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1. Introduction

A complex space form is an n-dimensional Kaehler manifold of constant holomorphic sectional curvature c. A complete
and simply connected complex space form is complex analytically isometric to

e a complex projective space CP", if ¢ > 0,
e a complex Euclidean space C", ifc = 0,
e or a complex hyperbolic space CH", if c < 0.

The complex projective and complex hyperbolic spaces are called non-flat complex space forms, since ¢ # 0 and the symbol
M, (c) is used to denote them, when it is not necessary to distinguish them.

Let M be a real hypersurface in a non-flat complex space form. An almost contact metric structure (¢, &, 1, g) is defined
on M induced from the Kaehler metric G and the complex structure | on M, (c). The structure vector field & is called principal
if A& = o&, where A is the shape operator of M and @« = 7n(A£) is a smooth function. A real hypersurface is called Hopf
hypersurface, if & is principal and « is called Hopf principal curvature.
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The Ricci tensor S of a Riemannian manifold is a tensor field of type (1, 1) and is given by
g(8X,Y) = Trace{Z — R(Z,X)Y}.
A Riemannian manifold is called Einstein, if the Ricci tensor satisfies the relation
S=2Ag,
where A is a constant. It is known that there are no Einstein real hypersurfaces in CP", proved by Cecil and Ryan in [1], and
in CH", proved by Montiel in [2].
Motivated by Tachibana, who in [3] introduced the notion of *-Ricci tensor on almost Hermitian manifolds, in [4] Hamada
defined the *-Ricci tensor of real hypersurfaces in non-flat complex space forms by

1
g(5*X,Y) = E(trace{w oR(X, ¢Y)}), forX,Y e TM.

The *-scalar curvature is denoted by p* and is defined to be the trace of S*. If p* is constant and a real hypersurface M in a
non-flat complex space form satisfies the relation
*
g(5'X,Y) = ﬁg(x, Y), forX,Y orthogonaltoé&,

then M is called *-Einstein. The study of *-Einstein real hypersurfaces in non-flat complex spaces forms was initiated by
Hamada, who in [4] classified *-Einstein Hopf hypersurfaces in M, (c) and also proved that ruled real hypersurfaces in non-
flat complex space forms are *-Einstein. Recently, in [5] Ivey and Ryan completed the previous work and also proved equiv-
alent relations for three dimensional *-Einstein real hypersurfaces in non-flat complex space forms.

The study of Ricci solitons on Riemannian manifolds is an issue, which is of great importance in the area of differential
geometry and in physics as well. Hamilton in [6] was the first to introduce the latter notion, which generalizes the notion of
Einstein metric on a Riemannian manifold. More precisely, a Riemannian metric g on a manifold is called Ricci soliton, when
the following relation is satisfied

1
Eng + Ric—Ag = 0.

The vector field V is the potential vector field of the Ricci soliton, Ric is given by Ric(X, Y) = g(SX, Y), where S is the Ricci
tensor of the manifold and A is a constant. A Ricci soliton depending on the value of X is called shrinking, steady or expanding
if A > 0, A = 0orA < Orespectively. It is obvious that if the potential vector field is a Killing or a zero, then the Ricci soliton
is an Einstein metric. More information for Ricci solitons and the work that so far has been done on them can be found in [7].

Since there are no Einstein real hypersurfaces in non-flat complex space forms, the problem of studying Ricci solitons on
them raised naturally. In [8] the notion of n-Ricci soliton is introduced

Definition 1.1. An n-Ricci soliton on a real hypersurface is a pair (5, g), which satisfies the following relation
1 .
ing—l—Rlc—)\g—un@n:O,

where XA, p are constants, Ric(X, Y) = g(SX, Y) and  is the 1-form on M.

