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1. Introduction

Let x : M — E?"! be an isometric immersion of a pseudo-Riemannian

hypersurface M into a pseudo-Euclidean space E"'. Denote by ﬁ and A
the mean curvature vector field of M and the Laplace operator of M;* with
respect to the induced metric.

If the hypersurface M satisfies the equation

AH = \H

for some real constant A, then it is said to have proper mean curvature vector
field. This equation is a natural generalization of the biharmonic submanifold

equation AH = 0.
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Under the assumption that the shape operator of M" is diagonalizable,
we proved in [1] that the hypersurface M with proper mean curvature vec-
tor field and at most three distinct principal curvatures has constant mean
curvature.

It is known from [5, 6] that, for Lorentz hypersurface, the shape operator
has three possible non-diagonalizable forms except for diagonalizable ones.
So, in this paper, we show that the same conclusion in [1] remains true for
these three cases and prove the following result.

Main Theorem Let M} (n > 4) be a nondegenerate Lorentz hypersur-
face with proper mean curvature vector field in (n + 1)-dimensional pseudo-
Euclidean space B} Suppose that MT has at most three distinct principal
curvatures, then it has constant mean curvature.

When n = 3, it is true automatically that M} has at most three dis-
tinct principal curvatures. In this case, the result has been proved by A.
Arvanitoyeorgos et al. in [2, Theorem)].

2. Preliminaries

2.1. Lorentz hypersurface in E7!

A non-zero vector X in E*! is called time-like, space-like or light-like,
according to whether (X, X) is negative, positive or zero. .

Let M7 be a nondegenerate Lorentzian hypersurface in Ef*!, ¢ denote

. - = .

a unit normal vector field to M7, then (£, &) = 1, i.e. the normal vector
to M7 is space-like.

Denote by V and V the Levi-Civita connections of M7 and E}*! respec-

tively. For any vector fields X, Y tangent to M{", the Gauss formula is given

by B N
VxY =VxY+h(X,Y)E,

where h is the scalar-valued second fundamental form. If we denote by A the

%
shape operator of M7 associated to £ , the Weingarten formula is given by
~
Vx & = —A(X),

_>
where (A(X),Y) = h(X,Y). The mean curvature vector H = H ¢ with
H = LtrA, determines a well defined normal vector field to M7 in Ef™'. The
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Codazzi and Gauss equations are given by (cf. [3])
(VxA)Y = (VyA)X, (1)
R(X,Y)Z = (A(Y), Z)A(X) — (A(X), Z)A(Y), (2)

where
R(X,Y)Z =VxVyZ —VyVxZ —Vxy|Z.

According to [4], a hypersurface M} of E}*! is said to have proper mean
curvature vector field, if and only if the following two equations hold:

A(VH) = —%H(VH), (3)

AH + HtrA* = \H, (4)

where the Laplace operator A acting on scalar-valued function f is given by
Af ==Y eileieif = Veef),
i=1

with {e;}; be a local orthonormal frame such that (e;,e;) =¢; = £1.

2.2. The shape operator of M7

Except for diagonalizable ones, the shape operator of the Lorentz hyper-
surface M7 in E}*t! has three possible non-diagonalizable forms with respect
to a frame at T, M7 (cf. [5], [6]):

W
I A= 1 pn ,  G=

(@)
— O — O
O = O =

[n—2

m A= n ¢ , Gz(‘lll)m#a
Dn—2 "

where D,,_o = diag{ s, -+, \u}, D3 = diag{ 4, -+ , A\, } and [ the identity
matrix.



The matric G for case (I) is referred to an orthonormal basis {e1, - , e, }
of T, M7, ie.,

<€1,€1> = —1, <ei7€j> = 5ij7 <6176i> = 0, 2 S Z,j S n.

However the matrces G for cases (I) and (II) are referred to a pseudo-
orthonormal basis {uq, us, - ,u,}, i.e. a basis of T, M]" such that

(ur, ug) = (uzyu;) =1 for 3 <i<mn,
(ur,ur) = (ug,u2) = (u;,uy) =0 for 3<i#j<n.

For the forms (I) and (1), we can express
VH = us(H)uy + uy(H)us + us(H)ug + -+ - + up(H)uy,. (5)
Let Vi, uc = > 7_, whcoup. Applying compatability conditions to calculate
Vaup (U1, u1), Vp (U2, us), Vo, (up, up),

and
qu <u17 u2>7 VuD <u17 UB>, qu <u27 UB>, qu <UB, U‘C>7

respectively, we conclude

2 _ 1 _ B _
Wp1 = Wpy = wpp = 0, (6)
and
1 2 B _ 2 B _ 1 B _ c
Wp1 = —Wpa, Wpy = —Wpp, Wpy = —Wpp, Wpe = —Wpp, (7)

for B,C # 1,2 and 1 < D < n. These two equations (6) and (7) will be used
many times in Sections 3 and 4.

In the following, we will prove our Main Theorem according to each of
the non-diagonalizable forms (I), (II) and (II), and refer readers to [1] when
M7 has diagonalizable shape operator.

3. When the shape operator has the canonical form (I)

Theorem 3.1 Let M (n > 4) be a nondegenerate Lorentzian hypersurface

of the pseudo-EBuclidean space B}t satisfying AH = \H (A a real constant).
Suppose that the shape operator of M7 has the form (I) and M has at most
three distinct principal curvatures, then M has constant mean curvature.
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In view of the canonical form (I) with respect to the pseudo-orthonormal

basis B = {uy, us, -+, u,}, we have

A(ur) = pur + uz, Aug) = pua, Alus) = Aguz, -+, Aug) = Agtn. (8)

In order to prove Theorem 3.1, we start with the Codazzi equation

(VxA)Y,Z) = (VyA)X, Z).

