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Abstract

This paper proposes a new generalized spatial panel data model that

accounts for skewness in the data. Existing studies on spatial panel data

models typically assume a normal distribution for the random error com-

ponents. This assumption may not be appropriate in many applications.

Here we consider a more flexible and powerful approach that generalizes

the traditional model. We propose a skew-normal generalized spatial

panel data model that adopts a multivariate skew normal distribution

for the random error components. For parameter estimation, a Bayesian

inference algorithm is developed. A simulation study is conducted to

compare the proposed skew normal spatial model with the traditional

(normal) spatial model. The proposed model is also illustrated using a

real data set of cigarette demand. For this applied data, we analyze the

elasticity of per pack cigarette price and per capita disposable income.
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1 Introduction

Panel data models are now widely used in many different disciplines, includ-

ing political science, sociology, finance, economics, and marketing. Analysis

of panel data regression models with the structure of spatial correlation (or

spatial dependence) has great importance and interest in empirical economic

research. Specifically, we focus on the estimation of panel models with random-

effects (RE) specification which takes into account the spatial dependence in

the disturbance terms; including unit specific errors and remainder distur-

bances. Anselin (1988) provides a panel model with a spatial autoregressive

(SAR) structure on the remainder disturbances; Kapoor et al. (2007) propose

a different specification of the model with a SAR structure in the overall distur-

bance term; Anselin et al. (2008) and Fingleton (2008) adopt different spatial

moving average (SMA) structure in the two disturbances. In an attempt to

nest the models by Anselin (1988) and Kapoor et al. (2007), Baltagi et al.

(2007) suggest an extended model. Subsequently, Lee and Yu (2012) pointed

out that a RE model with serial correlation process in the remainder distur-

bances encompasses not only the previous structures, but also a general case

of both SAR and SMA structures (SARMA). This generalized spatial panel

data model is not necessarily more valuable nor easier to deal with than the

parsimonious models in an empirical application. However, it is a more general

approach that allows for both SAR and SMA structure. Hence, we consider

this generalized model as the basis of our new generalized spatial panel data

model in this paper. As such, the proposed model formally encompasses the

aforementioned models as special cases.

In applied work in economics, one often uses the logarithmic transforma-

tion of the variables, rather than working with the raw variables directly. This

is because the estimated regression coefficients can be directly interpreted as

elasticities (the relative response of one variable to changes in another variable)

and thus there is no need to take the partial derivatives afterwards. Although

this approach gives reasonable empirical results, it has several drawbacks such

as reduced information, difficulty in interpreting the results, no universal trans-

formation, and no guarantee of joint normality. These issues motivate us to

consider the generalized spatial panel data model that takes into account the

skewness in the disturbance terms.
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There are several multivariate versions of the skew-normal distribution in

the literature; see Azzalini and Dalla Valle (1996), Azzalini and Capitanio

(1999), Arellano-Valle and Azzalini (2006) for a discussion of the many exist-

ing variants, and a unified treatment of these; Lee and McLachlan (2013, 2014,

2016) also discuss some of these multivariate variants. All of these distribu-

tions share several properties similar to the multivariate normal distribution.

Arellano-Valle et al. (2007) used the skew-normal distribution proposed by

Sahu et al. (2003) for a linear mixed effects model, but did not consider spatial

dependence. Indeed, the aforementioned model is really a skew-normal linear

mixed model with spatial dependence. We are not aware of any linear regres-

sion model within a spatial econometric context that considers a skew-normal

distribution for the error term, although there have been a few applications

of the skew-normal distribution in the context of spatial linear regression-type

models with continuous observations; see, for example, Molenaar et al. (2010),

Meintanis and Hlavka (2010), Smith et al. (2012), Lin et al. (2016) and Bhat

et al. (2017).

In this paper, we show how the skew-normal is particularly well suited for

spatial panel model analysis because it requires only two additional parameters

to be estimated relative to the traditional spatial panel models. This is because

the structural error terms are marginally skew-normal and distributed with the

same amount of skew parameters across random error components. We exploit

this feature and impose this specific restrictive form on the multivariate skew-

normal distribution that has not been used in the literature. Then, we show

that how the generalized spatial panel model with random error components of

the skew-normal variety can be estimated with relative ease using the Bayesian

estimation approach described in Arellano-Valle et al. (2007).

Overall, this paper contributes to the spatial panel data analysis field by

providing a more flexible spatial panel data model with a general and robust

formulation for the disturbance terms using the skew-normal distribution of

Sahu et al. (2003) given by Arellano-Valle and Genton (2005). Logarithmic

specification for estimation is also adopted because we believe it is based on

a structural basis which is certainly plausible in many empirical settings of

spatial interaction. However, our methodology is immediately applicable to the

spatial disturbance specification without the need to perform transformation

of data and we have more general spatial specifications too. Although the
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coefficients in the skew spatial panel models do not directly provide elasticity

values of each variable, we can derive them with a simple computation.

The remainder of the paper is organized as follows. In Section 2, the gen-

eralized model with various spatial panel models as special cases of the model

and the intended multivariate skew-normal (MSN) distribution will be briefly

reviewed. In that section, we assume that the random error components of

the generalized model follow the MSN distribution. After that, we show that

the log-likelihood function of the observed data is of high dimension and does

not have a closed form expression, and so the method of Bayesian hierarchical

estimation is used. In Section 3, we specify the prior distributions for the

unknown model parameters and obtain the joint posterior distributions of the

parameters using the Markov chain Monte Carlo (MCMC) algorithm. In Sec-

tion 4, based on several information criteria, we determine which model is more

appropriate for our practical application. In Section 5, two applications of the

proposed model are presented using a simulated data set and the real data

set of cigarette consumption. Finally, Section 6 is dedicated to the concluding

remarks.

2 The Generalized Model

In this section we review the generalized spatial panel data model as pointed

out by Lee and Yu (2012), but with no serial correlation, which nest existing

RE spatial panels as special cases. Let yit denote the observation on the ith

space for the tth time point, i = 1, ..., N , t = 1, ..., T . The model with spatial

dependence and RE using Baltagi and Liu (2016) notation is given as follows:

yt = Xtβ + ut, t = 1, ..., T,

ut = u1 + u2t,

(1)

with

u1 = ρ1W1u1 + (IN + ϱ1M1)µ,

u2t = ρ2W2u2t + (IN + ϱ2M2)νt,

(2)

where yt = (y1t, ..., yNt)
′
is an (N × 1) column vector of continues response
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values at time t, with N unique space units, Xt = [x1t, ...,xNt]
′
denotes the

(N × K) matrix of observations on the non-stochastic explanatory variables

in all spaces at time t for a set of K exogenous variables corresponding to

the fixed effects, and β denotes the parameter vector of (K × 1) regression

coefficients. The disturbance component ut follows an error term model which

involves the sum of two disturbances. The (N × 1) vector of random error

variables u1 = (u1, ..., uN)
′
is assumed to be a time-invariant space-specific

vector with no time subscript, while the (N × 1) vector of the remainder

disturbance u2t = (u12t, ..., uN2t)
′
varies with time.

In spatial panel data models, the correlation structure between each pair

of spatial units is specified by means of spatial weights matrices. In the above

model, error components u1 and u2t are allowed to incorporate spatial cor-

relation with both autoregressive and moving average features. The matrices

Wr (and Mr); r = 1, 2 are (N × N) non-stochastic spatial weights matrices

that generate the spatial dependence with zeros in the main diagonals and

ones corresponding to neighbouring. As we assume that Wr (and Mr) is non-

normalized, thus ρr (and ϱr) is the scalar spatial autoregressive (and spatial

moving average) coefficients with the compact subset of |ρr| < 1/κrmax (and

ϱr < 1/ϑrmax) where κrmax (and ϑrmax) are the absolute values of the largest

eigenvalues of Wr (and Mr) which are assumed to be bounded away from zero

by some fixed positive constant. To limit dependence, Wr (and Mr) can also

be normalized so that each row sums to one and ρr (and ϱr) are uniformly

bounded in absolute value. Following Baltagi et al. (2012), B1 = IN − ρ1W1,

B2 = IN −ρ2W2, D1 = IN +ϱ1M1 and D2 = IN +ϱ2M2 is defined. It follows

that u1 and u2t in equation (2) can be rewritten as

u1 = A−1
1 µ,

u2t = A−1
2 νt,

(3)

where A1 = D−1
1 B1, A2 = D−1

2 B2 and they are assumed to be non-singular.

In this study, we assume that all four weight matrices are equal to W ,

but with different spatial coefficients. It is commonly assumed that in the

(N × 1) space-specific vector µ = (µ1, ..., µN)
′
, the µi’s are the unobserved

space-specific effects. The common assumption of distributions for the vector

µ and νt are NN(0, σ
2
µIN) and NN(0, σ

2
νIN) respectively and they are taken
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to be independent.