In this case we say that the real hypersurface admits an n-Ricci soliton. It is obvious that if 4 = 0, then the above relationis a
Ricci soliton, whose potential vector field is the structure vector field £.In [8] Cho and Kimura classified real hypersurfaces in
non-flat complex space forms admitting n-Ricci soliton. Moreover, they proved that there are no real hypersurfaces in M, (c)
admitting Ricci soliton, whose potential vector field is the structure vector field £. Continuing the study of Ricci solitons for
real hypersurfaces, in [9] Cho and Kimura proved that no compact Hopf hypersurface in a non-flat complex space form
admits a Ricci soliton.

Motivated by the work in [8] and the existence of *-Einstein Hopf hypersurfaces, the following question raises

Question. Are there real hypersurfaces in non-flat complex space forms, which admit other “types” of Ricci solitons?
In this paper the following notion is introduced

Definition 1.2. A Riemannian metric g on M is called *-Ricci soliton, if

1
Eﬁvg + Ric* — Ag =0, (1.1)

where Ric*(X, Y) = g(5*X, Y) with S* being the *-Ricci tensor on M and A is a constant.

If a real hypersurface M in M, (c) satisfies relation (1.1), then it is said that M admits a *-Ricci soliton.
This paper focuses on the study of real hypersurfaces, which admit a *-Ricci soliton with the potential vector field being
the structure vector field £. More precisely the following theorems are proved.

Theorem 1.3. There do not exist real hypersurfaces in CP", n > 2, admitting a *-Ricci soliton, with potential vector being the
structure vector field &.
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Theorem 1.4. Let M be a real hypersurface in CH", n > 2 and c = —4, admitting a *-Ricci soliton, with potential vector being
the structure vector field &. Then M is locally congruent to a geodesic hypersphere with 2n = coth?(r),

The paper is organized as follows: In Section 2 preliminaries relations and basic results for real hypersurfaces in non-
flat complex space forms are presented. In Section 3 the proof of Theorems 1.3 and 1.4 are provided. Finally, in Section 4
discussion on the new notion and ideas for further research, that could be developed in this area, are included.

2. Preliminaries

Throughout this paper all manifolds, vector fields etc. are assumed to be of class C* and all manifolds are assumed to be
connected. Furthermore, the real hypersurfaces M are supposed to be without boundary.

Let M be a real hypersurface immersed in a non-flat complex space form (M, (c), G) with complex structure J of constant
holomorphic sectional curvature c. Let N be a locally defined unit normal vector field on M and & = —]JN the structure vector
field of M.

For a vector field X tangent to M relation

JX = ¢X + n(X)N

holds, where ¢X and n(X)N are the tangential and the normal component of JX respectively. The Riemannian connections
V in M, (c) and V in M are related for any vector fields X, Y on M by

VxY = VxY +g(AX, Y)N,
where g is the Riemannian metric induced from the metric G.
The shape operator A of the real hypersurface M in M,,(c) with respect to N is given by
VxN = —AX.

The real hypersurface M has an almost contact metric structure (¢, £, n, g) induced from J on M, (c), where ¢ is the structure
tensor and is a tensor field of type (1, 1) and 7 is a 1-form on M such that

g(@X,Y) =GUX,Y), nX) =gX, &) = GUX, N).
Moreover, the following relations hold
X =—X+nX)E  nop=0, =0, @ =1,
g(pX, oY) =g(X,Y) —nX)n(Y),  gX,¢Y) = —g(eX,Y).
The fact thatJ is parallel implies V] = 0. The last relation leads to
Vx§ = pAX, (Vxp)Y = n(Y)AX — g(AX, Y)§. (2.1)

The ambient space M, (c) is of constant holomorphic sectional curvature ¢ and this results in the Gauss and Codazzi equations
to be given respectively by

RX.Y)Z = %[g(Y,Z)X —8X,2)Y + (oY, 2)pX — g(pX, 2)pY — 28(pX, Y)pZ]

+g(AY, 2)AX — g(AX, 2)AY, (22)
(VxA)YY — (WAX = %[n(X)wY —n(Y)eX — 2g(pX, Y)§],

where R denotes the Riemannian curvature tensor on M and X, Y, Z are any vector fields on M.
The tangent space TpM, for every point P € M, can be decomposed as
TpM = span{é} & D,
where D = kern = {X € TpM : n(X) = 0} and is called holomorphic distribution. Due to the above decomposition, the
vector field A¢ can be written
A = + BU, (2.3)
where 8 = [pVe&|and U = —%ngg@-‘ € ker(n), provided that 8 # 0.