After straightforward calculations, combining (6) and (7), we get the follow-

ing equations:
For X =uy,Y = us, Z = uy,

ur(p) = 2w3,.
For X =uy,Y = uq, Z = us,
uz(p) = 0.
For X =u,Y =us, Z =up,B # 1,2,

(1= Ap)(wiy — wyy) = wy.
For X =u,Y =up, Z =wus, B# 1,2,
up(p) = (A\g — pwip.
For X =u,Y =up, Z =uc,B,C # 1,2,

ur(Ag) = (1 — Ap)why + wWho,

(Mg = Ao)wip = (1 — Ac)wh; + ws.

For X =y, Y =up, Z=u,B# 1,2,

up(p) = (A — p)wsp — wap.
For X =g, Y =up,Z =us, B# 1,2,
(Ap — p)wy = 0.
For X =wus,Y =up, Z =uc,B,C # 1,2,
us(Ap) = (1 — Ap)wpo,

bt



(As = Ac)wip = (1 — Ao)ws. (18)
For X =up,Y =uc,Z =uy, B,C # 1,2,

(A = Wwpe = (A — pwep. (19)
For X =up,Y =uc,Z =up,B,C,D # 1,2,
UB(Ac) = ()\B — Ac)wgB, B 7& C (20)

()\C — )\D)wgc = ()\B — )\D)wgB, D 7& B,C (21)

Proof (of Theorem 3.1) Assume that H is not a constant, then (3) tells
us that VH is an eigenvector of A with corresponding eigenvalue —3H. In
view of (8), VH can be chosen in the direction of us (light-like), or in one of
the directions us, - - -, u,, (space-like). We will prove that either of cases will
lead to a contradiction, then complete the proof of Theorem 3.1

Case 1: VH is space-like.
Without loss of generality, we can choose u,, in the direction of VH, so

An = —5H, and (5) implies that

un(H) #0, w(H)=u(H)="---=wu,1(H)=0. (22)
Observe (V,,uc — Vyoup)(H) = [up, uc](H), using (22), we have
Whe = Wiy B,C#n. (23)

If =M\, or A\c = A, by (12) and (20) with B = n, we have u,(\,) = 0. It
follows that w,(H) = 0, a contradiction. So A, is simple, i.e.

WFE Ay Ao £ Ay, 3<C<n—1. (24)

Under the assumption that M{* has at most three distinct principal cur-
vatures, combining (24), the form (I) can be written as

w0
I p
(1) A= Dy-a(p) ,
Dn—t—l(V)
)\n



where 2 <t <n-—1, D;_o(u) = diag{p,--- ,pu}, Dp_y—1(v) = diag{v,--- ,v}
and p, v, \,, are mutually distinct principal curvatures of M}* with multiplic-
ities t, n —t — 1 and 1 respectively.

When t = n — 1, i.e. M7 has two distinct principal curvatures, we will
explain this situation in Remark 1.

In the following, we suppose 2 < t < n — 2, i.e. M{ has three distinct

principal curvatures. Since H = %trA and A, = —4H, it follows that v =
%nH—t,u
n—t—1 "

In this case, we shall make use of the following convention for the range

of indices: 1 < B,C,D <n,3 <14,k <t,t+1<abec<n-—1, and
B,C D,i, j,k,a,b,c are distinct. When t = 2, the terms about i, j, k are
disappear.

Lemma 3.2 We have the following results about {w5.}:

1 1 .1 _ .1 _ ,a _,b _ b b _J _ 0 _
Woq =Way, = Wiy = Wiy, = Wy, = Wy = Wy = W, = Wy, = wy, =0,

n o __ n __ a __ , .a _
Wnp = 07 Wep = 07D % a, Wy = Wiy, ul(:u = W9,

)
ur(v) = (p = v)wi +wip, u2(v) = (p—v)wiy, uwiv) = (u—v)wg, (25)

Ugq
oy =y ==, = ) (26)
v—p
why =y = =l = o
Wl — ol un(v)
(t+1) (n—=1)n —SH-v"

Proof It follows from (16) that wi, = wj, = 0, together with the equa-
tions (12), (15) and (20) for B = a,n, we get (26) and (27).

Using equations (13), (17) for B = a,n, (20) for C' = a,n and (22), we
have (25) and w” = 0. Combining (7), (18) and (19) give w}, = w}, = w§ =
w?y = 0. Observe (14), combining w}, = 0 and (7), we have w% = w?,.