In spatial panel models, the data are ordered by time periods rather than

space units, because this ordering for modelling spatial dependence is more

convenient. Consequently, the extended form of the model (1-3) at all spaces

and at all times is given by,

y = Xβ + u,

u = (ιT ⊗A−1
1 )µ+ (IT ⊗A−1

2 )ν,

(4)

where the response y = [y
′
1, ...,y

′
T ]

′
is of dimension (NT ×1) and the explana-

tory matrix X = [X
′
1, ...,X

′
T ]

′
is (NT ×K). In the disturbance term, ιT and

IT denote a vector of ones of dimension T and an identity matrix of dimension

T , respectively, and ⊗ denotes the Kronecker product.

This model nests various RE spatial panel models in the spatial economet-

rics literature, including the following:

(1) ρ1 = 0 and ϱ1 = ϱ2 = 0, Anselin (1988)-random effects spatial autoregres-

sive (RE-SAR) model.

(2) ρ1 = ρ2 and ϱ1 = ϱ2 = 0, Kapoor et al. (2007)-spatial autoregressive

random effects (SAR-RE) model.

(3) ϱ1 = ϱ2 = 0, Baltagi et al. (2007)-generalized random effects spatial au-

toregressive (GRE-SAR) model.

(4) ρ1 = ρ2 = 0 and ϱ1 = 0, Anselin et al. (2008)-random effects spatial mov-

ing average (RE-SMA) model.

(5) ρ1 = ρ2 = 0 and ϱ1 = ϱ2, Fingleton (2008)-spatial moving average random

effects (SMA-RE) model.

In addition, it also includes

(6) Lee and Yu (2012) spatial autoregressive moving average random effects

(SARMA-RE) model with ρ1 = ρ2 and ϱ1 = ϱ1.

In this paper, we develop a new spatial panel data model by replacing the

multivariate normality assumption with the multivariate skew-normal distri-

bution for u in equation (4). We consider the MSN distribution proposed by

Sahu et al. (2003) and adopt a parametrization that has the advantage of

being closed under marginalization and conditioning. In the next section, we

will examine the stochastic representation of this skew-normal random vector

as given in Arellano-Valle and Genton (2007).
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2.1 The MSN Distribution of Sahu et al. (2003)

An n-dimensional random vector Y follows a n-variate skew-normal distri-

bution with (n × 1) location parameter vector m, (n × n) positive-definite

dispersion matrix Σ and (n × n) skewness diagonal matrix ∆ if its density

function is given by

f(y|m,Σ,∆) = 2nϕn(y|m,Σ+∆∆
′
)×Φn(∆

′
(Σ+∆∆

′
)−1(y−m)|0, (In+∆

′
Σ−1∆)−1)

(5)

where ϕn(x|m,Σ) denotes the probability density function (pdf) and Φn(x|m,Σ)

denotes the cumulative distribution function (cdf) of the n-variate normal dis-

tribution Nn(m,Σ) with mean vector m and covariate matrix Σ evaluated at

x. Note that, if m = 0 and Σ = In; ϕn(x|m,Σ) and Φn(x|m,Σ) will be

denoted by ϕn(x) and Φn(x), respectively.

For the multivariate skew-normal distribution defined in (5), we note that

(In +∆
′
Σ−1∆)−1 = In −∆

′
(Σ +∆∆

′
)−1∆ and the matrices ∆ and Σ are

diagonal. To simplify implementation, we let Σ = σ2In where σ2 > 0 is

a variance component. Also, we have that ∆ = diag(δ1, δ2, ..., δn) in which

δ = (δ1, δ2, ..., δn)
′
is a vector of skewness parameters. In the sequel we assume

δ1 = δ2 = ... = δn to simplify the fitting, and hence ∆ = δIn, where δ ∈ R

is a scalar skewness parameter. In our empirical analysis, we expect δ to be

positive because the log transformation is the most popular transformation for

positively skewed distribution in linear regression.

If Y has the density (5) we write Y ∼ SNn(m,Σ,∆). When ∆ = 0,

this MSN distribution reduces to the usual symmetric multivariate Nn(m,Σ)

density. Furthermore, Y has the following convenient stochastic representation

Y =∆|X0|+X1, (6)

where X0 ∼ Nn(0, In) and X1 ∼ Nn(m,Σ) are two independent random

vectors. Note that |X0| is the vector where its ith element is equal to the

absolute value of the ith element of X0. This stochastic representation of Y

is useful for random number generation and for our theoretical purposes.

Let w = |X0| and let I{w > 0} be an indicator function which is 1 if every
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element of w is greater than zero, and zero otherwise. Then w follows a n× 1

standard normal distribution Nn(0, In) that is truncated to the space w > 0.

Thus it follows that the hierarchical representation of (6) is given by

Y |w ∼ Nn(m+∆w,Σ),

w ∼ Nn(0, In)I{w > 0}.
(7)

2.2 The Generalized Model with the MSN Distribution

Considerable attention has been given to relaxing the normality assumption

for inference about the unknown parameters in linear mixed effects models.

Arellano-Valle et al. (2005) assumed that both random effects and error terms

are distributed as skew-normal distributions. Here, we suppose that µ has

independently and identically (iid) SNN(0, σ
2
µIN , δµIN) distribution and νt

has iid SNN(0, σ
2
νIN , δνIN) distribution assumed to be independent of each

other. The problem of departure from normality will be supported using the

above hierarchical model considerations.

We also suppose that the non-stochastic matricesA1 andA2 are orthogonal

matrices. Thus, under the present assumptions and, as a direct consequence

of the location-scale extension of the skew-normal distribution, Corollary 2.3

in Arellano-Valle and Genton (2005), we have

u1 = A−1
1 µ|σ2

µ, δµ, ρ1, ϱ1 ∼ SNN(0, (A
′
1A1)

−1σ2
µ,A

−1
1 δµ). (8)

Hence the response distribution at time point t is given by,

yt|β,µ, σ2
ν , δν , ρ1, ρ2, ϱ1, ϱ2 ∼ SNN(Xtβ +A−1

1 µ, (A
′

2A2)
−1σ2

ν ,A
−1
2 δν). (9)

Similarly, under the assumption that

u2 = (IT ⊗A−1
2 )ν|σ2

ν , δν , ρ2, ϱ2 ∼ SNNT (0, (IT ⊗ (A
′

2A2)
−1)σ2

ν , (IT ⊗A−1
2 )δν),

(10)
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the response distribution at all time points is given by,

y|β,µ, σ2
ν , δν , ρ1, ρ2, ϱ1, ϱ2 ∼ SNNT (Xβ + (ιT ⊗A−1

1 )µ,

(IT ⊗ (A
′
2A2)

−1)σ2
ν , (IT ⊗A−1

2 )δν).

(11)

Hence, the conditional pdf of the response y is

fY (y|µ,β, σ2
ν , δν , ρ1, ρ2, ϱ1, ϱ2) =

2NTϕNT (y|Xβ + (ιT ⊗A−1
1 )µ, (IT ⊗ (A

′
2A2)

−1)(σ2
ν + δ2ν))

×ΦNT (
δν

(σ2
ν+δ2ν)

(IT ⊗A−1
2 )−1(y −Xβ − (ιT ⊗A−1

1 )µ|0, ( σ2
ν

σ2
ν+δ2ν

)INT ).

