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Abstract

This paper is a continuation of our paper [J. Math. Anal. Appl. 419 (2014)
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r of pseudo-Euclidean space
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s satisfying ∆
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1. Introduction

Let x : Mn
r → E

n+1
s be an isometric immersion of a pseudo-Riemannian

hypersurface Mn
r into a pseudo-Euclidean space E

n+1
s . Denote by

−→
H and ∆

the mean curvature vector field of Mn
r and the Laplace operator of Mn

r with
respect to the induced metric.

If the hypersurface Mn
r satisfies the equation

∆
−→
H = λ

−→
H

for some real constant λ, then it is said to have proper mean curvature vector
field. This equation is a natural generalization of the biharmonic submanifold

equation ∆
−→
H = 0.
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Under the assumption that the shape operator of Mn
r is diagonalizable,

we proved in [1] that the hypersurface Mn
r with proper mean curvature vec-

tor field and at most three distinct principal curvatures has constant mean
curvature.

It is known from [5, 6] that, for Lorentz hypersurface, the shape operator
has three possible non-diagonalizable forms except for diagonalizable ones.
So, in this paper, we show that the same conclusion in [1] remains true for
these three cases and prove the following result.

Main Theorem Let Mn
1 (n ≥ 4) be a nondegenerate Lorentz hypersur-

face with proper mean curvature vector field in (n + 1)-dimensional pseudo-
Euclidean space E

n+1
1 . Suppose that Mn

1 has at most three distinct principal
curvatures, then it has constant mean curvature.

When n = 3, it is true automatically that M3
1 has at most three dis-

tinct principal curvatures. In this case, the result has been proved by A.
Arvanitoyeorgos et al. in [2, Theorem].

2. Preliminaries

2.1. Lorentz hypersurface in E
n+1
1

A non-zero vector X in E
n+1
1 is called time-like, space-like or light-like,

according to whether 〈X,X〉 is negative, positive or zero.

Let Mn
1 be a nondegenerate Lorentzian hypersurface in E

n+1
1 ,

−→
ξ denote

a unit normal vector field to Mn
1 , then 〈−→ξ ,−→ξ 〉 = 1, i.e. the normal vector

to Mn
1 is space-like.

Denote by ∇ and ∇̃ the Levi-Civita connections of Mn
1 and E

n+1
1 respec-

tively. For any vector fields X, Y tangent to Mn
1 , the Gauss formula is given

by

∇̃XY = ∇XY + h(X, Y )
−→
ξ ,

where h is the scalar-valued second fundamental form. If we denote by A the

shape operator of Mn
1 associated to

−→
ξ , the Weingarten formula is given by

∇̃X

−→
ξ = −A(X),

where 〈A(X), Y 〉 = h(X, Y ). The mean curvature vector
−→
H = H

−→
ξ with

H = 1
n
trA, determines a well defined normal vector field to Mn

1 in E
n+1
1 . The
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Codazzi and Gauss equations are given by (cf. [3])

(∇XA)Y = (∇YA)X, (1)

R(X, Y )Z = 〈A(Y ), Z〉A(X)− 〈A(X), Z〉A(Y ), (2)

where
R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z.

According to [4], a hypersurface Mn
1 of En+1

1 is said to have proper mean
curvature vector field, if and only if the following two equations hold:

A(∇H) = −n

2
H(∇H), (3)

∆H +HtrA2 = λH, (4)

where the Laplace operator ∆ acting on scalar-valued function f is given by

∆f = −
n∑

i=1

εi(eieif −∇eieif),

with {ei}ni=1 be a local orthonormal frame such that 〈ei, ei〉 = εi = ±1.

2.2. The shape operator of Mn
1

Except for diagonalizable ones, the shape operator of the Lorentz hyper-
surface Mn

1 in E
n+1
1 has three possible non-diagonalizable forms with respect

to a frame at TxM
n
1 (cf. [5], [6]):

(I) A =




µ 0
1 µ

Dn−2


 , G =




0 1
1 0

In−2


 ,

(II) A =




µ 0 0
0 µ 1
1 0 µ

Dn−3


 , G =




0 1
1 0

In−2


 ,

(III) A =




ξ −η
η ξ

Dn−2


 , G =

(
−1

In−1

)
, η 6= 0,

where Dn−2 = diag{λ3, · · · , λn}, Dn−3 = diag{λ4, · · · , λn} and I the identity
matrix.
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The matric G for case (III) is referred to an orthonormal basis {e1, · · · , en}
of TxM

n
1 , i.e.,

〈e1, e1〉 = −1, 〈ei, ej〉 = δij , 〈e1, ei〉 = 0, 2 ≤ i, j ≤ n.

However the matrces G for cases (I) and (II) are referred to a pseudo-
orthonormal basis {u1, u2, · · · , un}, i.e. a basis of TxM

n
1 such that

〈u1, u2〉 = 〈ui, ui〉 = 1 for 3 ≤ i ≤ n,

〈u1, u1〉 = 〈u2, u2〉 = 〈ui, uj〉 = 0 for 3 ≤ i 6= j ≤ n.

For the forms (I) and (II), we can express

∇H = u2(H)u1 + u1(H)u2 + u3(H)u3 + · · ·+ un(H)un. (5)

Let ∇uB
uC =

∑n

D=1 ω
D
BCuD. Applying compatability conditions to calculate

∇uD
〈u1, u1〉,∇uD

〈u2, u2〉,∇uD
〈uB, uB〉,

and
∇uD

〈u1, u2〉,∇uD
〈u1, uB〉,∇uD

〈u2, uB〉,∇uD
〈uB, uC〉,

respectively, we conclude

ω2
D1 = ω1

D2 = ωB
DB = 0, (6)

and
ω1
D1 = −ω2

D2, ωB
D1 = −ω2

DB, ωB
D2 = −ω1

DB, ωB
DC = −ωC

DB, (7)

for B,C 6= 1, 2 and 1 ≤ D ≤ n. These two equations (6) and (7) will be used
many times in Sections 3 and 4.

In the following, we will prove our Main Theorem according to each of
the non-diagonalizable forms (I), (II) and (III), and refer readers to [1] when
Mn

1 has diagonalizable shape operator.

3. When the shape operator has the canonical form (I)

Theorem 3.1 Let Mn
1 (n ≥ 4) be a nondegenerate Lorentzian hypersurface

of the pseudo-Euclidean space En+1
1 satisfying ∆

−→
H = λ

−→
H (λ a real constant).

Suppose that the shape operator of Mn
1 has the form (I) and Mn

1 has at most
three distinct principal curvatures, then Mn

1 has constant mean curvature.

