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Abstract

In this paper, we investigate hypersurface Mn
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E
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−→
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1. Introduction

Let x : Mm
r → E

n
s be an isometric immersion of anm-dimensional pseudo-

Riemannian submanifold Mm
r into a pseudo-Euclidean space E

n
s . Denote by

−→
H and ∆ the mean curvature vector field, the Laplace operator of Mm

r with
respect to the induced metric.

The submanifold Mm
r is called biharmonic if it satisfies the equation

∆
−→
H = 0. (1)

Equation (1) is a special case of the equation

∆
−→
H = λ

−→
H (2)

for some real constant λ. The submanifoldMm
r of En

s which satisfies condition
(2) is said to have proper mean curvature vector field. In fact, equation (2)
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can be related to the theory of harmonic and biharmonic maps, we refer to
[1, p. 807] and [14, p. 58]) for explanations.

Submanifolds with proper mean curvature vector field in Riemannian
manifolds were originally studied by B.Y. Chen in [4] and by several other
authors thereafter in space forms, contact, and Sasakian manifolds, we refer
to [5–6], [9–10], [13–15].

The study of equation (2) for submanifolds in pseudo-Euclidean spaces
was originated by Ferrández and Lucas in [11], where they classified surfaces
M2

r (r = 0, 1) in the Lorentz-Minkowski space E3
1. One of the possibilities for

M2
1 is that of a surface with zero mean curvature. In [3], A. Arvanitoyeorgos

et al. proved that every hypersurface M3
1 in E

4
1 with proper mean curvature

vector field has constant mean curvature, and in [2], the same conclusion
holds for every hypersurface M3

2 in E
4
2. More general, it is shown in [1] that

every hypersurface M3
r (r = 0, 1, 2, 3) of E4

s satisfying equation (2) whose
shape operator is diagonalizable, has constant mean curvature.

For higher dimensional case, the hypersurface Mn
r (r = 0, 1) in E

n+1
1 with

proper mean curvature vector field and such that the minimal polynomial of
the shape operator is at most of degree two, were studied in [12], showing
that Mn

r has constant mean curvature.
The results of the previous two paragraphs suggest a further study of

hypersurfaces of En+1
s (0 ≤ s ≤ n + 1) satisfying equation (2), as it is con-

jectured by Arvanitoyeorgos and Kaimakamis in [2] that such hypersurfaces
must have constant mean curvature. If λ = 0, i.e. the hypersurface is bihar-
monic, then this implies that such hypersurface is minimal. In the pseudo-
Euclidean setting, this is a version of a well known conjecture due to Chen
[8]: Any biharmonic submanifold in pseudo-Euclidean space En+1

s is minimal.

Towards this goal, in this paper we prove the following theorem.

Main Theorem Let Mn
r (n ≥ 4) be a nondegenerate hypersurface of (n+1)

dimensional pseudo-Euclidean space E
n+1
s satisfying ∆

−→
H = λ

−→
H . Assume

that Mn
r has diagonalizable shape operator with at most three distinct princi-

pal curvatures, then it has constant mean curvature.

Remark 1 The shape operator of a Riemannian submanifold is always
diagonalizable, but for pseudo-Riemannian submanifolds, there may be other
forms (cf. [17]). However, the cases where Mn

r is a Riemannian or a pseudo-
Riemannian hypersurface, and the shape operator is diagonalizable, can be
treated in a uniform way in this paper. The same problems for the other
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forms of the shape operator will be studied in another paper.
Remark 2 When n = 3, it is true automatically that M3

r has at most
three distinct principal curvatures. In this case, the result has been proved
by A. Arvanitoyeorgos in [1, Theorem]. So, in this paper, we study with
n ≥ 4.

2. Preliminaries and Lemma

Let x : Mn
r → E

n+1
s be an isometric immersion of a hypersurface Mn

r

(r = 0, 1, · · · , n) into E
n+1
s (s = 0, 1, · · · , n + 1), r ≤ s. Let ξ denote a unit

normal vector field with 〈ξ, ξ〉 = ε = ±1. The hypersurface Mn
r can itself

be endowed with a Riemannian or a pseudo-Riemannian metric structure,
depending on whether the metric induced on Mn

r from the pseudo-Euclidean
space E

n+1
s is positive-definite or indefinite.