(12)

It is of particular interest to make inference about the unknown collection

of parameters θ = {β′
, σ2

ν , σ
2
µ, δν , δµ, ρ1, ρ2, ϱ1, ϱ2} that are assumed to be in-

dependent of each another. Inference with this type of model has to be based

on the marginal distribution for the response y unless the data are analysed

in a Bayesian framework (Molenberghs and Verbeke 2000). By computing the

following integral, the marginal density of y can be obtained,

fY (y|θ) =
∫
RN f(y|µ,β, σ2

ν , δν , ρ2, ϱ2)f(µ|σ2
µ, δµ, ρ1, ϱ1)dµ

=
∫
RN 2N(T+1)ϕNT (y|Xβ + (ιT ⊗A−1

1 )µ, (σ2
ν + δ2ν)(IT ⊗ (A

′
2A2)

−1))

×ΦNT (
δν√

σ2
ν(σ

2
ν+δ2ν)

(IT ⊗A−1
2 )−1(y −Xβ − (ιT ⊗A−1

1 )µ)|0, INT )

×ϕN(µ|0, (σ2
µ + δ2µ)IN)× ΦN(

δµ
(σ2

µ+δ2µ)
µ|0, ( σ2

µ

σ2
µ+δ2µ

)IN)dµ.

(13)

In the above, we let

ϕNT (y|Xβ + (ιT ⊗A−1
1 )µ, (σ2

ν + δ2ν)(IT ⊗ (A
′
2A2)

−1))× ϕN(µ|0, (σ2
µ + δ2µ)IN)

= ϕNT (y|Xβ,Σ)ϕN(µ|µ1,Λ),

(14)
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where

Σ = (σ2
ν + δ2ν)(IT ⊗ (A

′
2A2)

−1) + (σ2
µ + δ2µ)(JT ⊗ (A

′
1A1)

−1), (15)

µ1 = (σ2
ν + δ2ν)

−1Λ(A
′
2A2)

−1′(IT ⊗ (A
′
2A2)

−1)−1(y −Xβ), (16)

and

Λ = ((σ2
µ + δ2µ)

−1IN + (σ2
ν + δ2ν)

−1(ιT ⊗A−1
1 )

′
(IT ⊗ (A

′
2A2)

−1)−1(ιT ⊗A−1
1 ). (17)

Also, we let

ΦNT (
δν√

σ2
ν(σ

2
ν+δ2ν)

(IT ⊗A−1
2 )−1(y −Xβ − (ιT ⊗A−1

1 )µ)|0, INT )

×ΦN(
δµ

(σ2
µ+δ2µ)

µ|0, σ2
µ

(σ2
µ+δ2µ)

IN)

= ΦN(T+1)(−Γµ| − µ2,R),

(18)

where

µ2 =

(
δν√

σ2
ν(σ

2
ν+δ2ν)

(IT ⊗A−1
2 )−1(y −Xβ)

0N

)
, (19)

Γ =

 δν√
σ2
ν(σ

2
ν+δ2ν)

(IT ⊗A−1
2 )−1(ιT ⊗A−1

1 )

− δµ√
σ2
µ(σ

2
µ+δ2µ)

IN

 , (20)
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R =

(
INT 0

0
σ2
µ

(σ2
µ+δ2µ)

IN

)
. (21)

Lastly, to find the marginal density of y, we make use of equations (14) and

(18) to obtain

fY (y|θ) =
∫
RN 2N(T+1)ϕNT (y|Xβ,Σ)ϕN(µ|µ1,Λ)ΦN(T+1)(−Γµ| − µ2,R)dµ

= 2N(T+1)ϕNT (y|Xβ,Σ)
∫
RN ϕN(µ|µ1,Λ)ΦN(T+1)(−Γµ| − µ2,R)dµ

= 2N(T+1)ϕNT (y|Xβ,Σ)ΦN(T+1)(µ2|Γµ,R+ ΓΛΓ
′
).

(22)

The proof of the above results is given in the Appendix of the Arellano-Valle

et al. (2007). The complete log-likelihood function for θ given the response

sample y can be written as

ι(θ|y) ∝ −1

2
log|Σ|−1

2
(y−Xβ)

′
Σ−1(y−Xβ)+logΦN(T+1)(µ2−Γµ|0,R+ΓΛΓ

′
).

(23)

As this likelihood function is of high dimension and has no closed form,

the estimation of the parameters is complex and we cannot directly calculate

the posterior distribution of θ based on the observed data. Therefore, as

an alternative, we apply a Bayesian computational method via the MCMC

procedure. Thus, from (23) we can sample using the Gibbs sampler and infer

the marginal posterior distribution of interest. The Gibbs sampler works by

drawing samples iteratively from the conditional posterior distributions.

3 Specifying prior and posterior distributions

for Bayesian inference

In order to determine the posterior distributions of our model parameters

through Bayesian inference implementation, we need to specify the prior dis-

tribution on all the unknown parameters in θ. As we do not have prior infor-

mation about historical or previous experiments data, we proceed by assigning
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conjugate but weakly informative prior distributions to obtain well-defined and

proper posteriors for our parameters. A popular choice to ensure posterior pro-

priety in linear models with RE is to consider proper conditionally conjugate

priors like non-informative distributions, that is, prior distributions with large

variances. Here, we use normal priors for the fixed-effects, inverse gamma pri-

ors for variance parameters and truncated-normal for skewness parameters, as

suggested in Arellano-Valle et al. (2007). The prior distributions were adopted

with their density functions for the β, σ2
ν , σ

2
µ, δν , δµ parameters given as:

• π(β|β0,Γβ0) ∝ exp{−1
2
(β − β0)

′
Γ−1

β0
(β − β0)},

• π(σ2
ν |σ2

ν0
, γν0) =

(γν0 )
σ2
ν0

Γ(σ2
ν0

)
( 1
σ2
ν
)σ

2
ν0

+1exp{−γν0
σ2
ν
},

• π(σ2
µ|σ2

µ0
, γµ0) =

(γµ0 )
σ2
µ0

Γ(σ2
µ0

)
( 1
σ2
µ
)σ

2
µ0

+1exp{−γµ0
σ2
µ
},

• π(δν |µν , γ
2
ν) ∝ exp{− 1

2γ2
ν
(δν − µν)

2}I{δν > 0},

• π(δµ|µµ, γ
2
µ) ∝ exp{− 1

2γ2
µ
(δµ − µµ)

2}I{δµ > 0}.

In addition to the specification of these parameters, the specification of a

subjective prior to either the scalar spatial autoregressive coefficients ρ1, ρ2,

and scalar spatial moving average coefficients ϱ1 and ϱ2 is difficult without

previous data. It seems that a uniform prior which assigns equal weight to

all values of the spatial parameters is not unreasonable, as most of the spatial

dependence models are based on real data sets (Zheng et al. 2008 and Baltagi

and Liu 2016). When W is non-normalized, we assume that λmax is the ab-

solute of the largest eigenvalues of W and define a prior distribution for the

parameters space ρr ∼ U(−1/λmax, 1/λmax) and ϱr ∼ U(−1/λmax, 1/λmax);

r = 1, 2. For the normalized case, we define ρr ∼ U(−1, 1) and ϱr ∼ U(−1, 1);

r = 1, 2 with U(a, b) denoting the uniform distribution between a and b. We

can make statistical inference for the parameters with these specifications and

equation (23), based on the posterior distributions of the parameters under

the hierarchical Bayesian approach. To achieve this, the joint posterior dis-

tribution of all parameters in θ is proportional to the observed data and the

prior distributions as follows:
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π(β,µ, σ2
ν , σ

2
µ, δν , δµ, ρ1, ρ2, ϱ1, ϱ2|y) ∝

ϕNT (y|Xβ + (ιT ⊗A−1
1 )µ, (σ2

ν + δ2ν)(IT ⊗ (A
′
2A2)

−1))

×ΦNT (
δν√

σ2
ν(σ

2
ν+δ2ν)

(IT ⊗A−1
2 )−1(y −Xβ − (ιT ⊗A−1

1 )µ)|0, INT )

×ϕN(µ|0, (σ2
µ + δ2µ)IN)× ΦN(

δµ
(σ2

µ+δ2µ)
µ|0, ( σ2

µ

σ2
µ+δ2µ

)IN)

×exp{−1
2
(β − β0)

′
Γβ

−1
0 (β − β0)}

×exp{− 1
2γ2

ν
(δν − µν)

2}I{δν > 0} × exp{− 1
2γ2

µ
(δµ − µµ)

2}I{δµ > 0}

× (γµ0 )
σ2
µ0

Γ(σ2
µ0

)
( 1
σ2
µ
)σ

2
µ0

+1exp{−γµ0
σ2
µ
} × (γν0 )

σ2
ν0

Γ(σ2
ν0

)
( 1
σ2
ν
)σ

2
ν0

+1exp{−γν0
σ2
ν
}.