4



In view of the canonical form (I) with respect to the pseudo-orthonormal
basis B = {u1, u2, · · · , un}, we have

A(u1) = µu1 + u2, A(u2) = µu2, A(u3) = λ3u3, · · · , A(un) = λnun. (8)

In order to prove Theorem 3.1, we start with the Codazzi equation

〈(∇XA)Y, Z〉 = 〈(∇YA)X,Z〉.

After straightforward calculations, combining (6) and (7), we get the follow-
ing equations:
For X = u1, Y = u2, Z = u1,

u1(µ) = 2ω2
22. (9)

For X = u1, Y = u2, Z = u2,

u2(µ) = 0. (10)

For X = u1, Y = u2, Z = uB, B 6= 1, 2,

(µ− λB)(ω
B
12 − ωB

21) = ωB
22. (11)

For X = u1, Y = uB, Z = u2, B 6= 1, 2,

uB(µ) = (λB − µ)ω1
1B. (12)

For X = u1, Y = uB, Z = uC, B, C 6= 1, 2,

u1(λB) = (µ− λB)ω
B
B1 + ωB

B2, (13)

(λB − λC)ω
C
1B = (µ− λC)ω

C
B1 + ωC

B2. (14)

For X = u2, Y = uB, Z = u1, B 6= 1, 2,

uB(µ) = (λB − µ)ω2
2B − ω1

2B. (15)

For X = u2, Y = uB, Z = u2, B 6= 1, 2,

(λB − µ)ω1
2B = 0. (16)

For X = u2, Y = uB, Z = uC, B, C 6= 1, 2,

u2(λB) = (µ− λB)ω
B
B2, (17)
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(λB − λC)ω
C
2B = (µ− λC)ω

C
B2. (18)

For X = uB, Y = uC , Z = u2, B, C 6= 1, 2,

(λC − µ)ω1
BC = (λB − µ)ω1

CB. (19)

For X = uB, Y = uC , Z = uD, B, C,D 6= 1, 2,

uB(λC) = (λB − λC)ω
C
CB, B 6= C (20)

(λC − λD)ω
D
BC = (λB − λD)ω

D
CB, D 6= B,C. (21)

Proof (of Theorem 3.1) Assume that H is not a constant, then (3) tells
us that ∇H is an eigenvector of A with corresponding eigenvalue −n

2
H . In

view of (8), ∇H can be chosen in the direction of u2 (light-like), or in one of
the directions u3, · · · , un (space-like). We will prove that either of cases will
lead to a contradiction, then complete the proof of Theorem 3.1

Case 1: ∇H is space-like.
Without loss of generality, we can choose un in the direction of ∇H , so

λn = −n
2
H , and (5) implies that

un(H) 6= 0, u1(H) = u2(H) = · · · = un−1(H) = 0. (22)

Observe (∇uB
uC −∇uC

uB)(H) = [uB, uC](H), using (22), we have

ωn
BC = ωn

CB, B, C 6= n. (23)

If µ = λn or λC = λn, by (12) and (20) with B = n, we have un(λn) = 0. It
follows that un(H) = 0, a contradiction. So λn is simple, i.e.

µ 6= λn, λC 6= λn, 3 ≤ C ≤ n− 1. (24)

Under the assumption that Mn
1 has at most three distinct principal cur-

vatures, combining (24), the form (I) can be written as

(I) A =




µ 0
1 µ

Dt−2(µ)
Dn−t−1(ν)

λn




,
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where 2 ≤ t ≤ n− 1, Dt−2(µ) = diag{µ, · · · , µ}, Dn−t−1(ν) = diag{ν, · · · , ν}
and µ, ν, λn are mutually distinct principal curvatures of Mn

1 with multiplic-
ities t, n− t− 1 and 1 respectively.

When t = n − 1, i.e. Mn
1 has two distinct principal curvatures, we will

explain this situation in Remark 1.
In the following, we suppose 2 ≤ t ≤ n − 2, i.e. Mn

1 has three distinct
principal curvatures. Since H = 1

n
trA and λn = −n

2
H , it follows that ν =

3

2
nH−tµ

n−t−1
.

In this case, we shall make use of the following convention for the range
of indices: 1 ≤ B,C,D ≤ n, 3 ≤ i, j, k ≤ t, t + 1 ≤ a, b, c ≤ n − 1, and
B,C,D, i, j, k, a, b, c are distinct. When t = 2, the terms about i, j, k are
disappear.

Lemma 3.2 We have the following results about {ωD
BC}:

ω1
2a =ω1

2n = ω1
ia = ω1

in = ωa
2i = ωb

a2 = ωb
ai = ωb

an = ωj
ia = ωj

in = 0,

ωn
nB = 0, ωn

aD = 0, D 6= a, ωa
1i = ωa

i1, u1(µ) = ωi
i2,

u1(ν) = (µ− ν)ωa
a1 + ωa

a2, u2(ν) = (µ− ν)ωa
a2, ui(ν) = (µ− ν)ωa

ai, (25)

ω1
1a = ω2

2a = · · · = ωt
ta =

ua(µ)

ν − µ
, (26)

{
ω1
1n = ω2

2n = · · · = ωt
tn = un(µ)

−

n

2
H−µ

,

ωt+1
(t+1)n = · · · = ωn−1

(n−1)n = un(ν)
−

n

2
H−ν

.
(27)

Proof It follows from (16) that ω1
2a = ω1

2n = 0, together with the equa-
tions (12), (15) and (20) for B = a, n, we get (26) and (27).

Using equations (13), (17) for B = a, n, (20) for C = a, n and (22), we
have (25) and ωn

nB = 0. Combining (7), (18) and (19) give ω1
in = ω1

ia = ωa
2i =

ωb
a2 = 0. Observe (14), combining ω1

ia = 0 and (7), we have ωa
1i = ωa

i1.
Note that u1(µ) = ωi

i2 by (13). Then we have from (14), (18) and (21)
that 





(ν + n
2
H)ωn

1a = (µ+ n
2
H)ωn

a1 + ωn
a2

(ν + n
2
H)ωn

2a = (µ+ n
2
H)ωn

a2,

(ν + n
2
H)ωn

ia = (µ+ n
2
H)ωn

ai,

which together with (23) implies that

ωn
2a = ωn

a2 = ωn
ia = ωn

ai = ωn
1a = ωn

a1 = 0.
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Finally, it follows from (21) that ωb
ai = ωb

an = ωj
ia = ωj

in = 0. �

Lemma 3.3 We have

−(tω1
1n + (n− t− 1)ωn−1

(n−1)n)un(H)− unun(H) +HtrA2 = λH, (28)

where

trA2 =
t(n− 1)

n− t− 1
µ2 − 3nt

n− t− 1
Hµ+

n− t + 8

4(n− t− 1)
n2H2. (29)

Proof Based upon the pseudo-orthonormal basis B = {u1, u2, · · · , un},
we can construct an orthonormal basis E = {e1, e2, · · · , en}, given by

e1 = (u1 − u2)/
√
2, e2 = (u1 + u2)/

√
2, e3 = u3, · · · , en = un. (30)

The shape operator A with respect to this new basis E takes the form

A =




µ− 1
2

−1
2

1
2

µ+ 1
2

Dt−2(µ)
Dn−t−1(ν)

λn




,

and a straightforward calculation gives (29).
With the orthonormal basis E, we express ∇H = −e1(H)e1 + e2(H)e2 +

· · ·+ en(H)en. Therefore,

en(H) 6= 0, e1(H) = e2(H) = · · · = en−1(H) = 0.

