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Abstract  

This paper employs an event study, the Global Financial Crisis.  Episodes of inefficient 

pricing, the externality, are exploited as a measure of systemic risk.  The theoretical 

asset pricing model, the martingale representation, is shown to be a valid algorithm to 

identify episodes of efficient and inefficient pricing in time series.  Systemic risk metrics 

are derived from episodes of inefficient pricing, utilizing a shadow volatility metric.  The 

algorithm is forward looking, deriving macro-foundation metrics from actual agent market 

behavior. The algorithm provides precise risk metrics for magnitude and diffusion using 

US and Canadian treasury markets.  Given the US dollar’s role as the de-facto world 

reserve currency, scaled metrics derived from the US treasury market provide a 

globalized systemic benchmark.  The risk metrics signal the crisis buildup and calibrate 

around the crisis epicenter date of September 2008.  The risk metrics are heuristically 

consistent with the stylized facts of financial crises and support the extraordinary US 

policy response to the crisis.  The algorithm output is validated by time-series analysis.  
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1 Introduction 

The Global Financial Crisis of 2008 is described similarly to the 100-year flood.  The 

financial crisis was a systemic global event, leading to a global recession. The financial 

crisis provides a rich data environment for the assessment of systemic risk.  The use of 

US and Canadian treasury yield curve data allows for a cross-county comparison of 

systemic risk profiles, along with support for the validation of the martingale 

representation as an empirical time-series algorithm.  Since the US and Canada are 

similarly large, geographically contiguous trading partners, the two countries provide a 

natural comparison for the evaluation of crisis impact.  The divergence in financial crisis 

impact was quite apparent as large US financial institutions required bailouts, while large 

Canadian financial institutions did not.   The empirical results indicate cross-country 

systemic risk profiles that are not completely uniform.  The systemic risk magnitudes 

differ, whereby the diffusion processes are more similar.      

 

The theoretical martingale representation, the standard core analytical model used in 

modern asset pricing, is utilized as an empirical time-series algorithmic platform.  The 

algorithm is forward looking, and exploits episodes of inefficient pricing, the externality, 

as a measure of systemic risk.  A scaled risk metric is derived from actual agent market 

behavior found in the special status, US Treasury market.  The scaled metric provides a 

macro-foundation, complete systems approach to identifying and measuring systemic 

risk.  The scaled metric stands in contrast to the conventional micro-foundation, default 

correlation partial or incomplete systems network approach.  The use of the algorithm 

does not require complex mathematical abstractions, complex network construction, 

simplifying assumptions of agent micro-behavior or convenient well-behaving functional 

forms to guarantee tractability.  The algorithm is market behavior based, and is very 

robust in that it captures episodes of inefficient pricing under both normal and crisis 
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conditions.  The algorithm’s risk metric output captures both distinct phases of systemic 

risk in signaling the elevation of risk buildup prior to the crisis and the emergent risk 

systemics calibrating around the crisis event date. [1] 

 

Operationally, the algorithm is a dynamic one-period, re-setting empirical platform used 

to identify episodes of efficient and inefficient pricing in time series.  Episodes of 

inefficient pricing, the externality, are then exploited as a measure of systemic risk using 

a shadow volatility metric.  The shadow volatility metric, imputing attributes associated 

with a dual variable, counterfactually re-establishes efficient pricing in the inefficient 

pricing segment of the time series.  More formally, satisfying the primal problem of 

optimal (efficient) pricing requires the use of the shadow volatility metric to re-establish 

positive state prices in the martingale representation through the restoration of efficient 

pricing.   

 

The algorithm output provides valid and precise risk metrics that include signaling state 

prices, systemic risk magnitudes, and risk diffusion patterns.  As market agent opinion 

shifts, volatility moves to extremes, as financial markets display cycles alternating 

between an appetite for more risk assets and a flight to quality assets, particularly for the 

treasury bonds of the industrialized world. [2] In effect, the algorithm captures actual 

market sentiment reversal from a risk-on to a risk-off paradigm. The state prices signal a 

pre-crisis elevation of risk. The scaled metric derived from the shadow volatility metric 

measures the crisis impact intensity resulting from a reversal in market energy, and is 

interpretively similar with the tremor event moment magnitude scaled metric measuring 

tectonic plate energy.  The diffusion metrics provide insight into the risk dynamics along 

the treasury yield curve.  The scaled metric allows for consistent comparison of systemic  
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risk impact and contagion.  For the US crisis impact epicenter, the scaled metric is 