(24)

The complicated form of distribution (24) and the difficulty to obtain ana-

lytically the marginal distributions of each unknown stochastic parameter in θ

have motivated us to implement an MCMC algorithm. The MCMC algorithm

draws samples from the posterior distributions of all unknown stochastic pa-

rameters using the Gibbs sampler. The posterior estimates of ρ1, ρ2, ϱ1, and

ϱ2 are obvious. The posterior distributions of the other parameters can be

shown after some algebra in the next section.

3.1 The MCMC Algorithm

In this section, the MCMC computations for the class of skew-normal linear

mixed effects models that incorporate spatial autoregressive and moving av-

erage process will be considered by the following spatial hierarchical Bayes

model. The hierarchical representation given in equation (7) is important to

obtain the parameter estimates and will allow us to easily implement the meth-

ods using the available R under OpenBUGS (Lunn et al. 2009) software to

write BUGS codes. When the values of ρr and ϱr, r = 1, 2 coefficients are
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treated as constants, and by introducing two (N × 1) random vector wνt and

wµ, the hierarchical representation of the model is formulated as:

yt|µ,β, σ2
ν , δν , ρ1, ρ2, ϱ1, ϱ2,wνt ∼ NN(Xtβ +A−1

1 µ+ δνA
−1
2 wνt , σ

2
ν(A

′
2A2)

−1),

wνt ∼ NN(0, IN)I{wνt > 0}, t = 1, ..., T

(25)

µ|σ2
µ, δµ,wµ ∼ NN(δµwµ, σ

2
µIN),

wµ ∼ NN(0, IN)I{wµ > 0},
(26)

where wk = |ξ| with ξ ∼ Nk(0, Ik).

The complete-conditional posterior distributions of parameters are required

in order to apply the Gibbs sampling methodology to simulate samples from

the distributions iteratively. Here, we will present the complete-conditional

posterior distribution of the parameters β, µ, wνt , wµ, σ
2
ν , σ

2
µ, δν , δµ, while

omitting the detailed derivation. For the regression coefficient vector β, we

obtain

β|µ, σ2
ν , δν , ρ1, ρ2, ϱ1, ϱ2,wνt ∼ Nk(mβ,Σβ), (27)

where the mean is given by mβ = Σβ(Γ
−1
β0
β0 +

1
σ2
ν

∑T
t=1X

′
t(A

′
2A2)dtβ), dtβ =

yt −A−1
1 µ − δνA

−1
2 wνt , and the covariance matrix is given by Σβ = (Γ−1

β0
+

1
σ2
ν

∑T
t=1X

′
t(A

′
2A2)

Xt)
−1. For the vector µ, we have

µ|β, σ2
ν , σ

2
µ, δν , δµ,wνt ,wµ, ρ1, ρ2, ϱ1, ϱ2,∼ NN(mµ,Σµ), (28)

where mµ = Σµ(
1
σ2
ν
A

′
1
−1(A

′
2A2)

∑T
t=1 dtµ + 1

σ2
µ
δµwµ), dtµ = yt − Xtβ −

δνA
−1
2 wνt , and Σµ = ( T

σ2
ϵ
A

′
1
−1(A

′
2A2)A

−1
1 + 1

σ2
µ
IN)

−1. It can be shown that

the complete-conditional distribution of wνt and wµ is given, respectively, by

wνt|β,µ, σ2
ν , δν , ρ1, ρ2, ϱ1, ϱ2 ∼ NN(mwνt

,Σwνt
)I{wνt > 0} (29)
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and

wµ|µ, σ2
µ, δµ, ρ2, ϱ2 ∼ NN(mwµ ,Σwµ)I{wµ > 0}, (30)

where µwνt
= Σwνt

( δν
σ2
ν
A2

∑T
t=1 dwνt

), dwνt
= yt−Xtβ−A−1

1 µ, Σwνt
= σ2

ν(σ
2
ν+

δ2ν)
−1IN , mwµ = Σwµ(

δµ
σ2
µ
µ) and Σwµ = σ2

µ(δ
2
µ + δ2µ)

−1IN . It follows that the

complete-conditional distribution of σ2
ν and σ2

µ is given by

σ2
ν |δν ,wν , ρ1, ρ2, ϱ1, ϱ2 ∼ IG(τσ2

ν
, γσ2

ν
) (31)

and

σ2
µ|µ, δµ,wµ, ρ1, ρ2, ϱ1, ϱ2 ∼ IG(τσ2

µ
, γσ2

µ
), (32)

respectively, where τσ2
ν
= T

2
+ σ2

ν0
, γσ2

ν
= 1

2

∑T
t=1 dt

′

σ2
ν
(A

′
2A2)dtσ2

ν
+ γ−1

ν0
, dtσ2

ν
=

yt−Xtβ−A−1
1 µ−δνA

−1
2 wνt , τσ2

µ
= N

2
+ σ2

µ0
, and γσ2

µ
= 1

2
(µ− δµwµ)

′
(µ− δµwµ)

+ γµ0 . Also, for the skewness parameters δν and δµ, we have

δν |β,µ, σ2
ν ,wνt, ρ1, ρ2, ϱ1, ϱ2 ∼ N(mδν , ηδν )I{δν > 0} (33)

and

δµ|µ, σ2
µ,wµ, ρ1, ρ2, ϱ1, ϱ2 ∼ N(mδµ , ηδµ)I{δµ > 0}, (34)

where mδν = ηδν (
µν

γ2
ν
+ 1

σ2
ν

∑T
t=1w

′
νtA2dwνt

), ηδν = ( 1
γ2
ν
+ 1

σ2
ν

∑T
t=1w

′
νtwνt)

−1,

mδµ = ηδµ(
µµ

γ2
µ
+ 1

σ2
µ
w

′
µµ), and ηδµ = ( 1

γµ
+ 1

σ2
µ
w

′
µµ)

−1.

4 Model Selection

Progress in the computation of Bayesian posterior distributions of model pa-

rameters based on a MCMC algorithm has made it possible to fit increasingly

complex statistical models to determine the best model fitting. In this paper,
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the Akaike Information Criterion (AIC) (Akaike 1974), the Bayesian Informa-

tion Criterion (BIC) (Schwarz 1978) and the Hannan Quinn Criterion (HQC)

(Hannan and Quinn 1979) are used to assess the performance of skew-normal

model and compare it to normal model. They are defined by AIC= D̂ + 2P ,

BIC= D̂ + Plog(N) and HQC= D̂ + 2Plog(log(N)), respectively, where D̂ is

−2 times log-likelihood evaluated at the maximum likelihood estimate, P is

the number of parameters and N is the sample size. Models with smaller AIC,

BIC, and HQC are preferred when comparing different fitted results.

5 Application

In this section, we fit and compare the performances of each spatial panel data

model in the generalized class with the MSN and normal distributions through

simulation and analysis in our motivating application on cigarette consump-

tion, to demonstrate the usefulness of our methodology in spatial econometrics

field. The results were analyzed through the R and packages R2OpenBUGS

and BRugs (Ligges et al. 2017 and Ligges 2017) with OpenBUGS software.

5.1 Analysis of simulated data

This section presents a simulation experiment to evaluate the performance of

the skew-normal linear mixed model with spatial error dependence. The data

generating process started with a simple panel data regression with random

error components disturbances as follows:

yit = 0.5xit1 + 7xit2 + uit i = 1, ..., N ; t = 1, ..., T. (35)

The explanatory variables xit1 and xit2 are generated as in Nerlove (1971) with

xith = 0.1t + 0.5xit−1h + zith, where zith is a random variable distributed on

U(−0.5, 0.5) and xi0h = 5 + 10zi0h for h = 1, 2. Following Baltagi and Liu

(2016), we select the same spatial weight matrix W for equation (2). The

matrix W is created such that its ith row has non-zero elements in positions

i + 5 and i − 5. Therefore, the ith element of W is directly related to the

five elements immediately before it and the five elements immediately after

it. This matrix is defined in a circular world so that the non-zero elements
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in rows 1 and N are in positions (2, 3, 4, 5, 6, N − 4, N − 3, N − 2, N − 1, N)

and (1, 2, 3, 4, 5, N − 5, N − 4, N − 3, N − 2, N − 1), respectively. This matrix

is row-normalized so that all of its non-zero elements are equal to 1/10. The

disturbance term ut were generated as a spatially correlated process with the

following data generating process:

1. SAR: ϱ1 = ϱ2 = 0, ρ1 and ρ2 take values from U(−1, 1).

2. SMA: ρ1 = ρ2 = 0, ϱ1 and ϱ2 take values from U(−1, 1).

3. SARMA: ϱ1, ϱ2, ρ1 and ρ2 take values from U(−1, 1).

The data generating process is taken to be a simple error component regres-

sion model with spatial disturbances of the autoregressive, moving average or

spatial autoregressive moving average type, where the space-specific effect µi

is a random variable uniformly distributed as µi ∼ SN(0, 4, 5) and the random

variable νit uniformly distributed as νit ∼ SN(0, 1, 10). Since the skew param-

eters are positive, there is a right skewness in the density of the disturbance

terms. The difference in shape between the implied skew-normal distribution

and the normal distribution may appear rather minimal, but the difference

is enough to make substantial differences in the impacts of specific policy ac-

tions. In particular, using the normal distribution when the skew-normal is

the appropriate distribution leads to an underestimation (Bhat et al. 2017).