It follows from (4) that

−∇e1e1(H) +∇e2e2(H) + · · ·+∇enen(H)− enen(H) +HtrA2 = λH. (31)

According to (30), we easily obtain

∇e1e1(H) =
1

2
(ωn

11 − ωn
21 − ωn

12 + ωn
22)un(H),

∇e2e2(H) =
1

2
(ωn

11 + ωn
21 + ωn

12 + ωn
22)un(H),

∇eBeB(H) = ∇uB
uB(H) = ωn

BBun(H), 3 ≤ B ≤ n− 1,

∇enen(H) = ∇un
un(H) = 0.
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Using these equations, combining (7) and (27), then (31) can be simplified
to (28) and the lemma follows. �

Lemma 3.4 Suppose that H is not a constant. Then, for 1 ≤ B ≤ n− 1,

uB(µ) = 0.

Proof From (10) and (12), we easily get u2(µ) = u3(µ) = · · · = ut(µ) =
0. In the following, we need to prove: (i) u1(µ) = 0. (ii) ut+1(µ) = · · · =
un−1(µ) = 0.

(i) To prove u1(µ) = 0.
Since [uB, un] = ∇uB

un−∇un
uB, using (6), (22) and ωn

nB = 0 (see Lemma
3.2), we have

uBun(H) = 0, uBunun(H) = 0, B 6= n. (32)

As u2(µ) = u3(µ) = · · · = ut(µ) = 0, (25) implies that

ωn−1
(n−1)2 = ωn−1

(n−1)3 = · · · = ωn−1
(n−1)t = 0 (33)

and

ωn−1
(n−1)1 =

u1(ν)

µ− ν
. (34)

Using Gauss equation for 〈R(un−1, u1)un, un−1〉, combining (6), (7), (23),
(33) and Lemma 3.2, we obtain

u1(ω
n−1
(n−1)n) = (ω1

1n − ωn−1
(n−1)n)ω

n−1
(n−1)1. (35)

Putting ωn−1
(n−1)n = − un(ν)

n

2
H+ν

(see Eq. (27)) and (34) into (35) gives

u1un(ν) = −(
n

2
H + ν)ω1

1nω
n−1
(n−1)1 +

(t− 3)nH + 2(n+ t− 1)ν

2t
ωn−1
(n−1)nω

n−1
(n−1)1.

Differentiating both sides of ω1
1n = un(3nH−2(n−t−1)ν)

−(t+3)nH+2(n−t−1)ν
(cf. Eq. (27)) along

the direction u1, using (33), (35) and the above equation, we have

u1(ω
1
1n) =

(n− t− 1)((t− 3)nH + 2(n+ t− 1)ν)

−t(t + 3)nH + 2(n− t− 1)tν
(ω1

1n − ωn−1
(n−1)n)ω

n−1
(n−1)1.

(36)

In view of ν =
3

2
nH−tµ

n−t−1
and (22), we know that u1(µ) = 0 is equivalent

to u1(ν) = 0. Suppose on the contrary that u1(ν) 6= 0, differentiating both
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sides of (28) along the direction u1, using (22), (32), (34), (35) and (36), we
deduce that

4t(ω1
1n − ωn−1

(n−1)n)un(H)

−(t + 3)nH + 2(n− t− 1)ν
+

−3nH2 + 2(n− 1)Hν

t
= 0.

By differentiating the above equation along u1, with u1(ν) 6= 0, we get

2t(((n− 1)(t− 6) + 9t)nH + 4(n− t− 1)(n− 1)ν)

(−(t + 3)nH + 2(n− t− 1)ν)2(3
2
nH − (n− 1)ν)

(ω1
1n − ωn−1

(n−1)n)un(H)

+
(n− 1)H

t
= 0.

Eliminating (ω1
1n − ωn−1

(n−1)n)un(H) from the above two equations yields

H(3nH − 2(n− 1)ν)2 = 0.

Since H 6= 0, so ν = 3nH
2(n−1)

, and then µ = 3nH
2(n−1)

, which contradicts to µ 6= ν.

So u1(ν) = 0, then u1(µ) = 0.
(ii) To prove ut+1(µ) = · · · = un−1(µ) = 0.
When t 6= n − 2, the equation (20) implies ut+1(ν) = · · · = un−1(ν) = 0,

thus, ut+1(µ) = · · · = un−1(µ) = 0. When t = n − 2, we need only to prove
un−1(µ) = 0.

Calculating 〈R(ui, un−1)un, ui〉, 〈R(u1, un−1)un, u2〉 by Gauss equation,
using (6), (7), (23) and Lemma 3.2, we obtain

un−1(ω
i
in) = (ωn−1

(n−1)n − ωi
in)ω

i
i(n−1) + 2ω1

(n−1)iω
i
1n, (37)

un−1(ω
1
1n) = (ωn−1

(n−1)n − ω1
1n)ω

1
1(n−1) −

t∑

k=3

ω1
(n−1)kω

k
1n. (38)

Taking sum in (37) for i, combining ωi
in = ω1

1n (cf. Eq. (27)) and ωi
i(n−1) =

ω1
1(n−1) (cf. Eq. (26)), we get

t∑
k=3

ω1
(n−1)kω

k
1n = 0, and (38) then becomes

un−1(ω
1
1n) = (ωn−1

(n−1)n − ω1
1n)ω

1
1(n−1). (39)

Suppose on the contrary that un−1(µ) 6= 0, taking t = n− 2 in (28) and
differentiating along the direction un−1, making use of (22), (32), (39) and
the formulas of ω1

1n, ω
n−1
(n−1)n and ω1

1(n−1) in Lemma 3.2, we deduce that

−2un(H)(ωn−1
(n−1)n − ω1

1n)

2nH − (n− 2)µ
− 3nH2 + 2(n− 1)Hµ = 0.
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Differentiating the above equation along un−1, we get

−(n(5n− 14)H − 4(n− 1)(n− 2)µ)

(2nH − (n− 2)µ)2(3
2
nH − (n− 1)µ)

(ωn−1
(n−1)n−ω1

1n)un(H)+2(n− 1)H = 0.