Note that ui(p) = wi by (13). Then we have from (14), (18) and (21)
that

(V_l_% )w{‘a—(,ujL”H) a1+wg2
(V_l_% )wga_(lu“_‘_nH) Wa2s
(v + 5 H)wi, = (p+ 5H)wy;,
which together with (23) implies that
wga:wjzé:w;;:waz:wla:wal:o



Finally, it follows from (21) that w?, = w? =w! =w! =0. O

an a m

Lemma 3.3 We have

—(twi, + (n—t — DY Yun(H) — upun(H) + HtrA? = \H, (28)

(n—1)n
where
t(n—1) 3nt n—t+38
trA% = 2 H —  n’H% 29
g n—t—1" " n—t—1 'u+4(n—t—1)n (29)
Proof Based upon the pseudo-orthonormal basis B = {uy,ug, -+, u,},
we can construct an orthonormal basis € = {ey,eq, - ,€,}, given by
€1 = (u1 — UQ)/\/§, €y = (u1 +U2)/\/§, €3 = U3, ', €p = Up. (30)

The shape operator A with respect to this new basis € takes the form

1
2

and a straightforward calculation gives (29).
With the orthonormal basis €, we express VH = —e;(H)e; + ea(H)esg +
-+ e,(H)e,. Therefore,

en(H)#0, er(H)=es(H)="--=e,_1(H)=0.
It follows from (4) that
~Ve,e1(H)+ Veea(H) 4+ -+ Ve, en(H) — enen(H) + HtrA> = NH. (31)

According to (30), we easily obtain

1 n n n n
Veei(H) = 5(“11 — Wiy — Wiy + Wy )up (H),

1 n n n n
Ve,ea(H) = 5(“11 + why + Wiy + way Jun (H),

Vepep(H) =V up(H) = whgu,(H), 3<B<n-—1,
Ve.en(H) = Vy,u,(H) = 0.
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Using these equations, combining (7) and (27), then (31) can be simplified
o (28) and the lemma follows. O

Lemma 3.4 Suppose that H is not a constant. Then, for 1 < B <n —1,

up(p) = 0.

Proof From (10) and (12), we easily get us ()
0. In the following, we need to prove: (i) wui(u) =
Up—1(p) = 0.

(i) To prove uy(pu) = 0.

Since [upg, U] = Vg, —V,, up, using (6), (22) and w’p = 0 (see Lemma
3.2), we have

6 (ii) Ut+1(ﬂ)_: =

upun(H) =0, upuy,u,(H)=0,B # n. (32)
As us(p) = uz(p) = -+ =uy(p) =0, (25) implies that
(nn_ll) = w?n_—ll)?) == W, 11) =0 (33)
and )
n—1l u\v
= . 4
Win-1)1 —v (34)

Using Gauss equation for (R(u,_1, %)y, u,—_1), combining (6), (7), (23),
(33) and Lemma 3.2, we obtain

ul(w(nn_—ln ) = (Wi, — Wi 11) )W?n_—lnr (35)
Putting w("n__ll)n = —7_?}’{—(:)” (see Eq. (27)) and (34) into (35) gives
2
n - (t—3nH+2n+t—1)v ,_ -
Uy (V) = —(§H + V)w%nw(n—ll)l + o w(n—ll)nw(n—ll)l'

Differentiating both sides of wi, = j‘(;f;’)fﬁ(ﬂii)ﬁ)u (cf. Eq. (27)) along

the direction uy, using (33), (35) and the above equation, we have

(n—t—1)((t—-3nH+2(n+t—1)v)
—t(t+3)nH +2(n—t—1)tv

1 n 1 n—1
(Wi, — Win—1)n )W(n—l)l'

(36)

In view of v = 2 —— and (22), we know that wu;(x) = 0 is equivalent
to ui(v) = 0. Suppose on the contrary that u,(v) # 0, differentiating both

Ui (w%n) =

9



sides of (28) along the direction u;, using (22), (32), (34), (35) and (36), we
deduce that

dt(wi, — Wi, un(H) L =30+ 2(n — DHy
—(t+3)nH +2(n—t—1)v t
By differentiating the above equation along uq, with uq(v) # 0, we get
2t(((n—=1)(t —6) +9)nH +4(n—t—1)(n — 1)v)
(—(t+3)nH +2(n—t —1)w)2(3nH — (n — 1)v)

=0.

(Win = Wi 1y un(H)

in

Eliminating (w{, — w?n__ll)n)un(H ) from the above two equations yields

H(3nH —2(n —1)v)* = 0.

Since H # 0, so v = ? , and then p = 2?”H which contradicts to pu # v.
So uy(v) = 0, then uy (p ) 0.

(ii) To prove uzq(p) =+ = up_1(p) = 0.

When ¢ # n — 2, the equation (20) implies w1 (v) = -+ = u,—1(v) = 0,
thus, w1 (@) = -+ = up—1(p) = 0. When ¢t = n — 2, we need only to prove
Un—1(p) = 0.

Calculating (R(wi, tp—1)Un, w;), (R(u1,un_1)un, us) by Gauss equation,
using (6), (7), (23) and Lemma 3.2, we obtain

un—l(wgn) = (w?n_—ll)n - wgn)wg(n—l) + 2w(1n—1)iwin> (37)
u”—l(w%n) = (w?n_—ll)n wln wl(n 1) Zw(n 1) kwln (38>

Taking sum in (37) for i, combining wi = wi, (Cf. Eq. (27)) and wz(n y =
W%(n_l) (cf. Eq. (26)), we get kz?)w(n 1)kW1n 0, and (38) then becomes

Un-1(Wi,) = (W?n:11)n - w%n)w%(n—l)' (39)
Suppose on the contrary that w,_;(u) # 0, taking t = n — 2 in (28) and
differentiating along the direction u,_;, making use of (22), (32), (39) and

the formulas of wi,,, w?n__ll) and wj(, ;) in Lemma 3.2, we deduce that

—2up (H)(w (nn 11) W%n)

2nH — (n —2)u

—3nH?*+2(n—1)Hpu = 0.