The sample sizes were chosen as N = 25 and T = 5. For each experiment,

we perform 100 replications. The model specified by equation (35) was fitted

to this data set via the following prior specifications:

β0 ∼ N1(0, 10
2), β1 ∼ N1(0, 10

2), σ2
µ ∼ IG(10−2, 10−2), σ2

ν ∼ IG(10−2, 10−2),

δµ ∼ N1(0, 10
2)I{δµ > 0}, δν ∼ N1(0, 10

2)I{δν > 0}

Note that these prior distributions are considered as close to non-informative

prior distributions (with large variances). Thus, we expect the results to be

somewhat robust with respect to prior distributions. We ran the algorithm

described in section 3.1 with 10,000 iterations and discarded the 3000 initial

iterates. Concerning the Gibbs sampling result, the skew models are preferred

over the normal models for this data set according to the recorded criteria

AIC, BIC, and HQC.
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After collecting the final MCMC samples, summaries of the Monte Carlo (MC)

results given in Tables 1 and 2. The posterior mean average (MC mean), stan-

dard deviation average (MC SD) and average of the 95% credible intervals (MC

CIs) of MC results are estimated for β1, β2, and skewness parameters, where

skew-normal and normality assumptions were considered. The estimated pa-

rameters can be considerably different between the models with these assump-

tions. It shows that the MC mean results over the 100 data sets of skew models

are concentrated around the true values. The estimated 95% credible intervals

of skewness parameters do not include zero, confirming that consideration of

a departure from normality may improve the model fit. We focus on the re-

gression coefficients, because inference about these parameters is important.

The data set was generated by assuming (β1, β2) = (0.5, 7). The parameters

estimated have the smaller MC SD with skew models related that obtained for

normal models.

The apparent conclusion is that the price to be paid for estimating the skew

density is worthwhile. In other words, these findings suggest that it is impor-

tant to assume a model with a skew distribution in order to achieve reasonable

results when the data exhibit non-normal characteristics. As in the simulation

here, it can lead to more accurate estimates for regression coefficients.
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Table 1: mean (Mc SD) and MC CIs for the parameters of spatial panel data

models: SAR
spatial dependence type parameter MC mean(MC SD) MC CIs

RE-SAR : ρ1 = 0, ρ2 ∼ U(−1, 1)

Skew-Normal

β1 0.592 (0.593) (-0.582,1.741)

β2 7.783 (0.591) (6.633,8.946)

δµ 6.488 (1.804) (3.566,10.388)

δν 7.125 (0.973) (5.272,9.034)

Normal

β1 1.583 (0.721) (0.186,3.018)

β2 8.780 (0.772) (7.291,10.348)

SAR-RE : ρ1 = ρ2 ∼ U(−1, 1)

Skew-Normal

β1 1.508 (0.530) (0.465,2.540)

β2 9.389 (0.523) (8.375,10.40)

δµ 11.16 (2.037) (7.618,15.58)

δν 11.08 (1.014) (9.049,13.01)

Normal

β1 2.571 (0.844) (0.961,4.315)

β2 10.48 (0.933) (8.706,12.39)

GRE-SAR: ρ1 ∼ U(−1, 1), ρ2 ∼ U(−1, 1)

Skew-Normal

β1 0.818 (0.593) (-0.348,1.959)

β2 7.891 (0.594) (6.725,9.044)

δµ 6.845 (1.667) (3.951,10.39)

δν 7.872 (1.017) (5.912,9.874)

Normal

β1 1.753 (0.740) (0.300,3.216)

β2 8.768 (0.763) (7.298,10.30)
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Table 2: MC mean (MC SD) and MC CIs for the parameters of spatial panel

data models: SMA and SARMA
spatial dependence type parameter MC mean(MC SD) MC CIs

RE-SMA : ϱ1 = 0, ϱ2 ∼ U(−1, 1)

Skew-Normal

β1 1.471 (0.806) (-0.111,3.041)

β2 7.275 (0.833) (6.638,15.89)

δµ 9.321 (2.498) (4.998,14.37)

δν 7.801 (2.057) (4.159,11.86)

Normal

β1 2.564 (0.860) (0.880,4.295)

β2 9.465 (0.921) (13.69,17.33)

SMA-RE : ϱ1 = ϱ2 ∼ U(−1, 1)

Skew-Normal

β1 1.678 (0.604) (0.471,2.882)

β2 7.681 (0.692) (6.207,9.036)

δµ 6.838 (1.444) (4.538,10.13)

δν 8.453 (0.975) (6.447,10.18)

Normal

β1 3.764 (0.768) (2.235,5.255)

β2 9.216 (0.754) (7.729,10.80)

SARMA-RE : ϱ1, ϱ2, ρ1, ρ2 ∼ U(−1, 1)

Skew-Normal

β1 1.273 (0.703) (-0.101,2.667)

β2 10.70 (0.707) (9.617,12.38)

δµ 8.695 (2.300) (4.479,13.45)

δν 7.052 (1.655) (4.176,10.39)

Normal

β1 2.131 (0.770) (0.627,3.659)

β2 11.81 (0.808) (10.26,13.45)

5.2 An Application

We now illustrate the usefulness of our approach using skew distributions by

applying it to a real spatial panel data on cigarette consumption collected in

the United States over the period 1963 to 1992. The file includes the per pack

price of cigarettes (price), per capita disposable income (ndi) consumer price

index (cpi), and cigarette sales in packs per capita (sales) over time and across

space units, reported in Croissant (2017). Studies on this data are considered

in Baltagi and Levin (1986), Baltagi and Levin (1992), Elhorst (2005), Baltagi

(2008), Zheng et al. (2008), Elhorst (2010), Lee and Yu (2010), and Leorato

and Mezzetti (2016), among others.

Cigarette consumption as a worldwide phenomenon has significantly de-

structive effects on the health consequences of cigarette consumers. The will-
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ingness to buy cigarette is strongly influenced by a consumer’s sense of real

price and income level variables. As a result, its necessary to estimate the price

elasticity of cigarettes to understand how price influences smoking decisions.

The price elasticity is measured by a individual’s sensitivity to price changes.

Moreover, income variable is often used to measure per capita cigarette con-

sumption in demand analysis. Therefore, there has been considerable interest

in the data that relates cigarette demand to cigarette price and per capita

disposable income.

Under usual circumstances when cigarettes are more expensive, demand

decreases and price elasticity is reported as a negative value in this case. The

percent change in demand for cigarettes because of price change defines the

concept of price elasticity. Income elasticity indicates the ability of the popu-

lation to purchase cigarette as per capita income changes. The common rela-

tionship is in a positive direction with the capacity to demand to increase as

per capita income increases; see Lee and Yu (2012) and Leorato and Mezzetti

(2016). Basically, a positive income elasticity of demand is linked with neces-

sity goods and services meaning a rise in income will lead to a rise in demand.

While a negative income elasticity of demand is linked with inferior goods and

services. In this case, rising incomes will lead to a drop in demand and may

mean changes to luxury goods and services.

Here, the response variable of the model is sales which is measured as the

number of cigarettes per person in aged 14 years and older. This is regressed

on the real price of cigarettes (price/cpi) and real per capita disposable income

(ndi/cpi).

As mentioned previously, logarithms are used in economics because the

estimated coefficients in log-linear regressions can be directly interpreted as

elasticities and traditionally it has been assumed that the error components

follows a normal distribution. These data are expressed via their logarithms

on the Elhorst website, www.regroningen.nl/elhorst.