Eliminating (ωn−1
(n−1)n − ω1

1n)un(H) yields H(3nH − 2(n − 1)µ) = 0. Then

µ = ν = 3nH
2(n−1)

, which contradicts to µ 6= ν. So un−1(µ) = 0. �

Lemma 3.5 Suppose that H is not a constant. Then we have

un(ω
n−1
(n−1)n) + (ωn−1

(n−1)n)
2 =

n

2
H

3
2
nH − tµ

n− t− 1
, (40)

un(ω
1
1n) + (ω1

1n)
2 =

n

2
Hµ, (41)

ωn−1
(n−1)nω

1
1n =

tµ2 − 3
2
nHµ

n− t− 1
. (42)

Proof Using Gauss equation (2) for 〈R(un, un−1)un−1, un〉, combining
(6), (7), (23), Lemmas 3.2 and 3.4, it is not difficult to check (40).

Similarly, using Gauss equation for 〈R(un, u1)u2, un〉, 〈R(un, ui)ui, un〉,
〈R(un−1, u1)un−1, u2〉 and 〈R(un−1, ui)un−1, ui〉, by Lemmas 3.2 and 3.4, we
obtain

un(ω
1
1n) + (ω1

1n)
2 = −

t∑

k=3

ωk
n2ω

n
1k +

n

2
Hµ, (43)

un(ω
i
in) + (ωi

in)
2 = −2ω1

niω
n
1i +

n

2
Hµ, i = 3, · · · , t, (44)

ωn−1
(n−1)nω

1
1n +

t∑

k=3

ωk
1(n−1)ω

1
(n−1)k =

tµ2 − 3
2
nHµ

n− t− 1
, (45)

ωn−1
(n−1)nω

i
in − 2ωi

1(n−1)ω
1
(n−1)i =

tµ2 − 3
2
nHµ

n− t− 1
. (46)

Taking sum in (44) and (46) for i, 3 ≤ i ≤ t, combining ωi
in = ω1

1n (cf.
Eq. (27)), then (43) and (45) can be simplified to (41) and (42). �

Now, we continue the proof of Theorem 3.1 for case 1.
Substituting ωn−1

(n−1)n = un(3nH−2tµ)
−n(n−t+2)H+2tµ

and ω1
1n = un(µ)

−

n

2
−µ

(cf. Eq. (27))

into (40) and (41), together with (28) and (42), we eliminate unun(H) and
unun(µ) and obtain
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(n− t− 1)
(
(−3nt + 8n− 4)ω1

1n + (−3n + 3t+ 10)nωn−1
(n−1)n

)
un(H)

=
3

4
(−n+ t− 12)n3H3 − 1

2
(−n2 + nt + 9n+ 20t+ 10)n2H2µ

+ (−n2 − 4nt− 3t+ 4)nHµ2 + 2(n− 2)tµ3 + 3n(n− t− 1)λH.

(47)

Acting on both sides of (47) by un, applying Lemmas 3.4 and 3.5, we obtain

f1(H, µ)ω1
1n + g1(H, µ)ωn−1

(n−1)n = h1(H, µ)un(H), (48)

where

f1(H, µ) =
1

4
(−n3 + n2t+ 20n2 + 21nt + 106n− 32)n2H3

+ (
1

2
n3t− n3 − 1

2
n2t2 − 17

2
n2t− nt2 − 32nt+ 4n+ 12t)nH2µ

+ (n3t+ n2t2 − n3 + 7n2t+ 6nt2 − 25nt+ 4t + 4n)Hµ2

− 2(n− 2)(t− 2)tµ3 − (11n− 4)(n− t− 1)λH,

g1(H, µ) =
1

2
(11n− 11t+ 40)n3H3 − 2(n− t)(n− 2)tµ3

+ [(n− t)(
1

2
n2 − 1

2
nt− 9

2
n− t− 5)− 30t]n2H2µ

+ (n3 − nt2 + 16nt− 6t2 − 4n− 6t)nHµ2 − 10n(n− t− 1)λH,

h1(H, µ) = −69

2
n3H2 + 3n(n− t− 1)λ

+ [−n3 + n2t + 5n2 +
55

2
nt + 16n− 2t− 2 +

3(−3n2 + 18n− 4)

2(n− t− 1)
]nHµ

+ [−n3 − 4n2t− 3nt+ 4n− t(−3n2 + 18n− 4)

n− t− 1
]µ2.

On the other hand, it follows from (27) that

3nun(H) = −2(n− 2)(
n

2
H + µ)ω1

1n + [−4nH + 2(n− 2)µ]ωn−1
(n−1)n. (49)

Putting (49) into (48) and eliminating un(H), we have

f2(H, µ)ω1
1n + g2(H, µ)ωn−1

(n−1)n = 0, (50)
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where

f2(H, µ) =
1

4
(−n3 + n2t− 26n2 + 21nt+ 198n− 32)n2H3

+ [−1

3
n4 +

5

6
n3t− 1

2
n2t2 +

4

3
n3 − nt2 − 21n2 − 51nt

+
116

3
n+

40

3
t+

4

3
+

(n− 2)(−3n2 + 18n− 4)

2(n− t− 1)
]nH2µ

+ (−n4 +
1

3
n3t+ n2t2 + n3 + 23n2t + 6nt2

+ 12n2 − 61nt− 64

3
n+

20

3
t+

8

3
)Hµ2

− 2

3
(n− 2)[n2 + 4nt+ 3t2 − 3t− 4 +

t(−3n2 + 18n− 4)

n(n− t− 1)
]µ3

+ (n− t− 1)(n2 − 13n+ 4)λH + 2(n− 2)(n− t− 1)µλ,

g2(H, µ) =
1

2
(11n− 11t− 52)n3H3

+ [
1

2
n4 − n3t+

1

2
n2t2 − 13

2
n3 +

11

2
n2t+ nt2 +

68

3
n2 +

35

3
nt

− 74

3
n− 8

3
t− 8

3
+

2(−3n2 + 18n− 4)

n− t− 1
]nH2µ

+ [
5

3
n4 − 2

3
n3t− n2t2 − 14

3
n3 − 23

3
n2t− 6nt2 − 44

3
n2 − 26

3
nt

+
20

3
n +

(n− 2)(−3n2 + 18n− 4)(−n− 4
3
t+ 2)

n− t− 1
]Hµ2

+ 2(n− 2)[
1

3
n2 +

1

3
nt+ t2 + t− 4

3
+

t(−3n2 + 18n− 4)

3n(n− t− 1)
]µ3

− 6n(n− t− 1)λH − 2(n− 2)(n− t− 1)λµ.

