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Nonlinear Black-Scholes Equation

Through Radial Basis Functions
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Abstract

The Black-Scholes equation is a partial differential equation (PDE) char-

acterizing the price evolution of a European call option and put option

on a stock. In this work, we use Multi-Quadratic Radial Basis Functions

(Multi-Quadratic RBF) for approximating the solution of the Black-

Scholes equation and show how it can be applied to a case in which

the volatility is not constant but is dependent on the transaction costs

(a nonlinear case). That is, volatility satisfies an Ornstein-Uhlenbeck

stochastic process. These nonlinear models are also presented in the fi-

nancial markets characterized by lack of liquidity. After discretizing the

problem with the Crank-Nicholson algorithm, we expose a numerical

example to validate the developed method.
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1 Introduction

In finance, a financial derivative (or derivative) is a financial product whose

value varies depending on the price of another asset; the asset of which de-

pends takes the name of the underlying asset (e.g., stock, commodity, futures

and index). In practice, the options are a type of derivative, i.e., a contract

which we have the option to buy or sell a certain underlying asset at a certain

date and at a price established. Therefore, an option can be a purchase option

or a selling option, called call option and put option, respectively.

Commonly, an option is valued using the Black-Scholes model, which is a par-

tial differential equation which, when solved, produces a function that allows

us to know the price of a derivative, depending on the underlying asset price

and time. As the name suggests, this model was proposed by Fischer Black

and Myron Scholes [1]. Subsequently, Robert Merton published a paper with

a deeper and more consistent development of the mathematical model. As a

historical note, it is worth noting that Merton and Scholes received the Nobel

Prize in Economics in 1997, by the Royal Swedish Academy of Sciences; F.

Black had died in 1995.

The Black-Scholes equation (in standard linear version [1], [5]) has been studied

in many articles from various points of view; for example, in [3] this equation

was studied using the theory of semigroups of operators; in [4] the same equa-

tion is solved using the theory of special functions; and in [2] a study for the

valuation of financial derivatives with time-dependent parameters approach

was carried out.

In this paper we study the Black-Scholes equation for a nonlinear case, first

by an interpolation by Multi-Quadratic RBF and then followed by a Crank-

Nicholson type algorithm [12] to find a solution to the nonlinear variant, which

has been proposed mainly in the work [7] and [8], in financial markets charac-

terized by lack of liquidity.

Accordingly, we first derive the Black-Scholes model for both the standard case

and the nonlinear case (Section 2). Then (Section 3) we present a brief intro-

duction to the scheme of Radial Basis Functions (RBF). After, an approach

to nonlinear Black-Scholes model using the radial basis functions as interpo-

lator is developed, then the efficiency of the method is illustrated following a

Crank-Nicholson type scheme (Section 4). We conclude with some remarks on
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Black-Scholes model and the method used for approximating a solution of this

equation (Section 5).

2 The Black-Scholes: The Nonlinear Case

This model is a partial differential equation whose solution describes the value

of an European Option, see [1], [5]. Nowadays, it is widely used to estimate

the pricing of options other than the European ones. Let (Ω,F , P,Ft≥0) be

a filtered probability space and let Bt be a brownian motion in R. We will

consider the stochastic differential equation (SDE)

dX(t) = a(t,X(t))dt+ σ(t,X(t))dB(t),

with a and σ continuous in (t, x) and Lipschitz continuous in x; i.e., there is

a constant M such that

|a(t, x)− a(t, y)| ≤M |x− y|, |σ(t, x)− σ(t, y)| ≤M |x− y| ∀ t, x, y.

The price processes is given by the geometric brownian motion S(t), S(0) = x0,

solution of the SDE

dS(t) = µS(t)dt+ σS(t)dB(t),

with µ and σ constants. It is well know that the solution of this SDE is given

by:

dS(t) = x0 exp{σ(B(t)−B(t0)) + (r − 1

2
σ2)(t− t0)}

Let 0 ≤ t < T and h be a Borel measurable function, h(X(T )) denotes the

contingent claim, let Ex,th(X(T )) be the expectation of h(X(T )), with the

initial condition X(t) = x.

Now we recall the Feynman–Kac theorem [6]. Let v(t, x) = Ex,th(X(T )) be,

0 ≤ t < T , where dX(t) = a(X(t))dt+ σ(X(t))dW (t). Then

vt(t, x) + a(x)vx(t, x) +
1

2
σ2(x)vxx(t, x) = 0, and v(T, x) = h(x). (1)

Now, if we consider the discounted value

u(t, x) = e−r(T−t)Ex,th(X(T )) = e−r(T−t)v(t, x). (2)
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Then if at time t, S(t) = x, we proceed in a standard way,

v(t, x) = er(T−t)u(t, x),

vt(t, x) = −rer(T−t)u(t, x) + er(T−t)ut(t, x),

vx(t, x) = er(T−t)ux(t, x),

vxx(t, x) = er(T−t)uxx(t, x).

The Black-Scholes equation is obtained substituting the above equalities in the

equation (1) and multiplying by the factor e−r(T−t):

−ru(t, x) + ut(t, x) + rxux(t, x) +
1

2
σ2x2uxx(t, x) = 0, (3)

where 0 ≤ t < T, and x ≥ 0; here the risk-free interest rate r and the volatil-

ity σ are taken constants.