Figure 1(a) suggests that cigarette demand decreases over time in most

states but with substantial interspace variation. The histogram of the raw

cigarette consumption data in Figure 1(b) shows its asymmetric nature and

clearly indicate that the normality assumption is not satisfied. This also was

confirmed by using the Shapiro-Wilk test where the test statistic is equal to

0.8351 and p-value is 2.2e-16. Fitting a MSN model to the dataset seems more
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appropriate. To investigate this we posit the 6 multivariate models (three dif-

ferent SAR structures, two different SMA structures and one SARMA struc-

ture) with normal and skew-normal distributions for disturbance terms. Hence,

we conduct an empirical analysis of the cigarette demand to estimate price and

income elasticities to check the validity of our results through non-normal dis-

turbances with log-linear models.

(a) (b)

Figure 1: Cigarette demand data. (a) Cigarette sales for 46 states of the US,

with trajectories highlighted for 5 random states. (b) Histogram of the raw

data.

5.3 Prior distributions

To proceed with Bayesian inferences on the aforementioned data, we need to

specify the priors at the population level. In the absence of historical data and

experiments, we specify weakly informative prior distributions for all model

parameters to obtain well-defined (proper) posteriors. More specifically, we

specify the following priors: independent Normal(0, Precision = 0.01) distri-

bution for the components of β, non-informative inverse gamma distribution

IG(0.01, 0.01) for the scale parameters σ2
ν > 0 and σ2

µ > 0 (so that the dis-

tribution has mean 1 and variance 100), and truncated normal(0, Precision

= 0.01) for each of the skewness parameter δν and δµ which is used to ac-

commodate positive or negative skewness of the data. Furthermore, in our

analysis, it is assumed that the spatial weight matrix W is non-normalized

and the parameters space ρ1, ρ2, ϱ1 and ϱ2 has prior values that vary over the
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set {0; 0.1; 0.15} due to 1/λmax ≈ 0.19. To help the estimation process, we

have fixed the space parameters at these values. We then estimated the entire

spatial skew-normal generalized panel data model all simultaneously (includ-

ing two skew parameters and all other parameters) to obtain the final results

for the model.

5.3.1 Results of analysis

For all special cases in the generalized model, we ran one long chain of 300,000

iterations to estimate the posterior distribution of the parameters after an

initial 20,000 burn-in iterations. In order to reduce autocorrelation among

successive Markov draws, we used a thinning interval of 100. We formed es-

timates of the population posterior mean (PM), the corresponding standard

deviation (SD) and 95% percentiles credible intervals (CIs) for the unknown

parameters. The following items summarize the results obtained for each of

the six spatial dependence models with normal and skew-normal assumptions.

The estimates are reported along with some of the corresponding values of ρ1,

ρ2, ϱ1 and ϱ2. Tables 3 to 8 present the estimation results. The regression

coefficients of price and income are estimated by β1 and β2, respectively. This

paper by considering the following formula provides price and income elasticity

of demand which is important in spatial econometrics applications areas where

either skewness should be considered or log-transformation can be avoided.

Price elasticity = Coefficient of price (β1) × Average price
cpi

/Average sales.

Income elasticity = Coefficient of income (β2) × Average ndi
cpi

/Average sales.

Case 1. When ρ1 = 0 and ϱ1 = ϱ2 = 0, the model reduces to the RE-

SAR model. The results of the model with (a) normal and (b) skew-normal

assumption for two values of ρ2 = {0.1, 0.15} are shown in Table 3.
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Table 3: A1:RE-SAR

A1.1: ρ1 = 0, ρ2 = 0.1

model (a) Normal (b) Skew-Normal

parameter PM SD 95% CI PM SD 95% CI

β1 -7.60e+01 4.07e+00 (-8.35e+01,-6.78e+01) -8.30e+01 3.37e+00 (-8.97e+01,-7.65e+01)

β2 -2.13e-01 4.08e-02 (-2.93e-01,-1.31e-01) -1.25e-01 3.91e-02 (-1.90e-01,-3.96e-02)

σ2
µ 4.92e+04 1.14e+04 (3.15e+04,7.48e+04) 3.05e+04 7.27e+03 (1.96e+04,4.84e+04)

σ2
ν 1.61e+02 6.28e+00 (1.49e+02,1.74e+02) 3.53e+01 5.84e+00 (2.49e+01,4.86e+01)

δµ - - - 2.11e+01 9.52e+00 (3.22e+00,4.04e+01)

δν - - - 1.87e+01 6.85e-01 (1.74e+01,2.01e+01)

A1.2 : ρ1 = 0, ρ2 = 0.15

model (a) Normal (b) Skew-Normal

parameter PM SD 95% CI PM SD 95% CI

β1 -7.42e+01 4.68e+00 (-8.22e+01,-6.49e+01) -8.24e+01 4.33e+00 (-9.10e+01,-7.45e+01)

β2 -2.77e-01 5.09e-02 (-3.77e-01,-1.75e-01) -1.87e-01 4.87e-02 (-2.82e-01,-9.40e-02)

σ2
µ 5.12e+04 1.19e+04 (3.22e+04,7.80e+04) 2.51e+04 6.35e+03 (1.54e+04,4.05e+04)

σ2
ν 1.61e+02 6.31e+00 (1.49e+02,1.74e+02) 3.53e+01 5.95e+00 (2.45e+01,4.69e+01)

δµ - - - 2.36e+01 1.01e+01 (4.85e+00,4.31e+01)

δν - - - 1.88e+01 7.33e-01 (1.73e+01,2.02e+01)

Case 2. When ρ1 = ρ2 and ϱ1 = ϱ2 = 0 the model reduces to the SAR-

RE model. The results of the model with (a) normal and (b) skew-normal

assumption for values of ρ1 = ρ2 = 0.1 and ρ1 = ρ2 = 0.15 are shown in Table

4.

Table 4: A1:SAR-RE

A1.3: ρ1 = 0.1, ρ2 = 0.1

model (a) Normal (b) Skew-Normal

parameter PM SD 95% CI PM SD 95% CI

β1 -7.59e+01 4.14e+00 (-8.33e+01,-6.75e+01) -8.24e+01 3.75e+00 (-9.04e+01,-7.53e+01)

β2 -2.14e-01 4.09e-02 (-2.93e-01,-1.28e-01) -1.25e-01 3.60e-02 (-1.98e-01,-4.65e-02)

σ2
µ 1.92e+04 4.42e+03 (1.23e+04,2.86e+04) 8.90e+03 2.75e+03 (4.02e+03,1.46e+04)

σ2
ν 1.61e+02 6.20e+00 (1.49e+02,1.74e+02) 3.52e+01 5.78e+00 (2.60e+01,4.67e+01)

δµ - - - 3.49e+01 1.07e+01 (1.30e+01,5.76e+01)

δν - - - 1.87e+01 7.21e-01 (1.72e+01,2.01e+01)

A1.4 : ρ1 = 0.15, ρ2 = 0.15

model (a) Normal (b) Skew-Normal

parameter PM SD 95% CI PM SD 95% CI

β1 -7.43e+01 4.73e+00 (-8.31e+01,-6.51e+01) -8.29e+01 4.33e+00 ( -9.10e+01,-7.40e+01)

β2 -2.77e-01 5.16e-02 (-3.75e-01,-1.70e-01) -1.81e-01 4.82e-02 (-2.73e-01,-8.54e-02)

σ2
µ 1.16e+04 2.68e+03 (7.37e+03, 1.74e+04) 5.35e+03 1.71e+03 (2.78e+03,9.56e+03)

σ2
ν 1.61e+02 6.23e+00 (1.49e+02,1.74e+02) 3.58e+01 6.12e+00 (2.56e+01,4.86e+01)

δµ - - - 2.96e+01 9.62e+00 (9.96e+00,4.70e+01)

δν - - - 1.86e+01 7.41e-01 (1.72e+01,2.01e+01)
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Case 3. When ϱ1 = ϱ2 = 0 the model reduces to the GRE-SAR model.

The results of the model with (a) normal and (b) skew-normal assumption for

values of ρ1 = 0.1, ρ2 = 0.15 and ρ1 = 0.15, ρ2 = 0.1 are shown in Table 5.