Denote by ∇ and ∇̃ the Levi-Civita connections of Mn
r and E

n+1
s respec-

tively. For any vector fields X, Y tangent to Mn
r , the Gauss formula is given

by
∇̃XY = ∇XY + h(X, Y )ξ,

where h is the scalar-valued second fundamental form. If we denote by A the
shape operator of Mn

r associated to ξ, then the Weingarten formula is given
by

∇̃Xξ = −A(X),

where 〈A(X), Y 〉 = εh(X, Y ). The mean curvature vector
−→
H = Hξ with

mean curvature H = 1
n
εtrA, determines a well defined normal vector field to

Mn
r in E

n+1
s . The Codazzi and Gauss equations are given by (cf. [17])

(∇XA)Y = (∇YA)X, (3)

R(X, Y )Z = 〈A(Y ), Z〉A(X)− 〈A(X), Z〉A(Y ), (4)

where
R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z. (5)

A hypersurface Mn
r of En+1

s is said to have proper mean curvature vector

field, if ∆
−→
H = λ

−→
H for some constant λ. Equivalently(cf. [7]),

∆
−→
H =

(
2A(∇H) + nεH(∇H)

)
+ (∆H + εHtrA2)ξ = λ

−→
H.
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By comparing the vertical and horizontal parts, the above equation is equiv-
alent to the following two equations

A(∇H) = −
n

2
εH(∇H), (6)

∆H + εHtrA2 = λH, (7)

where the Laplace operator ∆ acting on scalar-valued function f is given by
(cf. [7])

∆f = −

n∑

i=1

εi(eieif −∇eieif), (8)

where {e1, e2, · · · , en} is a local orthonormal frame of TpM
n
r with 〈ei, ei〉 =

εi = ±1.
Assume that the mean curvature H of Mn

r in our main theorem is not a
constant, then∇H 6= 0, and (6) shows that∇H is an eigenvector of the shape
operator A with correspongding eigenvalue λ1 = −n

2
εH . We can choose a

suitable orthonormal frame {ei}
n
i=1 such that, without loss of generality, e1

is in the direction of ∇H . Therefore, the diagonalizable shape operator A

takes the form A = diag{λ1, λ2, · · · , λn}. At that time, we have the following
lemma.

Lemma 2.1 Suppose that H is not a constant, then λj 6= λ1 for j 6= 1.
Proof As ∇H 6= 0, let us express ∇H as ∇H =

∑n

i=1 εiei(H)ei. Since
∇H is in the direction of e1, we get

e1(H) 6= 0, e2(H) = e3(H) = · · · = en(H) = 0. (9)

For any i, j = 1, 2, · · · , n, we write ∇eiej =
∑n

k=1 ω
k
ijek. By applying com-

patibility conditions to ∇ek〈ei, ei〉 = 0 and ∇ek〈ei, ej〉 = 0, we obtain

ωi
ki = 0, ω

j
ki = −εiεjω

i
kj, (10)

for 1 ≤ i, j, k ≤ n and i 6= j. Since λ1 = −n
2
εH , it follows from (9) that

e1(λ1) 6= 0, e2(λ1) = e3(λ1) = · · · = en(λ1) = 0. (11)

We consider distinct i, j, k = 1, 2, · · · , n, then the Codazzi equation (3) im-
plies the equations

〈(∇eiA)ej , ej〉 = 〈(∇ejA)ei, ej〉,

〈(∇ekA)ei, ej〉 = 〈(∇eiA)ek, ej〉.
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A straightforward calculation on the above two equations shows that

ei(λj) = (λi − λj)ω
j
ji, (12)

(λi − λj)ω
j
ki = (λk − λj)ω

j
ik, (13)

for distinct i, j, k = 1, 2, · · · , n.
If λj = λ1 for j 6= 1, we have from (12) that

0 = (λ1 − λj)ω
j
j1 = e1(λj) = e1(λ1),

which contradicts to (11) and completes the proof of Lemma 2.1. �

Remark 3 In the proof of Lemma 2.1, we don’t use the equation (13).
However, it will play an important role in the following sections.