10



Differentiating the above equation along u,,_1, we get

—(n(n —14)H —4(n—1)(n — 2)p)
(@0l — (n— 20l — (n = )

(Wi = @i un(H)+2(n = 1)H = 0.

Eliminating (w?n__ll)n — wi,)u,(H) yields H(3nH — 2(n — 1)u) = 0. Then
3nH

= v = g7, which contradicts to p #v. So u,_1(u) =0. O

Lemma 3.5 Suppose that H is not a constant. Then we have

3
n— n— n _nH - t:u
(Wi 2y) (W a)" = PR (40)
n
tu? — 3nHpu
n—1 1
Win—1)n%in = n——tz—l (42)

Proof Using Gauss equation (2) for (R(un,U,—1)Un_1,Uy,), combining
(6), (7), (23), Lemmas 3.2 and 3.4, it is not difficult to check (40).

Similarly, using Gauss equation for (R(u,,u1)us, t,), (R(tn,w;)u;, uy),
(R(tp—1,u1)Up_1,us) and (R(tp_1,u;)Up_1,u;), by Lemmas 3.2 and 3.4, we
obtain

t
. N
u”(“&n) + (w%n)2 == Zws2wlk + §H:U’7 (43)
k=3
n(why) + (@h)" = ~2opef + SHp, i=3,0- 0t (44)
t 2 3
e tu” —snHp
w(n—ll)nw%n + Z w]f(n—l)w(ln—l)k = n_—t2_17 (45)
k=3
n— i i ty® — 3nHp
w(n—ll)nwin - 2w1(n—1)w(1n—1)i = n——t2—1 (46)
Taking sum in (44) and (46) for 4, 3 < i < t, combining w!, = w;i, (cf.
Eq. (27)), then (43) and (45) can be simplified to (41) and (42). O
Now, we continue the proof of Theorem 3.1 for case 1.
o n— un(3nH—2 U
Substituting W(n_11)n = W and wj, = _%L(’_‘L (cf. Eq. (27))

into (40) and (41), together with (28) and (42), we eliminate u,u,(H) and
Unuy, (@) and obtain
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(n—t—1)((=3nt + 8n — 4wy, + (=3n + 3t + 10)nwi ) Jun(H)

1
4(—n +t—12)n*H® — 5(—n2 +nt + 9n + 20t + 10)n*H?p (47)
+ (=n? —dnt — 3t + 4)nHp® + 2(n — 2)tp’ + 3n(n —t — 1)AH.

Acting on both sides of (47) by u,, applying Lemmas 3.4 and 3.5, we obtain

fl (H7 M)w%n + g1 (Hv :U’)wzln__ll)n = hl (H7 M)un(H)7 (48)

where
1
fi(H, ) :Z(—n?’ + n?t + 20n* + 21nt + 106n — 32)n*H*

1 17
+ (§n3t —n® — §n2t2 — ?nzt —nt? — 32nt + 4n + 12t)nH?p

+ (n*t + n?t? — n® + Tn*t + 6nt? — 25nt + 4t + 4n) H y?
—2(n —2)(t — 2)tp® — (11n — 4)(n —t — 1)\H,

1
g1 (H, ) 25(11n — 11t +40)n* H? — 2(n — t)(n — 2)tu®
1 9

L, 2 772
+[(n t)(2n 2nt 5" t—5)—30tjn"H"p

+ (n® — nt* 4+ 16nt — 6t> — 4n — 6t)nHp? — 10n(n —t — 1)\H,

hi(H, ) = —6—29n3H2 +3n(n —t — 1)\

55 3(—3n?+18n — 4
+[—n3+n2t+5n2+§nt+16n—2t—2+( n”+18n —4)

H
dm—i—1) Mk
—3n? 4+ 18n — 4
- on® — Ant— 3nt 4 an — A3 18D, s

n—t—1

On the other hand, it follows from (27) that
3nu,(H) = —2(n — 2)(%H + p)wi, + [—4nH + 2(n — 2)U]W(nn_—l1)n' (49)

Putting (49) into (48) and eliminating w, (H ), we have

.f2(H> :u)w%n + gQ(Ha :u)w?n_—ll)n =0, (5())

12



where

1
fo(H, ) :Z(—n3 + n?t — 26n* + 21nt + 198n — 32)n*H*

1 5 1 4
+ [—§n4 + én?’t — §n2t2 + gn?’ —nt* — 21n* — 51nt
L1640, 4 (n —2)(—3n%+ 18n — 4)
" 3 2(n—t—1)

H2
3 3 InH=p

1
+ (—n* + gn?’t + n*t? + n® 4 23n%t + 6nt?

64 20 8
12n* — 61nt — —n+ —t+ =) Hu?
+12n nt ——n+ = +3) v
2 t(—3n? +18n —4
——(n—2)[n2+4nt+3t2—3t—4+( v e )]3