32.25.  The corresponding scaled metric for Canada is 13.75.  

 

As applied, the state prices associated with short-term US maturities display signaling 

properties relative to pre-crisis risk elevations. For both the US and Canada, the 

emergent risk metrics calibrate around the epicenter crisis event date of September 

2008.  The metrics are heuristically consistent with the extraordinary US monetary policy 

response to the crisis and the historical stylized facts of major financial crisis events.   

The validity of both the shadow volatility metric and the algorithm-derived scaled metric 

is confirmed by time-series analysis.       

 

2 Brief Literature review  

Arbitrage-free asset pricing is the accepted norm in finance.  Examples of anomalies do 

not suggest that an efficient market and exploitable arbitrage opportunities are 

compatible. [3]    Large persistent violations must be considered an externality.   A risk 

tolerance paradigm shift creating market inefficiencies is an expression of an externality.   

 

Risk appetites may also display path dependency characteristics.  Agent choices are 

impacted by the way the game is evolving for the player.  Research from behavioral 

economics indicates that in certain situations, agents may be less risk averse and 

actively seek more risk.    Players using house money that are ahead or players behind 

but anticipating a break-even outcome shift their risk profiles to less risk averse 

positions. [4]   Fragility may also be associated with path dependency.  Agents focus on 

success, say profitability, without first emphasizing risk control to ensure survival.  To a 

rational agent, the logical sequence of events should emphasize survival strategies 

before success strategies.  In other words, the order of events taken is of primary 
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importance over the destination or outcome. [5] Overall, the history of the path may play 

a crucial role in agent risk assessment and agent allocations.  Path dependency imputes 

the analysis of risk by using time series analysis.   

 

Financial crises are systemic events resulting from sudden regime shifts, characterized 

most basically by market agents exiting from bank debt and creating insolvency within 

the banking system. [6]   Systemic events reflect systemic risk, aggregate or macro 

behavior in a system.  Systemic risk may involve breakdowns such as adverse network 

effects from an internal shock, insolvency of key institutional factors, and liquidity 

bottlenecks. [7]  

 

Network structure plays a key role.  The identical factors that contribute to network 

resilience may also contribute to network fragility, as a financial contagion displays a 

phase transition characteristic.  Below a certain threshold, shocks enhance stability in 

densely connected networks. Above a certain shock threshold, densely connected 

networks propagate shocks leading to increased fragility. [8]    Clustered networks, 

networks of financial institutions holding identical portfolios tend to default together, 

whereby un-clustered networks display more default dispersion.  The impact of long-

term financing and network structure is neutral.  In contrast, network structure matters 

relative to short-term financing. [9]      

 

The cost of a public policy intervention to correct a negative spillover, an externality, 

might be correctly considered a measure of systemic risk.  Public policy intervention is a 

societal cost related to the correction of a negative externality.  The associated cost of 

the externality response is a measure of full systemic risk. [10] Rather than solely a 

public policy action, the externality could reflect a market response or some combination  
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of public policy and market response.   Exploiting episodes of inefficient pricing, an 

externality, is argued to be a viable measure for systemic risk. 

 

There are two distinct phases to systemic risk.  The run-up phase in the backdrop before 

the crisis and the materialization as the crisis event occurs.  To measure systemic risk, 

one must be able to overcome the significant empirical challenge of boiling down large 

sources and amounts of data to a singular, meaningful risk statistic or metric.   When 

considering systemic analysis, there has been a priority given to propagation and 

amplification in the financial sector, and particularly for interactions and types of financial 

institutions.  Following this line of research, measuring systemic risk begins with 

quantifying firm risk.  The natural sequence is to start at the micro-firm level, and 

develop risk allocation rules to accurately allocate total or marginal contributions to 

systemic risk across various types of financial institutions or other relevant market 

agents.    Risk allocation rules abound, such as proportional allocation, Euler or gradient 

allocation, with-and-without allocation, and, from game theory, Shapley value. Systemic 

risk measures include systemic expected shortfall (SES), distressed insurance premium 