In financial models, we usually assumed that the markets are competitive and

there is no friction of any kind, i.e. there are no transaction costs and there is

ample liquidity such that a trader can buy or sell any number of assets without

changing its price. In some financial models [7],[8], for very short periods of

time, the volatility σ can be a function that depends on the transaction cost or

the second derivative of the asset value while the interest rate r, is a constant.

The idea is that not only the asset price but also the volatility, is a stochastic

process [9]. If the volatility satisfies the Ornstein-Uhlenbeck process we have

the two equations

dS(t) = µS(t)dt+ σ(t)S(t)dW1(t)

dσ(t) = −βσ(t)dt+ δdW2(t),

the processesW1(t) andW2(t) are not independent and must be Corr(W1(t),W2(t)) =

ρ, where |ρ| << 1. Using the Itô’s lema, we can obtain an expression for the

stochastic differential of dσ2(t), which happens to be

dσ2(t) = [2δ2 − βσ2(t)]dt+ 2δσ(t)dW2(t)

such that eq.(3) with β = 1 becomes the non-linear equation:

ut(t, x) +
1

2
σ2x2 · uxx(t, x)

(1− ρxλ(x)uxx(t, x))2
= 0. (4)
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If we consider the special case where the price of risk is unit, λ(x) = 1 and if we

further assume that ||ρxuxx|| < ε for some ε > 0 small enough (low impact of

hedging) and considering the functional approximation 1
(1−F )2

≈ 1+2F+O(F )3

we have that eq.(4) becomes

ut(t, x) +
1

2
σ2x2 · uxx(t, x)(1 + 2ρxuxx(t, x)) = 0. (5)

3 Radial Basis Functions

Definition 3.1. A radial basis function φ : R+ → R+ is a continuous

function of the form φ(r) which depends upon the separation distances r =

||~x − ~ζ|| of a set of nodes Π ⊂ Rd also called centres, ~ζ = (ζj) ∈ Π for all

j = 1, 2, . . . , N .

Due to their spherical symmetry about the points ζj these functions are termed

radial. The distances r = ||~x − ~ζ|| are usually measured using the euclidean

norm. A typical radial basis function (RBF) usually has the form

φ(r) = (ε||~x− ~ζ||) (6)

where ε means the shape parameter of the radial basis function. Some of the

most popular used RBFs are showed in Table 1.

The Multiquadratic RBF is also sometimes called Hardy’s multiquadratic, is

so called due to the seminal work of Hardy written in 1971 [10]. Another key

feature of the RBF method is that it is mesh-free, which means that it does

not require a grid. It only depends on distances to center points ζj in the

approximation. As pairwise distances are very easy to compute in any number

of space dimensions, it also works well for high-dimensional problem.

A standard RBF interpolant is a linear combination of RBFs φ centered at the

scattered points ζj, j = 1, 2, . . . , N which has the following form

S(~x, ε) =
N∑
j=1

λjφ(ε||~x− ~ζj||) =
N∑
j=1

λjφj(~x), (7)

the coefficients (unknown) λj are determined through the interpolation con-

dition S(ζj, ε) = f(ζj) and can be computed as the solution of the following

linear system

Aφ~λ = ~f, (8)
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where the symmetric matrix Aφ is given by [aij] = φj(ζi) = φ(ε||~x− ~ζj||), and
~λ , ~f are column vectors.

Function Expression

Gaussian (GA) φ(r) = e−(εr)2

Multiquadric (MQ) φ(r) =
√

(εr)2 + c2

Inverse Multiquadric (IMQ) φ(r) = 1√
1+(εr)2

Inverse Quadric (IQ) φ(r) = 1
1+(εr)2

Sigmoid (S) φ(r) = 1
1+e−(εr)

Table 1: Examples of Radial Basis Functions (RBF).

Furthermore, the implementation of a RBF method is also straightforward.

However, there are still some issues left such as stability for the time-dependent

problems and computational efficiency [11]. With the advantages mentioned

above of achieving spectral accuracy using infinitely smooth basis functions,

the geometrical flexibility with arbitrary choice of node locations and the ease

of implementation, radial basis function (RBF) approximation is rising as an

important method for interpolation, approximation, and solution of partial

differential equations (PDE).

4 Black-Scholes and Radial Basis Functions

Now we will consider Black-Scholes equation (nonlinear) (5), using more con-

ventional symbology

∂U

∂t
+

1

2
σ2x2 · ∂

2U

∂x2

(
1 + 2ρx

∂2U

∂x2

)
= 0. (9)

The initial condition is given by the terminal payoff valuation

U(x, T ) =

{
max{K − x, 0} for put

max{x−K, 0} for call

where T is the time of maturity and K is the strike price of the european-type

option.
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As mentioned in last section, there are many types of RBF such as Gaussians,

Sigmoid, Multiquadratics and Inverse Multiquadratics (among many other).