Combining (42), (47) with (49), we get that

f3(H, µ)(ω1
1n)

2 + g3(H, µ)(ωn−1
(n−1)n)

2 = h3(H, µ), (51)

where

f3(H, µ) = −2(n− 2)

3n
(n− t− 1)(3nt− 8n+ 4)(

n

2
H + µ),

g3(H, µ) =
2

3
(n− t− 1)(−3n+ 3t+ 10)(−2nH + (n− 2)µ),

13



h3(H, µ) =
3

4
(−n+ t− 12)n3H3 +

1

2
(2n2 − 2nt− 7n+ 38t− 2)n2H2µ

+ (−n3t+ n2t2 + 2n3 − 14

3
n2t− 6nt2 − 8n2 + 13nt+ 12n− 8)Hµ2

− 2

3n
t(n− 2)(3n2 − 6nt− 5n+ 4)µ3 + 3n(n− t− 1)λH.

Using relations (42), (50) and (51), by a long computation, we obtain
an algebraic equation of H and µ, and denoted by f(H, µ) = 0. Acting on
f(H, µ) = 0 with un twice, and using (40), (41), (42), (49) and (50), we get
another algebraic equation of H and µ with the form g(H, µ) = 0. Applying
Lemma 4.6 in [1], µ can be eliminated from f(H, µ) = 0 and g(H, µ) = 0,
and we obtain an algebraic equation for H with constant coefficients. So, H
must be a constant, a contradiction. We prove Theorem 3.1 for case 1.

Remark 1 When t = n − 1, µ = 3nH
2(n−1)

and many terms in the proof
of Theorem 3.1 are disappear. Meanwhile, Lemma 3.3 becomes more simple
and Lemma 3.5 is simplified to (41). Substitute ω1

1n = un(µ)
−

n

2
H−µ

into (41) and

combine Lemma 3.3, we get the equation

2(n+ 2)(n− 4)

9
(ω1

1n)
2 +

n2(n+ 5)H2

2(n− 1)
= λ.

Applying un to both sides of the above equation, we obtain

4(n− 4)

9
(ω1

1n)
2 +

3n2H2

n− 1
= 0,

which together with the previous equation leads to H be a constant. It is a
contradiction.

Case 2: ∇H is light-like.
In this case, ∇H is in the direction of u2. By our assumption that Mn

1

has at most three distinct principal curvatures, the form (I) can be written
as

(I) A =




µ 0
1 µ

Dt−2(µ)
Dp(ν)

Dn−t−p(τ)




,

where 2 ≤ t ≤ n, µ, ν, τ are mutually distinct principal curvatures of Mn
1

with multiplicities t, p and n− t− p respectively.
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When t = n, there are only one principal curvature; when t+p = n, t 6= n,
there are two distinct principal curvatures. In the following, we consider that
Mn

1 has three distinct principal curvatures, i.e. t+p 6= n. Indeed, for t+p = n,
many terms in the following process are disappear, we can easily get H = 0,
a contradiction.

As ∇H is in the direction of u2, we know µ = −n
2
H . Since H = 1

n
trA, it

follows that ν =
( t

2
+1)nH−(n−t−p)τ

p
. We have from (5) that

u1(H) 6= 0, u2(H) = u3(H) = · · · = un(H) = 0, (52)

which implies that (∇uB
uC−∇uC

uB)(H) = [uB, uC ](H) = 0, B,C 6= 1. Thus

ω1
BC = ω1

CB, B, C 6= 1. (53)

Lemma 3.6 We have

8(t− 2)(ω2
22)

2 +
4(n− t− p)(τ − ν)

µ− ν
ω2
22ω

n
n2 + nHtrA2 + nλH = 0, (54)

where
trA2 = tµ2 + pν2 + (n− t− p)τ 2. (55)

Proof We construct an orthonormal basis E as (30). According to the
form of A with respect to this new basis, by a straightforward calculation,
we get (55).

From (30) and (52), we have

{
e1e1(H) = (u1u1(H)− u2u1(H))/2,

e2e2(H) = (u1u1(H) + u2u1(H))/2.
(56)

Using (30) and (56), (4) can be rewritten as

−u2u1(H) +
(
ω1
21 +

n∑

B=3

ω1
BB

)
u1(H) +HtrA2 = λH. (57)

Since [u1, u2](H) = ∇u1
u2(H)−∇u2

u1(H), combining (6) and (53), we have

u2u1(H) = ω1
21u1(H) = −ω2

22u1(H). (58)

From (9), (13) and (17), it follows that
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u1(µ) = 2ω2
22 = ω3

32 = · · · = ωt
t2. (59)

and {
ωb
b2 =

u2(ν)
µ−ν

, t+ 1 ≤ b ≤ t+ p,

ωα
α2 =

u2(τ)
µ−τ

, t+ p+ 1 ≤ α ≤ n.
(60)

Noting that ν =
( t

2
+1)nH−(n−t−p)τ

p
, the above equations imply that

ωb
b2 = −(n− t− p)(µ− τ)

p(µ− ν)
ωα
α2. (61)

Also, we have from (59) and µ = −n
2
H that

u1(H) = −4

n
ω2
22. (62)

Substituting (58) and (62) into (57), using (59)∼(61), then (54) follows. �

Now, we continue the proof of Theorem 3.1 for case 2.
Differentiating both sides of u1(µ) = 2ω2

22 (cf. Eq. (59)) along the direc-
tion u2, combining µ = −n

2
H and (58), we get

u2(ω
2
22) = −(ω2

22)
2. (63)

From (11), (12), (16), (18) and (19), combining (7), (52) and (53), we obtain

ωi
22 = ω1

1b = ω1
1α = ω1

2b = ω1
2α = ωβ

α2 = ω1
iα = ω1

bα = 0, (64)

with 3 ≤ i ≤ t, t + 1 ≤ b ≤ t + p and α 6= β, t+ p + 1 ≤ α, β ≤ n.
Computing 〈R(u2, un)u2, un〉 by using Gauss equation, combining (6), (7),

(53) and (64), we obtain

u2(ω
n
n2) = (ω2

22 − ωn
n2)ω

n
n2.