(DIP), CoVaR analysis, contingent claims analysis, and a copula approach.  These risk 

allocation rules and systemic risk measures all build from the micro-level to the systemic 

level.  A good measure of systemic risk must insure that the sum of all risk contributions 

equals the total, and the appropriate amount of marginal risk taken on by any agent or 

institution is guided by incentives. [1]   The important question remains whether building 

from the micro-foundation level out provides a valid risk-based measure as one must 

identify all relevant micro-units and correctly allocate risk contributions system-wide.  

This micro-based conventional approach is a partial or incomplete systems approach in 

that it does not provide a complete system, macro-economy measure of systemic risk.  

The martingale representation algorithm, in using the special status of the US treasury 
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market, abandons the daunting abstracting micro-detail, and provides a complete 

system, macro-economy systemic metric. The algorithm, through pre-crisis state price 

signaling and the episodes of inefficient pricing calibrating around the epicenter event 

date, satisfies the two distinct phases to systemic risk.        

 

The seminal work on surveying systemic risk analytics was prepared for the US 

Department of the Treasury.  The survey identified 31 quantitative measures of systemic 

risk from the economics and finance literature.  Ten different definitions of systemic risk 

were identified from published research.  The 31 analytical measures were organized 

into broad categories: Macroeconomic Measures, Granular Foundations and Network 

Measures, Forward-Looking Risk Measures, Stress-Test Measures, Cross Sectional 

Measures, and Measures of Illiquidity and Insolvency.  The analytical measures were 

sub-categorized in terms of ex ante early warning, ex ante counterfactual simulation and 

stress tests, contemporaneous fragility, contemporaneous crisis monitoring, ex post 

forensic analysis, and ex post orderly resolution.  Most relevant to this paper, the 

identification of seven forward-looking risk measures – contingent claims analysis, 

Mahalanobis distance, the option iPoD, multivariate density estimators, simulating the 

housing sector, consumer credit, principle component analysis – does not include the 

theoretical martingale representation model. In addition, the ex post forensic approach 

does not include the theoretical representation model. [11]   More specifically, none of 

the 31 analytical measures identified include the theoretical martingale representation 

model as applied to yield curve time-series or other data sources.   

 

In finance, the presumption of efficient pricing imputes a theoretical Walrasian 

equilibrium, consistent with the notion of the “invisible hand.”  The notion of an idealized 

Walrasian system is violated by the reality of imperfectly competitive market conditions, 
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and the presumption of a guiding invisible hand typically fails to materialize at a non-

cooperative equilibrium. Under multi-equilibria conditions, the lack of cooperation can 

result in a non-cooperative equilibrium that is inefficient, and yet there are no incentives 

to agents to unilaterally move to a better equilibrium.  The resulting inefficient equilibrium 

is due to lack of coordination.  Invoking coordination allows a movement to the optimal 

position. [12] A crisis driven paradigm shift in market sentiment from risk-on to risk-off 

reflects a multi-equilibria condition, whereby effective policy coordination intervention is 

needed to provide signals to agents to move back to an efficient equilibrium position.  

These two equilibria extremes reflect systemic risk, the measurable magnitude of a 

market agent move from an optimal to a sub-optimal equilibrium.  The martingale 

representation algorithm follows this line of reasoning to quantify systemic risk through a 

scaled metric.    

 

3 The Stylized Facts of Financial Crises 

The paper incorporates an event study involving a major financial crisis.  The common 

characteristics of financial crises or panics involve acute liquidity shortages and 

contagion.  Walter Bagehot, in 1873, indicted that central banks should act as a lender of 

last resort and lend freely.  Beyond a liquidity event, you have contagion and possibly 

the impairment of the credit granting function.  Contagion may be a rational response as 

bank failures increase counterparty risk, impacting a very large number of institutions. 