In the special case in which all the principal curvatures λi of M
n
r in E

n+1
s

are equal, then Lemma 2.1 implies that H is clearly a constant. According
to our assumption that Mn

r has at most three distinct principal curvatures,
the remaining cases are: two or three distinct principal curvatures. We will
treat each of the cases in Sections 3 and 4, separately.

3. M
n

r
has two distinct principal curvatures

Proposition 3.1 Let Mn
r be a nondegenerate hypersurface of En+1

s satisfy-

ing ∆
−→
H = λ

−→
H . Assume that Mn

r has diagonalizable shape operator with two

distinct principal curvatures, then it has constant mean curvature.

Proof Assume on the contrary that H is not a constant, we will end
up the proof with a contradiction.

According to Lemma 2.1, we know λj 6= λ1 for j 6= 1. Since the hyper-
surface Mn

r has two distinct principal curvatures, without loss of generality,
we denote λ2 = λ3 = · · · = λn = µ and µ 6= λ1. Since H = 1

n
εtrA, it follows

that

µ =
3nεH

2(n− 1)
.

Let j = 1 in (12), combining (10) and (11), we get

ω1
1i = ωi

11 = 0, 2 ≤ i ≤ n.
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For i = 1, j 6= 1 in (12), by using (10), we obtain

ω
j
j1 = −

3e1(H)

(n + 2)H
, ω1

jj = ε1εj
3e1(H)

(n + 2)H
. (14)

Observe (13) for i = 1 and 2 ≤ k 6= j ≤ n, combining (10), we have

ω
j
k1 = ω1

kj = 0.

Using the above equations, it is easy to check that, for 2 ≤ i 6= j ≤ n,

∇e1e1 = 0, ∇e1ei =
∑

k 6=1,i

ωk
1iek, ∇eie1 = ωi

i1ei,

∇eiei = −ε1εiω
i
i1e1 +

∑

k 6=1,i

ωk
iiek, ∇eiej =

∑

k 6=1,j

ωk
ijek.

Applying Gauss equation (4) and the definition (5) of the curvature tensor
to 〈R(e1, e2)e1, e2〉, we find that

e1(ω
2
21) =

3ε1n
2

4(n− 1)
H2 − (ω2

21)
2. (15)

Using (8), (9) and the formulas of ∇eiej, it follows from (7) that

−ε1e1e1(H)− (n− 1)ε1ω
2
21e1(H) + ε

(n+ 8)n2H3

4(n− 1)
= λH. (16)

By differentiating (14) with j = 2 along e1, and using (15), we get

e1e1(H) =
(n + 2)(n+ 5)

9
H(ω2

21)
2 − ε1

n2(n+ 2)

4(n− 1)
H3. (17)

Substituting (17) into (16), combining (14) and noticing that H 6= 0, we have

ε1
(n+ 2)(−2n+ 8)

9
(ω2

21)
2 + λ−

n2(n+ 2) + εn2(n+ 8)

4(n− 1)
H2 = 0. (18)

Acting on both sides of (18) by e1 and using (14) and (15), then

ε1
−2n+ 8

9
(ω2

21)
2 −

n2(−n + 10 + (n+ 8)ε)

12(n− 1)
H2 = 0. (19)

Eliminating ω2
21 from (18) and (19), we obtain that

λ+
n2((n+ 2)(−n + 7) + (n+ 8)(n− 1)ε)

12(n− 1)
H2 = 0.

Then, H must be a constant, which contradicts to our assumption, and
completes the proof of Proposition 3.1. �
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4. M
n

r
has three distinct principal curvatures

Proposition 4.1 Let Mn
r be a nondegenerate hypersurface of En+1

s satis-

fying ∆
−→
H = λ

−→
H . Assume that Mn

r has diagonalizable shape operator with

three distinct principal curvatures, then it has constant mean curvature.

In order to prove Proposition 4.1, assume on the contrary that H is not
a constant, we will show that this assumption runs into a contradiction. So
in the following, we start with H 6= const..