3 nin—t—1)
+(n—t—1)(n*—=13n+4NH +2(n —2)(n —t — 1)u,

1
go(H, 1) :5(117@ — 11t — 52)n*H*

1, 4 1,, 13, 11, ., 6%, 35
+[2n wt+ o't 2n+2nt+nt+3n+3nt
74 8 8 2(=3n*+18n—4), _,
P H
377373 e AT
5 14 23 44 26
+[§n4—§n3t—n2t2—?n3—§n2t—6nt2—§n2—?n
20 —2)(—3n* 4+ 18n —4)(—n — 4t +2
—I——n—l—(n )(—3n n—4)(-n—3 )]HM2
3 n—t—1
1, 1 4 t(—3n?+ 18n —4)
2n—2)[=n’>+ =nt + 2+t — = 3
+2(n )[3n tgnt - o+ S —t—1) I
—6nn—t—1)AH —2(n—2)(n—t—1)\pu.
Combining (42), (47) with (49), we get that
fa(H, po)(w1,)? + g3(H, p) (W 7,)? = ha(H, o), (51)
where
2(n —2
fatt ) = =2 B 1)t — s+ (S ),

g3(H, p) = %(n —t—1)(=3n+3t+10)(—2nH + (n — 2)p),

13



3 1
hs(H, 1) = Z(—n +t—12)n*H? + 5(2n? — 2nt — Tn + 38t — 2)n* H?p

14
+ (=n’t +n’t* 4+ 2n° — §n2t — 6nt? — 8n* + 13nt + 12n — 8)Hp?

2
— 3—t(n —2)(3n% — 6nt — 5n 4+ 4)p® + 3n(n —t — 1)AH.
n

Using relations (42), (50) and (51), by a long computation, we obtain
an algebraic equation of H and pu, and denoted by f(H,u) = 0. Acting on
f(H, 1) =0 with u,, twice, and using (40), (41), (42), (49) and (50), we get
another algebraic equation of H and p with the form g(H, p) = 0. Applying
Lemma 4.6 in [1], x4 can be eliminated from f(H,u) = 0 and g(H, ) = 0,
and we obtain an algebraic equation for H with constant coefficients. So, H
must be a constant, a contradiction. We prove Theorem 3.1 for case 1.

Remark 1 Whent=n—1, y = 23:;’{1 and many terms in the proof

of Theorem 3.1 are disappear. Meanwhile, Lemma 3.3 becomes more simple

and Lemma 3.5 is simplified to (41). Substitute wi, = _1;"7% into (41) and
2

combine Lemma 3.3, we get the equation

2(n+2)(n —4) (Wl )2 n%(n + 5)H> _
9 2(n—1)
Applying u,, to both sides of the above equation, we obtain
4(n —4) 3n?H?
T(W%n)z to—T 0,

which together with the previous equation leads to H be a constant. It is a
contradiction.

Case 2: VH is light-like.

In this case, VH is in the direction of us. By our assumption that M7
has at most three distinct principal curvatures, the form (I) can be written
as

Dyt —p(T)
where 2 < t < n, u,v,7 are mutually distinct principal curvatures of M7
with multiplicities ¢, p and n — t — p respectively.
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When t = n, there are only one principal curvature; when t+p = n,t # n,
there are two distinct principal curvatures. In the following, we consider that
M7 has three distinct principal curvatures, i.e. t4+p # n. Indeed, for t+p = n,
many terms in the following process are disappear, we can easily get H = 0,
a contradiction.

As VH is in the direction of uy, we know y = —5H. Since H = %trA, it

(%+1)nH;("_t_p)T. We have from (5) that

follows that v =
u(H) #0, ux(H)=us(H) =" =un(H)=0, (52)
which implies that (V,,uc =V up)(H) = [up,uc](H) =0, B,C # 1. Thus
Who = Wog, B,C # 1. (53)

Lemma 3.6 We have

4n—t—p)(t —v)
pw—v

8(t — 2)(wiy)* + wapwiy + nHtrA? + n\H =0,  (54)
where
trA% = tu® + pv® + (n —t — p)7°. (55)

Proof We construct an orthonormal basis € as (30). According to the
form of A with respect to this new basis, by a straightforward calculation,
we get (55).

From (30) and (52), we have

€i1€e1 (H) = (ulul (H) — UgU1 (H))/2,
{egeg(H) = (ulul(H) +U2U1(H))/2 (56)
Using (30) and (56), (4) can be rewritten as
—uguy (H) + (w%l + 2": w}EgB)ul(H) + HtrA? = \H. (57)

Since [uy, ug](H) = Vo, us(H) — Vy,ui (H), combining (6) and (53), we have
gty (H) = wyui (H) = —wiyu (H). (58)

From (9), (13) and (17), it follows that
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uy(p) = 2”%2 = Wgz == W§2~ (59)

and o
b __ u2(v
Wiy = Sy t+1<b<t+p, (60)
Way = ffi), t+p+l<a<n.
Noting that v = (%H)nH;(n_t_p)T, the above equations imply that
= _
p(p—v)
Also, we have from (59) and p = —% H that
4 5
ui(H) = _Ewm- (62)

Substituting (58) and (62) into (57), using (59)~(61), then (54) follows. O

Now, we continue the proof of Theorem 3.1 for case 2.
Differentiating both sides of u; (1) = 2w3, (cf. Eq. (59)) along the direc-
tion uy, combining p = —5H and (58), we get

ua(wyy) = —(w)™. (63)
From (11), (12), (16), (18) and (19), combining (7), (52) and (53), we obtain

i ., 1 _ ., 1 _,1 _, 1 _ B _ 1 _, 1 _
Wag = Wiy = Wi, = Wop = Way = Wpo = Wiy = Wpy = 0, (64)

with3<i<t t+1<b<t+panda#pB,t+p+1<a,B<n.
Computing (R(usg, u,)us, u,) by using Gauss equation, combining (6), (7),
(53) and (64), we obtain

Uz (wWna) = ( %2 — Wha)Wha-

Acting on (54) with wus, using (60), (61), (63) and the above equation, it
follows that

v =7+ (0= =)
D= P -
+nn—t—pHWY—1)(t—T)wy =0.