Table 5: A1:GRE-SAR

A1.5: ρ1 = 0.1, ρ2 = 0.15

model (a) Normal (b) Skew-Normal

parameter PM SD 95% CI PM SD 95% CI

β1 -7.42e+01 4.74e+00 (-8.26e+01,-6.50e+01) -8.26e+01 4.30e+00 (-9.05e+01,-7.39e+01)

β2 -2.77e-01 5.15e-02 (-3.74e-01,-1.71e-01) -1.74e-01 4.62e-02 (-2.63e-01,-8.20e-02)

σ2
µ 2.01e+04 4.64e+03 (1.28e+04,2.98e+04) 8.42e+03 2.55e+03 (4.12e+03,1.45e+04)

σ2
ν 1.61e+02 6.28e+00 (1.49e+02,1.75e+02) 3.52e+01 5.66e+00 (2.50e+01,4.78e+01)

δµ - - - 3.34e+01 1.11e+01 (1.17e+01,5.50e+01)

δν - - - 1.87e+01 6.93e-01 (1.73e+01,2.03e+01)

A1.6 : ρ1 = 0.15, ρ2 = 0.1

model (a) Normal (b) Skew-Normal

parameter PM SD 95% CI PM SD 95% CI

β1 -7.60e+01 4.14e+00 (-8.39e+01,-6.75e+01) -8.28e+01 3.61e+00 (-9.01e+01,-7.53e+01)

β2 -2.13e-01 4.09e-02 (-2.94e-01,-1.26e-01) -1.21e-01 3.62e-02 (-1.83e-01,-4.23e-02)

σ2
µ 1.11e+04 2.55e+03 (7.08e+03,1.67e+04) 4.90e+03 1.70e+03 (2.13e+03,8.80e+03)

σ2
ν 1.61e+02 6.15e+00 (1.49e+02,1.73e+02) 3.55e+01 6.34e+00 (2.45e+01,4.86e+01)

δµ - - - 3.36e+01 9.69e+00 (1.31e+01,5.32e+01)

δν - - - 1.87e+01 7.83e-01 (1.70e+01,2.03e+01)

Case 4. When ρ1 = ρ2 = 0 and ϱ2 = 0 the model reduces to the RE-

SMA model. The results of the model with (a) normal and (b) skew-normal

assumption for two values of ϱ1 = {0.1, 0.15} are shown in Table 6.
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Table 6: RE-SMA

A2.1: ϱ1 = 0.1, ϱ2 = 0

model (a) Normal (b) Skew-Normal

parameter PM SD 95% CI PM SD 95% CI

β1 -7.88e+01 3.13e+00 (-8.49e+01,-7.24e+01) -8.27e+01 2.82e+00 (-8.77e+01,-7.67e+01)

β2 -1.20e-01 2.79e-02 (-1.75e-01,-5.87e-02) -6.40e-02 2.65e-02 (-1.19e-01,-1.51e-02)

σ2
µ 2.52e+04 5.75e+03 (1.62e+04,3.82e+04) 1.45e+04 4.36e+03 (8.24e+03,2.51e+04)

σ2
ν 1.74e+02 6.61e+00 (1.62e+02,1.88e+02) 4.09e+01 7.65e+00 (2.80e+01,5.68e+01)

δµ - - - 2.98e+01 1.06e+01 (9.30e+00,5.15e+01)

δν - - - 1.94e+01 7.86e-01 (1.78e+01,2.09e+01)

A2.2 : ϱ1 = 0.15, ϱ2 = 0

model (a) Normal (b) Skew-Normal

parameter PM SD 95% CI PM SD 95% CI

β1 -7.88e+01 3.13e+00 (-8.50e+01,-7.25e+01) -8.28e+01 2.49e+00 (-8.78e+01,-7.80e+01)

β2 -1.20e-01 2.79e-02 (-1.75e-01,-5.95e-02) -6.35e-02 2.23e-02 (-1.03e-01,-1.73e-02)

σ2
µ 2.06e+04 4.70e+03 (1.32e+04,3.12e+04) 1.07e+04 2.96e+03 (5.85e+03,1.81e+04)

σ2
ν 1.74e+02 6.58e+00 (1.62e+02,1.88e+02) 4.06e+01 6.32e+00 (2.93e+01,5.41e+01)

δµ - - - 3.22e+01 1.02e+01 (1.17e+01, 5.12e+01)

δν - - - 1.94e+01 7.21e-01 (1.79e+01,2.08e+01)

Case 5. When ρ1 = ρ2 = 0 and ϱ1 = ϱ2 the model reduces to the SMA-

RE model. The results of the model with (a) normal and (b) skew-normal

assumption for values of ϱ1 = ϱ2 = 0.1 and ϱ1 = ϱ2 = 0.15 are shown in Table

7.

Table 7: SMA-RE

A2.3: ϱ1 = 0.1, ϱ2 = 0.1

model (a) Normal (b) Skew-Normal

parameter PM SD 95% CI PM SD 95% CI

β1 -7.71e+01 3.84e+00 (-8.39e+01,-6.92e+01) -8.29e+01 3.45e+00 (-8.98e+01,-7.65e+01)

β2 -1.64e-01 3.68e-02 (-2.35e-01,-8.70e-02) -8.53e-02 3.31e-02 (-1.57e-01,-2.49e-02)

σ2
µ 2.58e+04 5.92e+03 (1.66e+04,3.86e+04) 1.38e+04 4.20e+03 (6.43e+03,2.31e+04)

σ2
ν 1.74e+02 6.71e+00 (1.62e+02,1.88e+02) 4.11e+01 6.80e+00 (2.83e+01,5.53e+01)

δµ - - - 3.04e+01 1.10e+01 (8.51e+00,5.40e+01)

δν - - - 1.93e+01 7.91e-01 (1.77e+01,2.07e+01)

A2.4 : ϱ1 = 0.15, ϱ2 = 0.15

model (a) Normal (b) Skew-Normal

parameter PM SD 95% CI PM SD 95% CI

β1 -7.65e+01 4.19e+00 (-8.40e+01,-6.83e+01) -8.29e+01 3.79e+00 (-9.04e+01,-7.52e+01)

β2 -1.69e-01 4.20e-02 (-2.51e-01,-8.32e-02) -7.73e-02 3.80e-02 (-1.55e-01,-3.39e-03 )

σ2
µ 2.11e+04 4.85e+03 (1.35e+04,3.13e+04) 9.85e+03 2.87e+03 (4.83e+03,1.63e+04)

σ2
ν 1.90e+02 7.35e+00 (1.76e+02,2.06e+02) 4.64e+01 7.82e+00 (3.29e+01,6.30e+01)

δµ - - - 3.26e+01 1.07e+01 (1.13e+01,5.28e+01)

δν - - - 2.01e+01 8.81e-01 (1.83e+01,2.16e+01)
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Case 6. When ρ1 = ρ2 and ϱ1 = ϱ2 the model reduces to the SARMA

model. The results of the model with (a) normal and (b) skew-normal assump-

tion for values of ρr = ϱr = 0.1 and ρr = ϱr = 0.15; r = 1, 2 are shown in

Table 8.

Table 8: SARMA-RE

A3.1: ρ1 = 0.1, ρ2 = 0.1, ϱ1 = 0.1, ϱ2 = 0.1

model (a) Normal (b) Skew-Normal

parameter PM SD 95% CI PM SD 95% CI

β1 -7.50e+01 4.75e+00 (-8.36e+01,-6.57e+01) -8.30e+01 4.20e+00 (-9.04e+01,-7.51e+01)

β2 -2.19e-01 5.25e-02 (-3.21e-01,-1.11e-01) -1.09e-01 5.02e-02 (-2.08e-01,-1.09e-02)

σ2
µ 1.28e+04 2.95e+03 (8.08e+03,1.90e+04) 4.82e+03 1.86e+03 (1.71e+03,9.23e+03)

σ2
ν 1.88e+02 7.29e+00 (1.74e+02,2.04e+02) 4.49e+01 7.81e+00 (3.19e+01,6.25e+01)

δµ - - - 3.54e+01 1.05e+01 (1.44e+01,5.38e+01)

δν - - - 2.00e+01 8.50e-01 (1.82e+01,2.17e+01)

A3.2 : ρ1 = 0.1, ρ2 = 0.1, ϱ1 = 0.15, ϱ2 = 0.15

model (a) Normal (b) Skew-Normal

parameter PM SD 95% CI PM SD 95% CI

β1 -7.51e+01 4.10e+00 (-8.41e+01,-6.60e+01) -8.32e+01 4.70e+00 (-9.15e+01,-7.33e+01)