Acting on (54) with u2, using (60), (61), (63) and the above equation, it
follows that

8(t− 2)(ω2
22)

3 − 2(n− t− p)
p(ν − τ)2 + (n− t)(µ− τ)2

p(µ− ν)2
(ωn

n2)
2ω2

22

+ n(n− t− p)H(ν − τ)(µ− τ)ωn
n2 = 0.

(65)
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Eliminating ωn
n2 from (65) and (54), we get

F (H, τ, ω2
22) := f4(H, τ)(ω2

22)
4 + f2(H, τ)(ω2

22)
2 + f0(H, τ) = 0,

where fi(H, τ), i = 0, 2, 4, are algebraic expressions of H and τ . Differentiat-
ing F (H, τ, ω2

22) = 0 along u2, combining (54) and (60), we get

G(H, τ, ω2
22) := g6(H, τ)(ω2

22)
6+g4(H, τ)(ω2

22)
4+g2(H, τ)(ω2

22)
2+g0(H, τ) = 0,

where gi(H, τ), i = 0, 2, 4, 6, are algebraic expressions of H and τ .
Eliminating ω2

22 from F (H, τ, ω2
22) = 0 and G(H, τ, ω2

22) = 0 by using
Lemma 4.6 in [1], we obtain an algebraic expression of H and τ , denote
by f(H, τ) = 0. Acting on f(H, τ) = 0 with u2, using u2(H) = 0 and
u2(τ) = (µ− τ)ωn

n2, we have

g(H, τ)ωn
n2 = 0, (66)

where g(H, τ) is an algebraic equation of H and τ .
We claim that ωn

n2 6= 0.
Indeed, If ωn

n2 = 0, from (65), we get (t − 2)ω2
22 = 0. Then (54) implies

that trA2 = λ. Differentiating along uB for 3 ≤ B ≤ n, we get 2(n−t−p)(τ−
ν)uB(τ) = 0. As ν 6= τ , it follows that uB(τ) = 0, 3 ≤ B ≤ n. Combining
(20), we finally get

ωt+1
(t+1)B = ωn

nB = 0, 3 ≤ B ≤ t+ p + 1.

Also, if ωn
n2 = 0, then (61) implies that ωt+1

(t+1)2 = 0. Applying Gauss

equation to calculate 〈R(u1, un)u2, un〉 and 〈R(u1, ut+1)u2, ut+1〉, combining
(53), (64) and the above equation, we find µτ = 0 and µν = 0. It follows
from µ = −n

2
H that ν = τ = 0, and then H = 0, a contradiction.

Since ωn
n2 6= 0, we conclude from (66) that g(H, τ) = 0. Combining

f(H, τ) = 0 and g(H, τ) = 0, we obtain an algebraic equation for H with
constant coefficients. So, H must be a constant, a contradiction.

We finish the proof of Theorem 3.1. �

4. When the shape operator has the canonical form (II)

Theorem 4.1 Let Mn
1 (n ≥ 4) be a nondegenerate Lorentzian hypersurface

of the pseudo-Euclidean space En+1
1 satisfying ∆

−→
H = λ

−→
H (λ a real constant).
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Suppose that the shape operator of Mn
1 has the form (II) and Mn

1 has at most
three distinct principal curvatures, then Mn

1 has constant mean curvature.

The proof ideas of Theorem 4.1 are the same as that of Theorem 3.1. So
in the following, we give the outline of the proof of Theorem 4.1 and leave
the details to the readers. First of all, we need some preliminaries.

When the shape operator A has the canonical form (II), we have

A(u1) = µu1 + u3, A(u2) = µu2, A(u3) = u2 + µu3,

A(uB) = λBuB, B = 4, · · · , n.
From 〈(∇XA)Y, Z〉 = 〈(∇YA)X,Z〉, using (6) and (7), we get the following
equations: for 4 ≤ B,C,D ≤ n and B,C,D are distinct,

X = u1, Y = u2, Z = u2, and X = u2, Y = u3, Z = u3 =⇒ u2(µ) = ω1
23 = 0;

X = u1, Y = u2, Z = uB =⇒ (µ− λB)(ω
B
12 − ωB

21) = ωB
23;

X = u1, Y = u3, Z = uB =⇒ (µ− λB)(ω
B
13 − ωB

31) = ωB
33 − ωB

12;

X = u1, Y = uB, Z = u2 =⇒ uB(µ) = (λB − µ)ω1
1B − ω1

B3;

X = u1, Y = uB, Z = uB =⇒ u1(λB) = (µ− λB)ω
B
B1 + ωB

B3;

X = u1, Y = uB, Z = uC =⇒ (λB − λC)ω
C
1B = (µ− λC)ω

C
B1 + ωC

B3;

X = u2, Y = uB, Z = u1 =⇒ uB(µ) = (λB − µ)ω2
2B − ω3

2B + ω3
B2;

X = u2, Y = uB, Z = u2 =⇒ (λB − µ)ω1
2B = 0;

X = u2, Y = uB, Z = u3 =⇒ (λB − µ)ω3
2B = ω1

2B;

X = u2, Y = uB, Z = uB =⇒ u2(λB) = (µ− λB)ω
B
B2;

X = u2, Y = uB, Z = uC =⇒ (λB − λC)ω
C
2B = (µ− λC)ω

C
B2;

X = u3, Y = uB, Z = u2 =⇒ (λB − µ)ω1
3B = 0;

X = u3, Y = uB, Z = u3 =⇒ uB(µ) = (λB − µ)ω3
3B − ω1

3B + 2ω1
B3;

X = u3, Y = uB, Z = uB =⇒ u3(λB) = (µ− λB)ω
B
B3 + ωB

B2;

X = u3, Y = uB, Z = uC =⇒ (λB − λC)ω
C
3B = (µ− λC)ω

C
B3 + ωC

B2;

X = uB, Y = uC , Z = u1 =⇒ (λC − µ)ω2
BC = (λB − µ)ω2

CB;

X = uB, Y = uC , Z = u2 =⇒ (λC − µ)ω1
BC = (λB − µ)ω1

CB;

X = uB, Y = uC , Z = u3 =⇒ (λC − µ)ω3
BC − ω1

BC = (λB − µ)ω3
CB − ω1

CB;

X = uB, Y = uC , Z = uB =⇒ uC(λB) = (λC − λB)ω
B
BC ;

X = uB, Y = uC , Z = uD =⇒ (λC − λD)ω
D
BC = (λB − λD)ω

D
CB,

(67)
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Proof (of Theorem 4.1) Assume that H is not a constant, then ∇H can
be in the direction of u2 (light-like), or in one of the directions u4, · · · , un

(space-like). Next, we will study the two cases separately, and show that
each of the cases will lead to a contradiction.