8(t —2)(w3)’ —2(n —t —p)
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Eliminating w, from (65) and (54), we get
F(H>7'>W§2) = fa(H, 7)(”22) + f2(H, 7)(”22) + fo(H,7) =0,

where f;(H,7),i = 0,2, 4, are algebraic expressions of H and 7. Differentiat-
ing F(H,T,w3,) = 0 along uy, combining (54) and (60), we get

G(H,T, Wgz) = g6(H, 7)(”22) +94(H, 7’)(“22) +92(H, 7’)(“22) +g0(H,7) =0,

where g;(H,7),1 = 0,2,4,6, are algebraic expressions of H and 7.

Eliminating w3, from F(H, T,wi) = 0 and G(H,T,w3,) = 0 by using
Lemma 4.6 in [1], we obtain an algebraic expression of H and 7, denote
by f(H,7) = 0. Acting on f(H,7) = 0 with wus, using us(H) = 0 and
us(7) = (pu — 7wy, we have

9(H,T)wns = 0, (66)

where g(H, 7) is an algebraic equation of H and 7.

We claim that w)}, # 0.

Indeed, If w7y = 0, from (65), we get (¢t — 2)ws, = 0. Then (54) implies
that trA% = \. Differentiating along ug for 3 < B < n, we get 2(n—t—p)(7—

v)up(t) = 0. As v # 7, it follows that up(7) = 0, 3 < B < n. Combining
(20), we finally get
wEtJZrll)B =w,p=0,3<B<t+p+1

Also, if w?, = 0, then (61) implies that w’ ? +1) = 0. Applying Gauss
equation to calculate (R(uq,uy,)us, u,) and (R(uq, usiq)usg, Us1), combining
(53), (64) and the above equation, we find ur = 0 and pv = 0. It follows
from y = —5H that v =7 =0, and then H = 0, a contradiction.

Since w}, # 0, we conclude from (66) that g(H,7) = 0. Combining
f(H,7) = 0 and g(H,7) = 0, we obtain an algebraic equation for H with
constant coefficients. So, H must be a constant, a contradiction.

We finish the proof of Theorem 3.1. 0

4. When the shape operator has the canonical form (II)

Theorem 4.1 Let M} (n > 4) be a nondegenerate Lorentzian hypersurface
of the pseudo-Euclidean space BT satisfying Aﬁ = )\ﬁ (A a real constant).
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Suppose that the shape operator of M has the form (II) and M has at most
three distinct principal curvatures, then M has constant mean curvature.

The proof ideas of Theorem 4.1 are the same as that of Theorem 3.1. So
in the following, we give the outline of the proof of Theorem 4.1 and leave
the details to the readers. First of all, we need some preliminaries.

When the shape operator A has the canonical form (II), we have

Alur) = puy +ug, A(ug) = pug, A(uz) = ug + pus,

A(UB) = )\BUB, B= 4, e, N
From ((VxA)Y,Z) = ((VyA)X, Z), using (6) and (7), we get the following
equations: for 4 < B,C, D <n and B,C, D are distinct,

X =u,Y =uy, Z =ug,and X = uy, Y = u3, Z = uz = () = wys = 0;

X =u,Y =uy, Z =up = (14— Ap)(wi) — wy) = wi;

X=u,Y =u3, Z=up = (. — Ap)(wh, —wd) =wl —wh;
X =u,Y =up, Z=uy = ug(p) = (A\p — p)wig — Ws;
X =u,Y =up, Z=ug = u1(A\g) = (4 — A\g)wh, + wha;
X =u,Y =up, Z=1uc= (Ag — A\o)wls = (4 — A\o)wh, + wSs;
X =uy,Y =up, Z =u; = ug(p) = (\p — p)wipg — wip + wiy;
X =uy,Y =up, Z =uy = (Ag — p)wyg = 0;
X =uy,Y =up, Z = uzs = (A\p — p)wip = Wyp;
X =uy,Y =up, Z =up = us(Ap) = (1 — Ap)why;
X =up,Y =up,Z =uc = (Ap — Ac)wsp = (11 — A\c)whs;
X =u3,Y =up, Z =uy = (Ag — p)wig = 0;
X =u3,Y =up, Z =us = up(p) = (A\p — p)wip — wig + 2whs;
X =u3,Y =up,Z = up = us(Ap) = (1 — Ap)wps + Wh»;
X =u3,Y =up,Z =uc = (Ap — Ac)wsp = (1 — A\c)whs + Who;
X =upY =uc,Z =u = (A\c — p)wpo = (A — p)wip;
X =up,Y =uc,Z =uy = Ao — p)wpe = (A — p)wip;
X =up,Y =uc, Z = us => (A\c — )wpo — wpo = (Ap — p)wip — Wops
X =up,Y =uc,Z =up = uc(Ag) = (\c — A\p)whe;
X =ug,Y =uc,Z =up = (Ac — A\p)whe = (A — Ap)wip,
(67)
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Proof (of Theorem 4.1) Assume that H is not a constant, then VH can
be in the direction of uy (light-like), or in one of the directions wuy, -« -, u,
(space-like). Next, we will study the two cases separately, and show that
each of the cases will lead to a contradiction.

Case 1: VH 1is space-like.

