) = arg minx∈RK f̃(x) is convex by Rockafellar and Wets (1998,
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Theorem 2.6).

We now characterize the diameter of arg minx∈C f(x) in terms of its support function. To

avoid clutter in the notation, denote X? = arg minx∈C f(x). Consider first the case when X?

is bounded. For any two points x and x̃ in X?, let d(x, x̃) = ‖x− x̃‖ denote their distance.

The diameter of arg minx∈C f(x) is defined as

diam(X?) := sup
x,x̃∈X?

d(x, x̃).

Denote the upper bound of the width function by ω? = supq∈S ωX?(q) and let q? ∈ S be a

direction such that ω? = ωX?(q?). On each of the two hyperplanes perpendicular to q?, there

is a point in cl(X?). Thus,

ω? ≤ diam(X?).

There are also two points x, x̃ such that diam(X?) = ‖x− x̃‖. Consider now two hyperplanes

passing each through x and x̃ that are perpendicular to x and x̃. These hyperplanes are

supporting hyperplanes of X?, for otherwise we could find two points of X? at a distance

apart greater than diam(X?). Thus, it follows that

ω? ≥ diam(X?).

Hence, diam(X?) = supq:‖q‖=1 ωX?(q) = supq:‖q‖=1{δX?(q) + δX?(−q)}. For the case when X?

is unbounded, it suffices to notice that diam(X?) =∞ and ωX? =∞.

We finally characterize the support function S 3 q → δX?(q). Fix q ∈ S. Since f : RK →

R̄ is a proper, lsc, convex function, by Rockafellar and Wets (1998, Theorem 11.8), it follows

that X? = ∂f ?(0), whence δX?(q) = δ∂f?(0)(q). �

Proof of Lemma 4. In the text. �

Proof of Lemma 5. Since the second derivative of θ 7→ ρ(θ) at θo is a positive semi-definite
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matrix, see Lemma 7, it follows from Rockafellar and Wets (1998, Theorem 2.14) that ΘO

is a non-empty open convex set. Moreover, since ρ(θ) = 0 iff θ ∼
oe
θo and ρ(θ) > 0 otherwise,

one has

[θo] = arg min
θ∈ΘO

ρ(θ).

Since ρ : ΘO 7→ [0, 1] is a convex function, one is justified to claim that [θo] is a non-empty

convex subset of Θ. �

Proof of Lemma 6. (If) Assume ι(θo) ≥ 0. Consider first the case ι(θo) = 0, which implies

ln[1 + min eigen(I(θo))] = ln(1 + diam([θo])). Since ln(1 + diam([θo])) ≤ 0 and ln[1 +

min eigen(I(θo))] ≥ 0, in this case one necessarily has ln(1 + diam([θo])) = 0, whence θo

is locally identifiable because diam([θo]) = 0 if and only if [θo] = {θo}. Consider now

the case ι(θo) > 0, which implies ln[1 + min eigen(I(θo))] > 0 and whence θo is locally

identifiable by Lemma 1. (Only if) Assume now that θo is locally identifiable, which implies

ln(1 + diam([θo])) = 0. One then has ι(θo) = ln[1 + min eigen(I(θo))] ≥ 0, where the last

inequality follows from the observation that I(θo) is a positive semi-definite matrix. �

Proof of Lemma 7. We now follow Pacini (2022, Lemma 4). Assume first that θ is a scalar,

i.e., K = 1. Re-write

ρ(θ) :=
1

2

∥∥∥f 1/2
θ − f 1/2

θo

∥∥∥
L2(µ)

=
1

2

[ ∫ (
f

1/2
θ − f 1/2

θo

)2
dµ

]
= 1−

∫
f

1/2
θ f

1/2
θo
dµ.

Differentiating θ 7→ ρ(θ), one has that

Oρ(θ) = −1

2

∫
f

1/2
θo
f
−1/2
θ Ofθ(θ)dµ =

1

2

∫
(f

1/2
θ − f 1/2

θo
)Ofθ(θ)

f
1/2
θ

dµ.

Since θ 7→ ρ(θ) reaches a minimum at θo, one has Oρ(θo) = 0 and so

Oρ(θ)− Oρ(θo)

(θ − θo)
=

1

2

∫
(f

1/2
θ − f 1/2

θo
)Ofθ(θ)

(θ − θo)f 1/2
θ

dµ,
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which, by the Lebesgue Dominated Convergence Theorem, satisfies

O2ρ(θo) := lim
θ→θo

Oρ(θ)− Oρ(θo)

θ − θo
=

1

4
I(θo),

because the integrand convergence point-wise

(f
1/2
θ − f 1/2

θo
)Ofθ(θ)

(θ − θo)f 1/2
θ

→ Ofθ(θo)Ofθ(θo)
>

2fθo
=
fθoO ln fθ(θo)O ln fθ(θo)

>fθo
2fθo

=
1

2
O ln fθ(θo)O ln fθ(θo)

>fθo ,

and it is dominated by a sum of integrable functions

∣∣∣∣(f 1/2
θ − f 1/2

θo
)Ofθ(θ)

(θ − θo)f 1/2
θ

∣∣∣∣ ≤
(
f

1/2
θ − f 1/2

θo

)2

(θ − θo)2
+
Ofθ(θ)Ofθ(θ)>

fθ
.

To extend this argument to the case when θ is a vector, one applies the argument above

element-wise to the components of O2ρ(θo). �

Proof of Theorem 1. By Lemma 7,

min eigenI(θo) = min eigenO24ρ(θo) = min
q:‖q‖=1

〈q, 4O2ρ(θo)q〉,

where the last equality follows from the Courant-Fischer Theorem. The claim follows then

from Lemma 3 applied to f = ρ and C = ΘO after noticing, from Lemmas 2 and 7, that

ρ : Θ 7→ [0, 1] is a continuous function that is convex relative to the non-empty open convex

set ΘO . �
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