Since the ambient space M,,(c) is of constant holomorphic sectional curvature c, following similar calculations to those
in Theorem 2 in [5] and taking into account relation (2.2), it is proved that the *-Ricci tensor S* of M is given by

s = — [%(/)2 + (wA)z] . (2.4)

In [10,11] Takagi was the first to study and classify homogeneous real hypersurfaces in CP", n > 2. He proved that they
could be divided into six types, namely (A1), (A2), (B), (C), (D) and (E). All these real hypersurfaces are Hopf hypersurfaces
with constant principal curvatures, i.e. the eigenvalues of the shape operator are constant. In case of CH", n > 2, the study
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of real hypersurfaces with constant principal curvatures was started by Montiel [2] and completed by Berndt in [12] for the
Hopf case. They are divided into two types, namely (A) and (B), depending on the number of constant principal curvatures.
The real hypersurfaces found by them are homogeneous. In contrast to CP", in CH" there are homogeneous real hypersur-
faces which are not Hopf (see [13]). More information on the problem of classification of real hypersurfaces with constant
principal curvatures in complex space forms can be found in [14] by Diaz-Ramos and Dominguez-Vazquez.

In the study of real hypersurfaces in M, (c) the following theorem plays an important role. In case of CP" it was proved by
Okumura (see [15]) and in case of CH" by Montiel and Romero (see [16]). It provides the classification of real hypersurfaces
satisfying relation Ap = @A, i.e. the shape operator A commutes with the structure tensor ¢.

Theorem 2.1. Let M be a real hypersurface of M,(c), n > 2. Then Ap = @A, if and only if M is locally congruent to a homoge-
neous real hypersurface of type (A). More precisely:

e In case of CP"
(A1) a geodesic hypersphere of radius r, where 0 < r < Z,

(A;) atube of radius r over a totally geodesic CP¥, (1 <k < n — 2), where0 < r < 7
e In case of CH"

(Ao) a horosphere in CH", i.e. a Montiel tube,

(A1) ageodesic hypersphere or a tube over a totally geodesic complex hyperbolic hyperplane CH" ™!,

(A;) atube over a totally geodesic CH* (1 < k < n — 2).

In the bibliography and the present paper all the above real hypersurfaces are called real hypersurfaces of type (A) and are
Hopf hypersurfaces with constant principal curvatures.

3. Proof of theorems
Let M be a real hypersurface in M,,(c), n > 2, admitting a *-Ricci soliton with potential vector field £. Generally, the Lie
derivative of the Riemannian metric g is given by
Lvg =g(VxV,Y) +g(WV, X).
Therefore, relation (1.1) due to (2.4) and the first of (2.1) since the potential vector field is £ becomes
g(pAX,Y) + g(pAY,X) + ncg(X,Y) — nen(X)n(Y) + 2g(pAX, ApY) —20g(X,Y) = 0. (3.1)
Let N be the open subset of M such that
N={P eM: B # 0in aneighborhood of P}.
So on N relation (2.3) holds. The relation (3.1) for X = Y = & and because of (2.3) implies

2 =0. (3.2)
Furthermore, (3.1)forX =& andY = U and for X = £ and Y = U due to (3.2) and 8 5# 0 yields respectively
g(ApU, 9U) =0, (3.3)
1
g(AU, pU) = g(ApU,U) = 3 (34)

Relation (3.1)forX =Y = Uand X = Y = ¢U because of relations (3.2)-(3.4) results in the following relations respectively
—1+ nc + 2g(pAU, ApU) = 0,
1+ nc + 2g(ApU, pAU) = 0.
The combination of the last two relations leads to 2 = 0, which is a contradiction.
Therefore, the following proposition is proved
Proposition 3.1. Every real hypersurface in M, (c), n > 2, admitting a *-Ricci soliton with potential vector field & is a Hopf
hypersurface.