In our example we select Hardys Multi-quadratic (MQ), which can be written

in terms of the log stock price x (the independent variable in one dimension)

as (with ε = 1)

φ(||~x− ~ζj||) =
√

(x− ζj)2 + c2 (10)

The derivatives of φ can be easily calculated as

∂φ

∂x
=

x− ζj√
(x− ζj)2 + c2

(11)

∂2φ

∂x2
=

1√
(x− ζj)2 + c2

− (x− ζj)2

(
√

(x− ζj)2 + c2)3
(12)

Using these definitions, we can now propose an approximation for the option

price U, solution of the equation (9)

U(x, t) =
N∑
j=1

λj(t)φ(||~x− ~ζj||) (13)

The derivatives of this approximation are

∂U

∂x
=

N∑
j=1

λj(t)
∂φ(||~x− ~ζj||)

∂x
(14)

∂2U

∂x2
=

N∑
j=1

λj(t)
∂2φ(||~x− ~ζj||)

∂x2
(15)

∂U

∂t
=

N∑
j=1

∂λj(t)

∂t
φ(||~x− ~ζj||) (16)

Now that we have discretized all parts of the equation (9), we will use an itera-

tive method, Crank-Nicholson-type, see reference [12] for more information, we

obtain

FU (t+∆t) = GU (t) (17)
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where

U (t) = U(x, t), U (t+∆t) = U(x, t+ ∆t),

G = 1− θ∆t
(1

2
σ2x2 · ∂

2

∂x2

[
1 + 2ρx

∂2

∂x2

])
,

F = 1 + (1− θ)∆t
(1

2
σ2x2 · ∂

2

∂x2

[
1 + 2ρx

∂2

∂x2

])
here, ∆t is the time step size and the parameter θ running in the range

0 ≤ θ ≤ 1, θ is the Crank-Nicholson parameter and fixed once chosen. The

price U = U(x, t) governed by (9) will be estimated with the RBF as in the

equation (13), i.e.

U (t) =
N∑
j=1

λj(t)φ(||~x− ~ζj||) (18)

where N denote the total number of data points. Substituting (18) into (17),

we obtain
N∑
j=1

Fλ
(t+∆t)
j (t)φ(||~x− ~ζj||) =

N∑
j=1

Gλ
(t)
j (t)φ(||~x− ~ζj||) (19)

The Crank-Nicholson scheme suggests the algorithm of seven steps, illustrated

in Table 2.

Step Steps of the algorithm

step 1 Discretize from t = 0 to t = T with time-step ∆t = T/N

step 2 Specify U (T ) at the expire time T from the boundary condition and

calculate λ
(T )
j at time T

step 3 Make t = T −∆t

step 4 Calculate λ
(k)
j with (19) for every k

step 5 Make t = T −∆t

step 6 Repeat step 4 and step 5 if 1 ≤ j ≤ N

step 7 Evaluate U (0) =
∑N

j=1 λj(0)φ(||~x− ~ζj||)

Table 2: The Crank-Nicholson algorithm.

4.1 An Illustrative Example

Our illustrative example considers the data of Black-Scholes model for the case

of a European option as illustrated in Table 3. The algorithm was implemented

in MATLAB 5.2 by Scientific Word 3.0, considering N = 125.
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Parameter Value

Maturity time T = 6 months

Strike price K = $15

Interest rate r = 0.01

Volatility σ = 0.1

Crank-Nicholson parameter θ = 0.6

Table 3: Data of Black-Scholes model for the case of a european option.

Stock x Uusing RBF Uanalytical

25 1.8682741 1.8682866

30 5.0188546 5.0188442

35 8.3181237 8.3181066

40 11.7350982 11.735099

45 15.2483041 15.248305

50 18.8420513 18.842061

75 37.6833322 37.683321

100 57.4912555 57.491263

150 98.7814899 98.78149

200 141.4388217 141.43881

Table 4: Results of the numerical example in the validation of the developed method.

The parameter c in equation (10) allows us to adjust the error committed when

RBF approach is used to approximate the solution of a partial differential

equation i.e., Black Scholes equation (9) with an algorithm as shown in Table

2. As can be seen in [13], the value taken by the parameter c is inversely

proportional to coefficient λ appearing in (8) (remember that this case is 1-

dimensional, so λ ∈ R).

The results of such approach can be seen in Table 4. Note that for this example

we consider c = 0.999 and therefore λ ≈ 4.004, which produces an error less

than 2.8× 10−4.
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5 Summary

In this paper, we used Multi-Quadratic Radial Basis Functions for approxima-

ting the solution of the Black-Scholes equation, for a situation characterized

by a non-constant volatility, but that depends on transaction costs (i.e., a

nonlinear case). Such nonlinear models frequently occur in financial markets

characterized by a lack of liquidity. First, an approximate solution was ob-

tained by means of Multi-Quadratic RBF, then the problem was discretized

and the Crank-Nicholson algorithm was used. As a final point, a numerical

example to validate the developed method has been given, achieving an appro-

ximation with an error less than 2.8×10−4. As part of our future directions, we

intend to discretize the Black-Scholes equation for some particular investment

and get solutions through evolutionary algorithms or attempt to address the

problem using artificial neural networks based on Radial Basis Functions [14].
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