From Lemma 2.1, we have λj 6= λ1 for j 6= 1. Without loss of generality,
we suppose that λ2 = · · · = λt = µ, λt+1 = · · · = λn = ν, where λ1, µ, ν are
mutually distinct principal curvature of Mn

r with multiplicities 1, t − 1 and
n − t respectively. Obviously, 2 ≤ t ≤ n − 1. Since H = 1

n
εtrA, it follows

that ν =
3

2
nεH−(t−1)µ

n−t
.

In this section, we shall make use of the following convention for the range
of indices: 1 ≤ i, j, k ≤ n, 2 ≤ a, b, c ≤ t, t+ 1 ≤ α, β, γ ≤ n.

We need the following four lemmas.

Lemma 4.2 Let n ≥ 4. When t = n−1, the covariant derivatives have the

following forms:

∇e1e1 = ∇e1en = 0, ∇e1ea =
∑

c 6=a

ωc
1aec, ∇eae1 = −

e1(µ)
n
2
εH + µ

ea,

∇eaea =
ε1εae1(µ)
n
2
εH + µ

e1 +
∑

c 6=a

ωc
aaec −

εaεnen(µ)
3
2
nεH − (n− 1)µ

en,

∇eaeb = ωa
abea +

∑

c 6=a,b

ωc
abec, ∇eaen =

en(µ)
3
2
nεH − (n− 1)µ

ea,

∇ene1 =
e1(3nεH − 2(n− 2)µ)

−4nεH + 2(n− 2)µ
en, ∇enea =

∑

c 6=a

ωc
naec,

∇enen = −ε1εn
e1(3nεH − 2(n− 2)µ)

−4nεH + 2(n− 2)µ
e1.

Proof According to (11), for i, j 6= 1 and i 6= j, we obtain [ei, ej ](λ1) =
0. Then (∇eiej −∇ejei)(λ1) = 0, which yields directly

ω1
ij = ω1

ji. (20)
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From (12), we have ea(λb) = (λa − λb)ω
b
ba = 0, i.e.

ea(µ) = 0. (21)

Consider equation (12) for j = 1, i 6= 1 and j = n, i = 2, 3, · · · , n − 1,
combining (10), (11) and (21), we get

ωn
na = ωa

nn = ω1
1k = ωk

11 = 0, k = 1, 2, · · · , n.

For i = 1, j = 2, 3, · · · , n and i = n, j = 2, 3, · · · , n− 1 in (12), we obtain

ωa
a1 = −

e1(µ)
n
2
εH + µ

, ωa
an =

en(µ)
3
2
nεH − (n− 1)µ

,

ωn
n1 =

e1(3nεH − 2(n− 2)µ)

−4nεH + 2(n− 2)µ
.

(22)

Using equation (13) for i = 1, j, k = 2, 3, · · · , n− 1; i = n, j = 1, 2, · · · , n−
1, k = 2, 3, · · · , n− 1, we have

ωa
b1 = ωa

bn = 0, a 6= b,

(2nεH − (n− 2)µ)ω1
an =

(
µ+

n

2
εH

)
ω1
na.

Combining (10) and (20), we obtain

ω1
ab = ω1

an = ω1
na = ωa

n1 = ωn
ab = ωn

a1 = 0, a 6= b.

Let j = n, k = 1 in (13), using relation ωn
a1 = 0 and (10), we get ωn

1a =
ωa
1n = 0. Applying the above results about {ωk

ij} and (10), a straightforward
calculation completes the proof of Lemma 4.2. �

Lemma 4.3 Let n ≥ 4. Suppose that H is not a constant. Then

ei(µ) = 0, ∀ i = 2, · · · , n.

Proof When t 6= n− 1, it follows from (12) that ea(λb) = (λa − λb)ω
b
ba

and eα(λβ) = (λα − λβ)ω
β
βα, which implies ei(µ) = 0 for 2 ≤ i ≤ n.

When t = n− 1, according to (21), we need only to prove en(µ) = 0.
Computing 〈R(e2, en)e1, e2〉 by using Gauss equation (4) and the defini-

tion (5) of the curvature tensor, we obtain

en(ω
2
21) = (ωn

n1 − ω2
21)ω

2
2n. (23)

8



Putting ω2
21 = − e1(µ)

n
2
εH+µ

and ω2
2n = en(µ)

3

2
nεH−(n−1)µ

(see Eq. (22)) into (23) gives

ene1(µ) = −(
n

2
εH + µ)ωn

n1ω
2
2n − (nεH − nµ)ω2

21ω
2
2n.