Case 1: ∇H is space-like.
We choose un in the direction of ∇H , so λn = −n

2
H . In this case, (22)

and (23) also hold.
Furthermore, λn is a simple root. In order to explain this fact, we find

from (67) that ωn
23 = 0 and

un(µ) = (λn − µ)ω2
2n + ω3

n2, un(µ) = (λn − µ)ω3
3n − 2ω3

n2, (68)

If λC = λn or µ = λn, it follows from the last but one equation of (67) or
(68) that un(H) = 0, which contradicts to un(H) 6= 0 (cf. Eq. (22)). Then
λn is simple, i.e. µ 6= λn and λC 6= λn, 4 ≤ C ≤ n− 1.

Note that our assumption that Mn
1 has at most three distinct principal

curvatures and the fact that λn is a simple root, we suppose that µ, ν, λn are
mutually distinct principal curvatures of Mn

1 with multiplicities t, n− t− 1
and 1 respectively, where, 3 ≤ t ≤ n − 1. Since H = 1

n
trA and λn = −n

2
H ,

it follows that tµ+ (n− t− 1)ν = 3
2
nH .

In the following, we suppose 3 ≤ t ≤ n − 2, (i.e. Mn
1 has three distinct

principal curvatures). After we complete the proof of Theorem 4.1, the read-
ers may check that Theorem 4.1 is also true when t = n−1 (i.e. Mn

1 has two
distinct principal curvatures).

We make use of the following convention for the range of indices: 1 ≤
B,C,D ≤ n, 4 ≤ i, j, k ≤ t, t + 1 ≤ a, b, c ≤ n− 1, and B,C,D, i, j, k, a, b, c
are distinct. When t = 3, the terms about i, j, k are disappear.

By using (7), (22), (23) and (67), we have the following.

Lemma 4.2 When the shape operator A takes the form (II), we have

ωn
nB = 0; ω1

Ca = 0, C 6= 1, a, n; ωn
aD = 0, D 6= a; ωi

ia =
ua(µ)

ν − µ
;

ω1
2n = ω1

in = ω2
in = ωn

23 = ωn
i3 = ω1

n3 = ω1
ni = ωj

in = 0,

ωa
23 = ωa

2i = ωb
a1 = ωb

a2 = ωb
a3 = 0,

u1(ν) = (µ− ν)ωa
a1 + ωa

a3, u2(ν) = (µ− ν)ωa
a2,

u3(ν) = (µ− ν)ωa
a3 + ωa

a2, ui(ν) = (µ− ν)ωa
ai,
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{
ω1
1n = ω2

2n = · · · = ωt
tn = un(µ)

−

n

2
H−µ

,

ωt+1
(t+1)n = · · · = ωn−1

(n−1)n = un(ν)
−

n

2
H−ν

.
(69)

Similar to Lemma 3.3, we also can construct an orthonormal basis E as
(30). Then using (4) and (69), we have the following Lemma.

Lemma 4.3 When the shape operator A takes the form (II), and ∇H is
space-like, then the equations (28) and (29) also hold.

Lemma 4.4 Suppose that H is not a constant. Then, for 1 ≤ B ≤ n− 1,

uB(µ) = 0.

Proof Observe (67), we have u2(µ) = 0.
(i) To prove u3(µ) = 0.
As u2(µ) = 0, we get from Lemma 4.2 that ωn−1

(n−1)2 = 0 and ωn−1
(n−1)3 =

u3(ν)
µ−ν

. Calculate 〈R(un−1, u3)un, un−1〉 by using Gauss equation (2), combin-

ing ωn−1
(n−1)2 = 0 and Lemma 4.2, we get

u3(ω
n−1
(n−1)n) = (ω3

3n − ωn−1
(n−1)n)ω

n−1
(n−1)3.

Suppose on the contrary that u3(ν) 6= 0, similar to the proof of u1(µ) = 0
in Lemma 3.4, we finally get µ = ν = 3nH

2(n−1)
, a contradiction to µ 6= ν. So

u3(ν) = 0. Furthermore, u3(µ) = 0.
(ii) To prove ui(µ) = 0, 4 ≤ i ≤ t.
When t 6= 4, the last but one equation of (67) implies ui(µ) = 0. When

t = 4, using Gauss equation for 〈R(un−1, u4)un, un−1〉, combining ωn−1
(n−1)2 = 0

and Lemma 4.2, we obtain

u4(ω
n−1
(n−1)n) = (ω4

4n − ωn−1
(n−1)n)ω

n−1
(n−1)4. (70)

Following the similar method to the proof of u1(µ) = 0 in Lemma 3.4, we
can check that u4(µ) = 0 is true. Thus, we conclude ui(µ) = 0, 4 ≤ i ≤ t.

(iii) To prove u1(µ) = 0.
Combining u3(µ) = ui(µ) = 0 and Lemma 4.2, we find ωn−1

(n−1)3 = ωn−1
(n−1)i =

0 and ωn−1
(n−1)1 = u1(ν)

µ−ν
. Taking the same process as that in Lemma 3.4, then

u1(µ) = 0 follows.
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Summarize, we obtain u1(µ) = u2(µ) = · · · = ut(µ) = 0. Following the
similar process as Lemma 3.4, we also have ut+1(µ) = · · · = un−1(µ) = 0. So,
Lemma 4.4 is proved. �

Now, we continue the proof of Theorem 4.1 for case 1.
Using Gauss equation (2) for 〈R(un, un−1)un, un−1〉 and 〈R(un, u1)u2, un〉,

combining Lemmas 4.2 and 4.4, we conclude that (40) and (41) hold. In the
following, we will prove that (42) also hold in this case.

By (67), together with Lemma 4.4, we obtain

ωa
3i = ωa

i3, (µ− ν)(ωa
1i − ωa

i1) = ωa
i3, (ν − µ)ωi

3a = ωi
a2,

(µ− ν)(ωa
13 − ωa

31) = (ω1
1a − ω3

3a), ω1
1a = ω2

2a (71)

and 



(ν − µ)ω1
1a − ω1

a3 = 0,

(ν − µ)ω2
2a + ω3

a2 = 0,

(ν − µ)ω3
3a − ω3

a2 + ω1
a3 = 0.

(72)

Clearly, (72) implies that ω1
1a+ω2

2a+ω3
3a = 0. Notice that ω1

1a = ω2
2a (cf. Eq.