We choose u, in the direction of VH, so A\, = —§H. In this case, (22)
and (23) also hold.

Furthermore, A, is a simple root. In order to explain this fact, we find
from (67) that wf; = 0 and

Un () = (A — ,U)Wgn + wfm Un(p) = (An — :U)wgn - 2w52, (68>

If \c = A, or u = A, it follows from the last but one equation of (67) or
(68) that u,(H) = 0, which contradicts to u,(H) # 0 (cf. Eq. (22)). Then
An is simple, ie. p# N\, and Ag # A\, 4 <C <n—1.

Note that our assumption that M has at most three distinct principal
curvatures and the fact that )\, is a simple root, we suppose that pu, v, A, are
mutually distinct principal curvatures of M{* with multiplicities ¢, n —¢ — 1
and 1 respectively, where, 3 <t <n — 1. Since H = %trA and A\, = —5H,
it follows that tu+ (n —t — 1)v = SnH.

In the following, we suppose 3 <t < n — 2, (i.e. M7 has three distinct
principal curvatures). After we complete the proof of Theorem 4.1, the read-
ers may check that Theorem 4.1 is also true when ¢t = n—1 (i.e. M} has two
distinct principal curvatures).

We make use of the following convention for the range of indices: 1 <
B,CD<n 4<ijk<t,t+1<abc<n-—1,and B,C,D,i,j,k,a,b,c
are distinct. When ¢t = 3, the terms about i, j, k are disappear.

By using (7), (22), (23) and (67), we have the following.

Lemma 4.2 When the shape operator A takes the form (I), we have

o ua(p)
noo_n. 1 _ . n.oo__ . T __ a .
wnB_Ou wCa_Ovc%laavnu waD_()’D;éa? Wia_y_lu7
T _ 1 _ . 2 _ o _ n _ ,1 _ 1 _ 3 _
w2n_win_win_w23_wi3_wn3_wni_win_07
a _ ,a _ b _ b _ b __
Wy = Wo; = Wyy = Wyy = W,z = 0,

(V) = (p = vjwg +wig, wa(v) = (1 —v)wp,

ug(v) = (p = v)wg + wa, wilv) = (B —v)wg,
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(69)

t+1 . n—1 _ ua(v)
(t+)n —

Similar to Lemma 3.3, we also can construct an orthonormal basis € as
(30). Then using (4) and (69), we have the following Lemma.

Lemma 4.3 When the shape operator A takes the form (II), and VH is
space-like, then the equations (28) and (29) also hold.

Lemma 4.4 Suppose that H is not a constant. Then, for 1 < B <n —1,

up(p) =0.

Proof Observe (67), we have us(u) = 0.

(i) To prove us(u) = 0.

As us(p) = 0, we get from Lemma 4.2 that w?n__lm = (0 and wzln__ll)g =
Z%(?. Calculate (R(uy—_1,u3)Un, u,_1) by using Gauss equation (2), combin-
—1)2 = 0 and Lemma 4.2, we get

u3(w?n_—11)n) = (wgn - w?n_—ll)n)w?n_—llﬁ'
Suppose on the contrary that uz(r) # 0, similar to the proof of ui(u) = 0
in Lemma 3.4, we finally get p = v = %, a contradiction to u # v. So
uz(v) = 0. Furthermore, us(u) = 0.

(ii) To prove u;(p) =0, 4 <i <t.

When ¢ # 4, the last but one equation of (67) implies u;(¢) = 0. When
t = 4, using Gauss equation for (R(u,_1, u4)Uy, Uy_1), combining w?n__lm =0
and Lemma 4.2, we obtain

u4(wzln_—11)n) = (Win - wzln_—ll)n)w?n_—llﬂ' (70)
Following the similar method to the proof of u;(x) = 0 in Lemma 3.4, we
can check that uy(u) = 0 is true. Thus, we conclude u;(p) =0, 4 <7 <.

(i11) To prove ui(u) = 0.

Combining uz(p) = u;() = 0 and Lemma 4.2, we find w?n__ll)g = W?n_—ll)i =

W) Taking the same process as that in Lemma 3.4, then

n—1 .
0 and Win-1)1 = o
uy(p) = 0 follows.
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Summarize, we obtain ui(u) = us(u) = -+ = u(pn) = 0. Following the
similar process as Lemma 3.4, we also have u;1(p) = -+ = w1 () = 0. So,
Lemma 4.4 is proved. O

Now, we continue the proof of Theorem 4.1 for case 1.

Using Gauss equation (2) for (R(uy,, tp—1)Un, Up—1) and (R(t,, ui)us, u,),
combining Lemmas 4.2 and 4.4, we conclude that (40) and (41) hold. In the
following, we will prove that (42) also hold in this case.