Since [e1, ek](H) = (∇e1ek−∇eke1)(H), for k 6= 1, using (9) and the covariant
derivatives ∇eiej in Lemma 4.2, we have

eke1(H) = 0. (24)

Differentiating both sides of ωn
n1 = e1(3nεH−2(n−2)µ)

−4nεH+2(n−2)µ
(see Eq. (22)) along the

direction en, using the above two formulas, we have

en(ω
n
n1) =

(n− 2)(εnH − nµ)

2nεH − (n− 2)µ
(ωn

n1 − ω2
21)ω

2
2n. (25)

Using (8), (9) and formulas of ∇eiej in Lemma 4.2, we calculate ∆H directly
and put the result into (7),

−ε1e1e1(H)− ε1((n− 2)ω2
21 + ωn

n1)e1(H) + εHtrA2 = λH. (26)

Note that λ1 = −n
2
εH and ν = 3

2
nεH − (n− 2)µ for t = n− 1, it is easy to

check that

trA2 =
5

2
n2H2 + (n− 1)(n− 2)µ2 − 3n(n− 2)εHµ. (27)

According to [e1, en](e1(H)) = (∇e1en −∇ene1)(e1(H)), combining (24) and
the covariant derivatives ∇eiej in Lemma 4.2, it follows that

ene1e1(H) = 0. (28)

Differentiating both sides of (26) along the direction en, using (9), (23), (25),
(27) and(28), we deduce that

(
2ε1e1(H)(ω2

21 − ωn
n1)

2nεH − (n− 2)µ
− 3nH2 + 2(n− 1)εHµ

)
en(µ) = 0. (29)

Suppose on the contrary that en(µ) 6= 0, then (29) implies that

2ε1(ω
2
21 − ωn

n1)e1(H)

2nεH − (n− 2)µ
− 3nH2 + 2(n− 1)εHµ = 0. (30)
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By differentiating (30) along en, en(µ) 6= 0, combining (9), (23), (24) and
(25), we get

ε1(n(5n− 14)εH − 4(n− 1)(n− 2)µ)

(2nεH − (n− 2)µ)2(3
2
nεH − (n− 1)µ)

(ω2
21 − ωn

n1)e1(H)

+ 2(n− 1)εH = 0.

(31)

Eliminating (ω2
21 − ωn

n1)e1(H) from (30) and (31) yields

εH(3nεH − 2(n− 1)µ) = 0,

Since H 6= 0, so µ = 3nεH
2(n−1)

. It follows that ν = 3nεH
2(n−1)

, which contradicts to

µ 6= ν. So en(µ) = 0. �

According to Lemma 4.3, en(µ) = 0. Using this fact and taking similar
method to the proof of Lemma 4.2, we can easily obtain the following Lemma.

Lemma 4.4 Let n ≥ 4. The covariant derivatives have the following forms:

∇e1e1 = 0, ∇e1ea =
∑

c 6=a

ωc
1aec, ∇e1eα =

∑

γ 6=α

ω
γ
1αeγ,

∇eae1 = −
e1(µ)

n
2
εH + µ

ea,∇eaea = ε1εa
e1(µ)

n
2
εH + µ

e1 +
∑

c 6=a

ωc
acec,

∇eaeb = ωa
abea +

∑

c 6=a,b

ωc
abec, ∇eaeα =

∑

γ 6=α

ωγ
aαeγ,

∇eαe1 =
e1(3nεH − 2(t− 1)µ)

−(n− t + 3)nεH + 2(t− 1)µ
eα, ∇eαea =

∑

k 6=a

ωc
αaec,

∇eαeα = −ε1εα
e1(3nεH − 2(t− 1)µ)

−(n− t+ 3)nεH + 2(t− 1)µ
e1 +

∑

γ 6=α

ωγ
ααeγ,

∇eαeβ = ωα
αβeα +

∑

γ 6=α,β

ω
γ
αβeγ.

When t = n− 1, all of them can be simplified to that of Lemma 4.2.