β2 -1.92e-01 5.88e-02 (-3.07e-01,-7.43e-02) -8.69e-02 5.43e-02 (-1.95e-01,-9.37e-03)

σ2
µ 1.13e+04 2.62e+03 (7.09e+03,1.68e+04) 4.69e+03 1.52e+03 (2.09e+03,7.93e+03)

σ2
ν 2.19e+02 8.50e+00 (2.02e+02,2.37e+02) 5.36e+01 9.05e+00 (3.81e+01,7.33e+01)

δµ - - - 3.14e+01 9.70e+00 (1.34e+01,5.17e+01)

δν - - - 5.36e+01 9.05e+00 (3.81e+01,7.33e+01)

Our estimation of the parameters in the generalized class of spatial depen-

dence models can be summarized as follows: (i) the most 95% CIs associated

with each of fitted values from the normal models are wider than that from

the corresponding skew-normal models; (ii) all of the parameter estimates are

significant since the 95% CIs do not include zero; (iii) the estimate of the vari-

ance component of the random effects, σ2
µ, and the variance component of the

random errors, σ2
ν , are smaller in the skew-normal cases as compared to the

normal case primarily because of the interrelation between high variability and

skewness; (iv) among all of the parameters estimated, mostly the related SD

obtained from the skew-normal distribution is the smallest; (v) both skewness

parameters δϵ and δµ are significantly positive for all skewed versions of the

fitted models and thus suggests there is moderate right skewness in the data.

In particular, as the CIs of δν and δµ do not include zero, this confirms the pos-

itive skewness of the responses. These estimates indicate that consideration of

departures from normality by the adaption of a model that allows for skewness
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may improve the generalized model fit. The marginal posterior density plots of

the parameters for our competing models are shown in Figures 2 and 3 which

all support posterior results for the parameters under our proposed models.

5.3.2 Goodness-of-Fit

Along with the above results from Case (1-6) in Tables 3 to 8, we further report

results for the goodness-of-fit of the normal and skew-normal models, using

the previous model choice criteria (AIC, BIC and HQC). Table 9 presents the

comparison among the competing models. The results indicate that the spatial

panel models with the skew-normal distribution assumption provide better fits

as indicated by their lower average values of the model choice criteria relative

to the spatial panel models with normal distribution assumption. Thus, there

is a potential gain of efficiency in estimating the certain parameters when the

normality assumption does not apply to the data.

Table 9: Model comparison using AIC, BIC, HQC criteria
model (a) Normal (b) Skew-Normal

Criteria AIC BIC HQC AIC BIC HQC

A1.1 10878 10876.65 10871.77 9809 9806.98 9799.65

A1.2 10888 10886.65 10881.77 9780 9777.98 9770.65

A1.3 10878 10876.65 10871.77 9807 9804.98 9797.65

A1.4 10878 10876.65 10871.77 9802 9799.98 9792.65

A1.5 10888 10886.65 10881.77 9783 9780.98 9773.65

A1.6 10878 10876.65 10871.77 9802 9799.98 9792.65

A2.1 10988 10986.65 10981.77 10012 10009.98 10002.65

A2.2 10988 10986.65 10981.77 10010 10007.98 10000.65

A2.3 10988 10986.65 10981.77 9988 9985.98 9978.65

A2.4 11118 11116.65 11111.77 1092 10189.98 10181.32

A3.1 11098 11096.65 11091.77 10122 10119.98 10112.65

A3.2 11308 11306.65 11301.77 10402 10399.98 10392.65

The estimated coefficient for the mean price (income) in Tables 3 to 8 are

statistically significant. It can be interpreted as mean price (income) elasticity

of cigarette demand easily. A comprehensive description of the estimation

techniques for the price and income elasticity of demand for cigarettes can be

found in Gallet and List (2003). In most previous studies, all three variables

in the cigarette demand data (cigarette sales, price
cpi

and ndi
cpi

) are expressed in

logarithms to have the routine use in the estimation of the elasticities. In the

empirical analysis were used sales as a dependent variable and real price and
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real income as independent variables. Indeed, elasticity values, rather than the

coefficient estimates for price and income, are used as the dependent variables

because elasticities are unit-free, easily interpreted, and comparable across

studies. We now compare this approach with our proposed methodology. For

the studies used here, price (income) elasticity value for the demand from raw

cigarette data with the skewed assumption is approximately -0.6 (-0.1) and for

the log-transformed model with the normal assumption is -0.8 (nearly zero).

The results of the data fit comparisons are presented in Table 10.

Table 10: Estimated Elasticities by Model Characteristics
model raw transformed

Criteria Mean Price Elasticity Mean Income Elasticity Mean Price Elasticity Mean Income Elasticity

A1.1 -0.609 -0.097 -0.773 0.021

A1.2 -0.605 -0.145 -0.828 0.056

A1.3 -0.605 -0.097 -0.773 0.028

A1.4 -0.608 -0.140 -0.828 0.056

A1.5 -0.606 -0.135 -0.850 0.076

A1.6 -0.608 -0.094 -0.773 0.021

A2.1 -0.607 -0.050 -0.707 0.003

A2.2 -0.607 -0.049 -0.707 0.003

A2.3 -0.608 -0.066 -0.748 0.020

A2.4 -0.608 -0.060 -0.789 0.058

A3.1 -0.609 -0.084 -0.822 0.077

A3.2 -0.610 -0.067 -0.865 0.128

Under the Bayesian approach based on the normal distribution for error

terms of model A1.1, the analysis in Zheng et al. (2008) concluded that a

significant negative effect of cigarette price is on cigarette consumption, while

income has no effect on cigarette consumption with an insignificant income

elasticitiy. In this case, by ignoring the amount of spatial dependence pa-

rameter, our estimated parameters are in line with the results of Zheng et al.

(2008), which is amenable to popular software R. Further, the elasticity values

for Case1 to 6 in Table 10 suggest that it is somewhat different between the

amount of the estimated mean price (income) elasticity given by the raw and

transformed models. In other words, our method does not noticeably influence

the price elasticity and they are more stable within the different models. But,

income elasticity estimates are in a different direction. More detailes, there

is a significant negative effect of income on raw cigarette sales based on the

posterior mean income elasticities. It means that as consumers’ income rises,

their cigarette consumption is less than before. Negative values of the income
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elasticity of demand usually depend on high education, such that higher in-

come lead to less cigarette consumption; see Baltagi and Llevin (1986), Baltagi

and Li (2004) and Zheng et al. (2008) for more detailes. Therefore, our results

are similar to the main findings of Baltagi and Levin (1992), namely, there is

a significant negative price elasticity and significant but small negative income

elasticity.

It can be inferred from this study that the variation in these elasticity

estimates arises because of differences between the assumptions inherent in

the model and the estimation techniques. Therefore, we think that using our

estimation technique to determine the econometric estimates is important.

Hence, our method can be viewed as an objective method in econometric

modelling as it is very easy to implement and yield different conclusions about

the relationship between elasticity values for the provision of a reasonable

model.

6 Conclusions

This paper has investigated the generalized panel data model proposed by Lee

and Yu (2012) which encompasses various spatial panel regression models. It

contributes to the spatial econometrics field by proposing a more flexible and

powerful model that allows for a non-normal (through parametric) random

error components specifications of the spatial panel model. To our knowledge,

this is the first spatial non-normal generalized panel data model proposed in the

economic literature. The skew-normal distribution that we use for the random

error components is mathematically tractable, parsimonious in parameters,

and includes the normal distribution as a special case. It is not only flexible

because it allows a continuity of shapes from normality to non-normality, in-

cluding positive skewness, but allows easy implementable Bayesian analysis to

be performed. We have implemented a Bayesian inference approach for estima-

tion via the generalized model, which is based on the method by Arellano-Valle

et al. (2007). We have demonstrated the proposed methodology of using a

skew distribution for the random error components of the generalized model is

useful and important in spatial econometrics especially when the data exhibit

skewness and the log transformation can be avoided.
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Appendix

(A1.1) (A1.2)

(A1.3) (A1.4)

(A1.5) (A1.6)

Figure 2: The marginal posterior density plots of the skew models parameters:

SAR
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(A2.1) (A2.2)

(A2.3) (A2.4)

(A3.1) (A3.2)

Figure 3: The marginal posterior density plots of the skew models parameters:

SMA and SARMA
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