By (67), together with Lemma 4.4, we obtain

wy; = wiz, (B —v)(W); —wi)) = wiy, (v— M)W:i’,a = me
(/"L - V) (w??) - wgl) = (wila - wga)’ wila = wga (71>

and

(v — p)wi, — wes = 0,

(v — p)ws, +wiy =0, (72)

(v — p)ws, — wly 4+ we3 = 0.
Clearly, (72) implies that wi, + w3, + w3, = 0. Notice that wi, = w3, (cf. Eq.
(71)), we have

wga - w%a = —3(4)%&. (73>

Taking into account the components wB, and Lemma 4.4, after applying
Gauss equation to (R(ug, u1)Ua, ug) and (R(ug, ug)uq, u1), we calculate and
obtain

n—1

t - 2_3
1 3.1 ko1 b1 a 1 1\2 _ tw—gnHp
Uq (w1a> +w1awa3 + 2 WiaWak = 2 waaw1b+wanw1n + (wla) - T a—t—1
k=4 b=t+1
2 3.0 ko2 2 2 \2 _ tw’—3nHp
a _ 2
Uq (w2a> T WaoW3, Z WaaWia — Z WaaWap +wanw2n + (w2a> — T n—t—1
k=3 b=t+1
(74)

Because of wi, = w3, (cf. Eq. (71)) and w{, = w3, (cf. Eq. (69)), it
follows from (74) that wls(wfy — w) + 35 _swly (Wi, —wg) = 0. Combining
(71), (72) and (73), we have 3(w],)? + >, _s(w)? = 0, which implies that
wi, = wis = 0. Furthermore, wl; = w$ = wl, = 0. Substituting into (74),
we know that equation (42) also hold.

Summing up, we have proved that (40), (41) and (42) hold under the
assumptions of Theorem 4.1 with the case of VH be space-like. Starting with
these three equations, following the same discussion as case 1 of Theorem 3.1,
we get a contradiction.
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Case 2: VH is light-like.

In this case, we review and find that the equations (52) and (53) hold.

We suppose p = —5 H, v, 7 are principal curvatures of M{* with multiplic-
ities t, p and n — t — p respectively, and 3 < ¢t < n. When t = n, there are
only one principal curvature. When t + p = n,t # n, there are two distinct
principal curvatures. In the following, we suppose that ¢t + p # n. From
trA=nH and p = -5 H, we have v = (%Jrl)nH;(n_t_p)T.

The equation ((VxA)Y,Z) = ((VyA)X, Z) for (X,Y,Z) evaluating in
the set {(u1, ug, u3), (uy, us, us), (ug, uz, u;)}, 4 < i < t, implies wy;, = wiy =
wiy, = 0. From (52), (53) and (67), we find that

up(v) = (= v)wpy, ua(7) = (= T)wga,

where, t+1<b<t+p,anda#fSfort+p+1<a,f<n.

Note that v = (L +1nH—(n—t—p)r
p

, the above two equations with (52) give

b (n—t—p)(T—,U,) «a (76)

Wiy = W
b2 p(p—v) ?

Using [uy, us](H) = Vi, us(H) — Voy,ui(H) and wi, = 0, we have
ugui(H) = 0.
Then, taking similar method to Lemma 3.6, we get the following Lemma.
Lemma 4.5 We have

(v —7)(n—t—p)
w—v

wlhyuy (H) + HtrA* = \H. (77)

where

trA% = tu® + pv® + (n —t — p)7°.

Now, we continue the proof of Theorem 4.1 for case 2. Using Gauss
equation to calculate (R(uz, uy,)us, u,), combining (6), (7), (53) and (75), we
obtain ug(w?y) = —(w?,)% Acting on (77) with ug, it follows that

plv—1)* = (n—t)(u—1)°
plp —v)?

wiguy (H) +2H(T —v)(p—17) =0,
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from which and (77), we eliminate w]’yu;(H) and obtain

2p(n—t—p)(n—v)(r—v) (p—7) = A= trA%)(p(v —7)* = (n =) (n—7)*).

(24+1)nH—(n—t—p)r

Because of p = —5H and v = , the above algebraic equation
is of H and 7 and denoted by f(H, 7') = 0. Actmg on f(H,7) = 0 with us,
we have g(H, T)w!y, = 0 with g(H, 7) is an algebraic expression of H and 7.

Similar to the proof of Theorem 3.1 for case 2, we can prove w;’, # 0, and
conclude g(H,7) = 0. Combining f(H,7) = 0 and g(H,7) = 0, we obtain
an algebraic equation for H with constant coefficients. So, H must be a
constant, a contradiction.

We finish the proof of Theorem 4.1. O

5. When the shape operator has the canonical form (II)

Theorem 5.1 Let M (n > 4) be a nondegenerate Lorentzian hypersurface
of the pseudo-EBuclidean space B}t satisfying AH = \H (A a real constant).
Suppose that the shape operator of M}* has the form () and M} has at most
three distinct principal curvatures, then M7 has constant mean curvature.
Proof According to the form (II), we easily find that the shape operator
has at least three distinct eigenvalues: & + ni,& — ni, A3. In view of our
assumption, we only need to discuss the case that M{ has three distinct

principal curvatures.
With the form (II), we have

A(61) = 561 + nesq, A(62) = —nex + 562, A(63) = )\363, s ,A(en) = )\nen

with A3 = .-+ = \,. Assume that H is not a constant, then VH # 0.
From (3), we conclude that VH is an eigenvector of A, so it can be in
one of the directions es, - - , e, (space-like). Without loss of generality, we
can choose e, in the direction of VH, so A\, = —5H. FExpress VH as
VH =e(H)ey+ex(H)eg + -+ - + en(H)e,, we get

en(H)#0, e(H)=ey(H)="--=e,1(H)=0.

On the other hand, it follows from ((V., A)e;, ;) = (Ve A)en, e;) that
en(Ni) = (A — A)w),,3 < i <n—1 Since \g = --- =\, = —%2H, we have
en,(H) = 0, which contradicts to e,(H) # 0. Theorem 5.1 follows. O

Finally, the Main Theorem follows from Theorems 3.1, 4.1 and 5.1.
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