Since M is a Hopf hypersurface, due to Theorem 2.1 [17] we have that « is a constant. We consider a unit vector field
Z e D, such that AZ = puZ, then (u — $)ApZ = (5* + 3)¢Z at some point P € M, (Corollary 2.3 [17]).

o Casel: ® +c #0.
In this case we have that u # % so ApZ = vpZ. Moreover, on M the following relation holds (Corollary 2.3 [17])

o c
uy = §(M+U)+Z' (3.5)

Relation (3.1) for X =Y = £, due to A4 = «& implies A = 0. Relation (3.1) forX =Y = Z due to A = 0, the first of (2.1)
and AZ = uZ, implies

nc+2uv =0. (3.6)
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Furthermore, relation (3.1) for X = Z and Y = ¢Z because of the first of (2.1), A = 0, AZ = uZ and ApZ = v¢Z results in
n=v. (3.7)

Substitution of (3.7) in (3.6) leads to nc 4+ 2u? = 0, which results in ¢ < 0. So there are no real hypersurfaces in CP"
admitting a *-Ricci soliton with potential vector field & and this completes the proof of Theorem 1.3.

Relation (3.7) implies that Theorem 2.1 holds and M is locally congruent to a real hypersurface of type (A) in CH". It
remains to check if these real hypersurfaces admit a *-Ricci soliton with potential vector field &.

Substitutionof u = vand c = —# in (3.5) implies
unl@n+ 1) — 2an] = 0.
If w = 0 then relation ¢ = —% results in ¢ = 0, which is a contradiction. Therefore, the following relation holds
2n+ Hu = 2na. (3.8)

Suppose that M is a geodesic hypersphere in CH". Substituting the eigenvalues of the geodesic hypersphere in relation
(3.8)leadston = thz& (for the eigenvalues see [12]). So the geodesic hypersphere admits a *-Ricci soliton with potential
vector field & and the radius r satisfies the relation 2n = coth?(r).

Suppose that M is a tube over totally geodesic CH"~!. Substituting the eigenvalues of the tube in relation (3.8) leads to
n= m, which is a contradiction since 0 < tanh(r) < 1. So the tube over CH"~! does not admit a *-Ricci soliton with
potential vector field &.

Finally, suppose that M is a tube over totally geodesic CH*, where 1 < k¥ < n — 2. In this case the following hold

A& = 2 coth(2r)& AX = tanh(r)X and AY = coth(r)Y.
Substitution in (3.8) the previous eigenvalues imply
coth’(r) =2n and tanh?(r) = 2n.
The combination of the last two relations leads to a contradiction and the tube over totally geodesic CH*, where 1 < k <
n — 2 does not admit a *-Ricci soliton with potential vector field &.
e Casell: o> +c = 0.

In this case the ambient space is only CH", since ¢ = —a?. So « # 0. Suppose that p # % Then relation (3.5), owing to
a®+c=0,resultsinv = 5, where v is the eigenvalue corresponding to ¢Z, i.e. ApZ = veZ. Relation (3.1) forX =Y = &
implies A = 0 and for X = Z and Y = ¢Z because of the first of (2.1), AZ = uZ and ApZ = 5 ¢Z results in
o
n= 2’
which is a contradiction.

So the remaining case is that of A = 7 being the only eigenvalue for all vectors in the holomorphic distribution ID. In this
case the real hypersurface is a horosphere. Relation (3.1) for X = Y = £ implies A = 0 and for X = Y = Z taking into that
5 is the only eigenvalue in D results in

1
n=_,
2
which is impossible and this completes the proof of Theorem 1.4.