Lemma 4.5 Let n ≥ 4. We have from Lemma 4.4 that

ω2
21 = −

e1(µ)
n
2
εH + µ

, ωn
n1 =

e1(3nεH − 2(t− 1)µ)

−(n− t+ 3)nεH + 2(t− 1)µ
.
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Furthermore, ω2
21 and ωn

n1 satisfy the following equations:

e1(ω
2
21) + (ω2

21)
2 =

n

2
ε1εHµ, (32)

e1(ω
n
n1) + (ωn

n1)
2 = ε1εH

3
2
n2εH − (t− 1)nµ

2(n− t)
, (33)

−ε1ω
n
n1ω

2
21 =

3
2
nεHµ− (t− 1)µ2

n− t
. (34)

Proof Using Gauss equation (4), Lemma 4.4 and the definition (5)
of the curvature tensor, a straightforward calculation for 〈R(e1, e2)e1, e2〉,
〈R(e1, en)e1, en〉 and 〈R(en, e2)en, e2〉 proves (32), (33) and (34), respectively.

�

Now, we can prove Proposition 4.1.

Proof (of Proposition 4.1 ) Note that λ1 = −n
2
εH , ν =

3

2
nεH−(t−1)µ

n−t
, so

trA2 =
n− t + 9

4(n− t)
n2H2 +

(n− 1)(t− 1)

n− t
µ2 −

3n(t− 1)

n− t
εHµ. (35)

Applying (8), (9) and the formulas of ∇eiej , we compute (7) directly and
obtain

−ε1e1e1(H)− ε1
(
(t− 1)ω2

21 + (n− t)ωn
n1

)
e1(H) + εHtrA2 = λH. (36)

Eliminating e1e1(H) and e1e1(µ) by using (32), (33), (34), (35) and (36),
together with the formulas of ω2

21 and ωn
n1 (see Lemma 4.5), we obtain

2ε1ε(n− t)
(
(t− 4)ω2

21 + (n− t− 3)ωn
n1

)
e1(H)

=
3

4
[n− t + 9 + (n− t+ 3)ε]n2H3 − 3(n− t)ελH

− 3[n+ t+ 1 + 3(t− 1)ε]nH2µ+ 3[(n− 1) + (n+ 1)ε](t− 1)Hµ2.

(37)

Acting e1 on both sides of (37) and using (32)∼(37), we obtain

f1(H, µ)ω2
21 + g1(H, µ)ωn

n1 = h1(H, µ)e1(H), (38)

where

f1(H, µ)

=[(n− t)(−
1

4
t− 2)−

27

4
(t+ 2)− (

3

4
t(n− t) +

3

2
(n+

5

2
t+ 1))ε]n2H3

+ 3[2n+ t+ 2 + (n + t+ 4)ε](t− 1)nH2µ+ (t+ 8)(n− t)ελH

− [(n− 1)(t+ 2) + 3(n + 1)(t− 2)ε](t− 1)Hµ2,
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g1(H, µ) =−
1

4
[(n− t+ 9)2 + 3(n− t + 1)(n− t + 3)ε]n2H3

+ 3[(n + 1)2 − t2 + (t− 1)(n− t+ 9)ε]nH2µ

− [(n− 1)(n− t+ 9) + 3(n+ 1)(n− t+ 1)ε](t− 1)Hµ2

+ (n− t + 9)(n− t)ελH,

h1(H, µ) =
3

4
[3(n− t+ 9) + (n− t+ 15)ε]n2H2

− 6[2t+ 4 + 3(t− 1)ε]nHµ

+ [3(n− 1) + (n+ 17)ε](t− 1)µ2 − 3(n− t)ελ.