(71)), we have
ω3
3a − ω1

1a = −3ω1
1a. (73)

Taking into account the components ωD
BC and Lemma 4.4, after applying

Gauss equation to 〈R(ua, u1)ua, u2〉 and 〈R(ua, u2)ua, u1〉, we calculate and
obtain




ua(ω
1
1a)+ω3

1aω
1
a3+

t∑
k=4

ωk
1aω

1
ak−

n−1∑
b=t+1

ωb
aaω

1
1b+ωa

anω
1
1n+(ω1

1a)
2 =

tµ2
−

3

2
nHµ

n−t−1
,

ua(ω
2
2a)−ω3

a2ω
2
3a−

t∑
k=3

ωk
a2ω

2
ka−

n−1∑
b=t+1

ωb
aaω

2
2b+ωa

anω
2
2n+(ω2

2a)
2 =

tµ2
−

3

2
nHµ

n−t−1
.

(74)
Because of ω1

1a = ω2
2a (cf. Eq. (71)) and ω1

1n = ω2
2n (cf. Eq. (69)), it

follows from (74) that ω1
a3(ω

a
13 − ωa

31) +
∑t

k=3 ω
1
ak(ω

a
1k − ωa

k1) = 0. Combining
(71), (72) and (73), we have 3(ω1

1a)
2 +

∑t

k=3(ω
a
k3)

2 = 0, which implies that
ω1
1a = ωa

k3 = 0. Furthermore, ω1
a3 = ωa

3k = ω1
ai = 0. Substituting into (74),

we know that equation (42) also hold.
Summing up, we have proved that (40), (41) and (42) hold under the

assumptions of Theorem 4.1 with the case of∇H be space-like. Starting with
these three equations, following the same discussion as case 1 of Theorem 3.1,
we get a contradiction.
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Case 2: ∇H is light-like.
In this case, we review and find that the equations (52) and (53) hold.
We suppose µ = −n

2
H, ν, τ are principal curvatures of Mn

1 with multiplic-
ities t, p and n − t − p respectively, and 3 ≤ t ≤ n. When t = n, there are
only one principal curvature. When t + p = n, t 6= n, there are two distinct
principal curvatures. In the following, we suppose that t + p 6= n. From

trA = nH and µ = −n
2
H , we have ν =

( t

2
+1)nH−(n−t−p)τ

p
.

The equation 〈(∇XA)Y, Z〉 = 〈(∇YA)X,Z〉 for (X, Y, Z) evaluating in
the set {(u1, u2, u3), (u1, u3, u2), (u2, u3, ui)}, 4 ≤ i ≤ t, implies ω1

21 = ω1
33 =

ωi
22 = 0. From (52), (53) and (67), we find that

ω1
23 = ωi

i2 = ω1
2b = ω1

2α = ωβ
α2 = ω1

3b = ω1
3α = ω1

1b = ω1
1α = ω1

iα = ω1
bα = 0

(75)
and

u2(ν) = (µ− ν)ωb
b2, u2(τ) = (µ− τ)ωα

α2,

where, t+ 1 ≤ b ≤ t+ p, and α 6= β for t+ p+ 1 ≤ α, β ≤ n.

Note that ν =
( t

2
+1)nH−(n−t−p)τ

p
, the above two equations with (52) give

ωb
b2 =

(n− t− p)(τ − µ)

p(µ− ν)
ωα
α2. (76)

Using [u1, u2](H) = ∇u1
u2(H)−∇u2

u1(H) and ω1
21 = 0, we have

u2u1(H) = 0.

Then, taking similar method to Lemma 3.6, we get the following Lemma.

Lemma 4.5 We have

(ν − τ)(n− t− p)

µ− ν
ωn
n2u1(H) +HtrA2 = λH. (77)

where
trA2 = tµ2 + pν2 + (n− t− p)τ 2.

Now, we continue the proof of Theorem 4.1 for case 2. Using Gauss
equation to calculate 〈R(u2, un)u2, un〉, combining (6), (7), (53) and (75), we
obtain u2(ω

n
n2) = −(ωn

n2)
2. Acting on (77) with u2, it follows that

p(ν − τ)2 − (n− t)(µ− τ)2

p(µ− ν)2
ωn
n2u1(H) + 2H(τ − ν)(µ− τ) = 0,
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from which and (77), we eliminate ωn
n2u1(H) and obtain

2p(n− t− p)(µ− ν)(τ − ν)2(µ− τ) = (λ− trA2)(p(ν− τ)2 − (n− t)(µ− τ)2).

Because of µ = −n
2
H and ν =

( t

2
+1)nH−(n−t−p)τ

p
, the above algebraic equation

is of H and τ and denoted by f(H, τ) = 0. Acting on f(H, τ) = 0 with u2,
we have g(H, τ)ωn

n2 = 0 with g(H, τ) is an algebraic expression of H and τ .
Similar to the proof of Theorem 3.1 for case 2, we can prove ωn

n2 6= 0, and
conclude g(H, τ) = 0. Combining f(H, τ) = 0 and g(H, τ) = 0, we obtain
an algebraic equation for H with constant coefficients. So, H must be a
constant, a contradiction.

We finish the proof of Theorem 4.1. �

5. When the shape operator has the canonical form (III)

Theorem 5.1 Let Mn
1 (n ≥ 4) be a nondegenerate Lorentzian hypersurface

of the pseudo-Euclidean space En+1
1 satisfying ∆

−→
H = λ

−→
H (λ a real constant).

Suppose that the shape operator of Mn
1 has the form (III) and Mn

1 has at most
three distinct principal curvatures, then Mn

1 has constant mean curvature.
Proof According to the form (III), we easily find that the shape operator

has at least three distinct eigenvalues: ξ + ηi, ξ − ηi, λ3. In view of our
assumption, we only need to discuss the case that Mn

1 has three distinct
principal curvatures.

With the form (III), we have

A(e1) = ξe1 + ηe2, A(e2) = −ηe1 + ξe2, A(e3) = λ3e3, · · · , A(en) = λnen

with λ3 = · · · = λn. Assume that H is not a constant, then ∇H 6= 0.
From (3), we conclude that ∇H is an eigenvector of A, so it can be in
one of the directions e3, · · · , en (space-like). Without loss of generality, we
can choose en in the direction of ∇H , so λn = −n

2
H . Express ∇H as

∇H = e1(H)e1 + e2(H)e2 + · · ·+ en(H)en, we get

en(H) 6= 0, e1(H) = e2(H) = · · · = en−1(H) = 0.

On the other hand, it follows from 〈(∇enA)ei, ei〉 = 〈(∇eiA)en, ei〉 that
en(λi) = (λn − λi)ω

i
in, 3 ≤ i ≤ n − 1. Since λ3 = · · · = λn = −n

2
H , we have

en(H) = 0, which contradicts to en(H) 6= 0. Theorem 5.1 follows. �

Finally, the Main Theorem follows from Theorems 3.1, 4.1 and 5.1.
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