4. Discussion-open problems

In this paper it is proved that the geodesic hypersphere in CH" is the only real hypersurface which admits a *-Ricci soliton
with potential vector field being £ erase. The purpose of this section is to present open problems, which raise in a natural
way. They are divided into two categories.

CASE I: Other types of potential vector field V.

In this case the open problems concern real hypersurfaces in M, (c) admitting a *-Ricci soliton with potential vector field
being other special types of vector fields.

e The potential vector field is a Killing or a zero vector field.

In this case, since the potential vector field V is a Killing or a zero one, it implies that £,g = 0 and relation (1.1) becomes

Ric* = Ag,
where A is constant. Taking into account the relation Ric*(X, Y) = g(5*X, Y), the former relation leads to
S$*X = AX, whereX € TM and A = constant. (4.1)

Therefore, in order to answer this question one should study real hypersurfaces in M, (c) satisfying (4.1). It should be men-
tioned here that the class of such real hypersurfaces is a subclass of *-Einstein real hypersurfaces mentioned in the Intro-
duction.
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e The potential vector field is not a Killing or a zero vector field, but it is other types of special vector fields.
In this case there are two questions that are interesting to be answered.

1. Are there real hypersurfaces in M, (c) admitting a *-Ricci soliton whose potential vector field V belongs to the holomor-
phic distribution?

2. Are there real hypersurfaces in M, (c) admitting a *-Ricci soliton whose potential vector field V is a principal vector field
of the real hypersurface?

CASE II: The condition of *-Ricci soliton is satisfied only in the holomorphic distribution of the real hypersurface.

Suppose that the real hypersurface M in M, (c) is equipped with a Riemannian metric g, which is a *-Ricci soliton on the
holomorphic distribution, i.e. relation (1.1) holds for vector fields X, Y € D. If the potential vector field V is a Killing or a
zero one, it implies that £y g = 0 and this results in

g , V) = Ag(X, where X, Y € Dan = constant. .
(5*X,Y) =2g(X,Y) here X, Y da (4.2)

Since X is constant, M is a *-Einstein real hypersurface. If M is a Hopf hypersurface, then taking into account the classification
of *-Einstein Hopf hypersurfaces in M,,(c), n > 2 in [4,5], the following holds

Proposition 4.1. A Hopf hypersurface in M, (c), n > 2, admitting a *-Ricci soliton on the holomorphic distribution, whose po-
tential vector field is Killing or zero is locally congruent to one of the following

e in case of CP",
either a geodesic hypersphere of radius r, where 0 < 1 < 7,

or a tube over a complex quadric Q"' and RP",
or a Hopf hypersurface with A& = 0,
e in case of CH"
either a horosphere,
or a geodesic hypersphere, where r > 0,
or a tube over a totally geodesic CH"~!, where r > 0,
or a tube over a totally real hyperbolic space RH",
or a Hopf hypersurface with A& = 0.

Therefore, the question which raises from the above remark is the following
Are there real hypersurfaces in M, (c), whose Riemannian metric g is a *-Ricci soliton in the holomorphic distribution
and the potential vector field is not Killing?

Remark 4.2. The *-Ricci soliton is a new notion not only in the area of Mathematics but in the area of Physics as well. This
paper aims to introduce this notion and to be a motivation for further research in both areas. It is known that the definition
of *-Ricci tensor, which is connected to the definition of *-Einstein and to that of *-Ricci soliton, is based on the property
that the Ricci tensor has with respect to the complex structure J of Hermitian manifolds. Furthermore, as mentioned in the
section open problems of the present paper the *-Ricci soliton can be considered as a generalization of *-Einstein, in the
same way as the notion of Ricci soliton is a generalization of the notion of Einstein. Therefore, exact physical applications of
this notion are still unknown, but they are still under investigation by the authors.
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