It follows from the formulas of ω2
21 and ωn

n1 that

3nεe1(H) = −2(t− 1)(
n

2
εH +µ)ω2

21− [(n− t+3)nεH− 2(t− 1)µ]ωn
n1. (39)

Putting (39) into (38) and eliminating e1(H), we have

f2(H, µ)ω2
21 + g2(H, µ)ωn

n1 = 0, (40)

where

f2(H, µ) =
1

4
[(n− t)(2t− 11)− 81− (2t(n− t) + 7n− t + 21)ε]n2H3

+
1

2
[13n− 3t+ 11 + (9n− 9t + 63)ε](t− 1)nH2µ

+ [−3n− 12t+ 15−
1

3
(8nt− 17n+ 16t+ 47)ε](t− 1)Hµ2

+ 2
1
3
(n + 17) + (n− 1)ε

n
(t− 1)2µ3 + 9(n− t)ελH

− 2
(n− t)(t− 1)

n
µλ,

g2(H, µ) =
1

2
[(n− t)(n− t+ 9)− (n− t + 3)(n− t− 6)ε]n2H3

+ [3n2 −
9

2
nt +

3

2
t2 −

3

2
n− 12t−

27

2
−

9

2
(t− 1)(n− t+ 1)ε]nH2µ

+ [−6n + 12t− 6 +
2

3
(−4n(n− t) + n+ 8t+ 45)ε](t− 1)Hµ2

−
2(n+17)

3
+ 2(n− 1)ε

n
(t− 1)2µ3 + 6(n− t)ελH +

2(t− 1)(n− t)

n
λµ.
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Combining (34), (37) with (39), we get that

f3(H, µ)(ω2
21)

2 + g3(H, µ)(ωn
n1)

2 = h3(H, µ), (41)

where

f3(H, µ) =
2

3
(n− t)(t− 1)(t− 4)(εH +

2

n
µ)ε1,

g3(H, µ) =
2

3
(n− t)(n− t− 3)((n− t+ 3)εH − 2

t− 1

n
µ)ε1,

h3(H, µ) =−
3

4
[n− t+ 9 + (n− t+ 3)ε]n2H3

+ [2t(n− t)− 2n+ 8t− 6 + 9(t− 1)ε]nH2µ

− [3n− 3 + (
4

3
t(n− t)−

7

3
n+

22

3
t− 5)ε](t− 1)Hµ2

−
4

3n
(n− 2t+ 1)(t− 1)2µ3 + 3(n− t)ελH.

Multiplying Eq. (40) by ω2
21, or ωn

n1, separately, and substituting (34) into
the resulting equations, we find (ω2

21)
2 and (ωn

n1)
2 can be written as algebraic

expressions of H and µ. Putting these algebraic expressions into (41), we
finally obtain a polynomial equation of H and µ with constant coefficients,
denoted by

f(H, µ) = 0. (42)

Acting on (42) with e1 twice, and using (32)∼(34), (39) and (40), we get
another polynomial equation of H and µ with constant coefficients

g(H, µ) = 0.

In order to complete the proof of Proposition 4.1, we need the following
algebraic lemma.

Lemma 4.6 ([16, Theorem 4.4, pp.58–59]) Let D be a unique factorization

domain, and let

f(X) = a0X
m + a1X

m−1 + · · ·+ am,

g(X) = b0X
n + b1X

n−1 + · · ·+ bn

be two polynomials in D[X ]. Assume that the leading coefficients a0 and b0 of

f(X) and g(X) are not both zero. Then f(X) and g(X) have a nonconstant

13



common factor iff the resultant R(f, g) of f and g is zero, i.e.,

R(f, g) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 a1 a2 · · · am
a0 a1 · · · · · · am

. . .
. . .

. . .
. . .

. . .

a0 a1 a2 · · · am
b0 b1 b2 · · · bn

b0 b1 · · · · · · bn
. . .

. . .
. . .

. . .
. . .

b0 b1 b2 · · · bn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0.

Coming back to the proof of Proposition 4.1. Rewrite f(H, µ), g(H, µ)
as polynomials f

H
(µ), g

H
(µ) of µ with coefficients in polynomial ring R[H ]

over real field R. According to Lemma 4.6, the equations f
H
(µ) = 0 and

g
H
(µ) = 0 has common roots iff R(f

H
, g

H
) = 0. It is obviously that R(f

H
, g

H
)

is a polynomial of H with constant coefficients. So, R(f
H
, g

H
) = 0 implies

that H must be a constant, a contradiction, which completes the proof of
Proposition 4.1. �

Finally, combining Propositions 3.1 and 4.1, the main theorem stated in
introduction is proved.
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