[13] Financial panics happen under both fiat currency and gold standard regimes.  Under 

the International gold standard from 1879 to 1913, a major rule of the game was to 

address short-run liquidity crises resulting from a gold drain with a central bank lending 

freely to the domestic banking sector. [14] The contagion effect reflects systemic risk, 

and volatility is exacerbated by contagion as countries or assets are grouped into 

categories of risk that are perceived as being very correlated. [2] It is difficult to have a 
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sense for the event or events causing a specific panic.  In some cases, there may not be 

a logical reason.  An event occurs leading to a failure in confidence in the financial 

system.  The loss of confidents, possibly driven by instinct, results in runs on banks, 

squeezing reserve positions.  Solvent banks become insolvent.  Banks face liquidity 

squeezes and call loans which tighten credit, raising short-term interest rates, spawning  

credit disruptions and business failures. The ensuing disruption leads to an economic 

recession. [15]     

 

4 The Martingale Representation Algorithm 

The theoretical representation model is commonly known as a martingale. The 

representation model is theoretically correct in that it is forward looking.  The model 

provides for efficient market pricing under the assumption of arbitrage-free valuations.  

Empirically, the combination of the martingale model and rational expectations is 

generally viewed as satisfying market efficiency criteria. [16] The martingale model 

implies risk-neutral agents. 

 

Arbitrage-free is formally defined as not allowing for a zero time-t cash investment with 

the potential for receiving a non-zero investment return at time T.  Alternatively, it does 

not allow for receiving time-t cash to make an investment with zero liabilities at time T.  

Such portfolios cannot be feasible at given current prices when arbitrage-free conditions 

apply.  In the martingale representation model, given actual asset prices at time-t, 

arbitrage-free requires that all elements in the state price vector exist and be greater 

than zero. [17] The violation of positive state prices plays a key role in deriving the 

systemic risk scaled metric.  
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While the representation expressed by the theoretical model is not observable in the real 

world (only one state-of-the world will be observed), the theoretical representation model 

used as algorithm is a powerful empirical platform.  The martingale representation is 

formally expressed in matrix notation.  The actual martingale equations are hidden within 

the representation’s matrix notation.    

 
to   t1 
 

 B1       =       1  1          Q1        

Bn     Bn-1+σ  Bn-1-σ Q2  



Variables Q1 and Q2 are the state prices.  The elements of the vector at time-to record  
 
the respective bond prices.  Elements of the payoff matrix record the two-state  
 
values for the bonds at time-t1.   Solving the matrix multiplication and adjusting for the  
 
forward measure yields two equations.   
 
B1 = B1 [(Q1/ B1) + (Q2/ B1)]        (2) 
 
Bn = B1 [(Bn-1+σ) (Q1/ B1) + (Bn-1-σ) (Q2/ B1)]     (3) 
 
 
The forward measure, Qi/ B1, is the synthetic probability of each state occurring. An 
 
equation restated in the following generalized ratio form is a martingale. 
 
Bt/B1=Ep [BT]          (4)   
 
The existence of positive state prices, Q1 and Q2, are required to provide efficient  
 
pricing in equations (2) and (3).  
 
 
Operationally, the martingale representation is used as a one-period, re-setting algorithm 

to empirically determine episodes of efficient and inefficient pricing in time-series data.  

The one-period, re-setting format is justified both empirically and theoretically. In each 

new time-period of one month, it is reasonable to expect a new information set, It, based 

on new news arriving. Theoretically, given rational expectations, since all available 

information in the information set should be reflected in the bond price, and since new 
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information arrives randomly, a new information set should result in new bond pricing.  

Empirically, the data clearly and uniformly displays new bond prices every month.   

 

Solving the representation’s matrix algebra requires the time-to bond prices, Bt, and the 

forward time-t1 volatility, σ.  Equation (1) is sufficient (equations 2 and 3 may remain 

hidden) to derive the values of state prices given market bond prices at time-to and the 

forward volatility at time-t1.  The up state-one movement equals Bn-1+σ and the down 

state-two movement equals Bn-1-σ.  The use of volatility (σ) multiplied by the square root 

of the time interval is the common practice in modern finance. [18] The time frame from 

time-to to time-t1 is always one year, so the  term is dropped.  The assignment of 

future up-down values using Bn-1 rather than Bn reflects the fact that the two-year bond 

will be a one-year bond at time-t1, and so on.  The volatility (σ) is for the Bn-1 bond, and 

represents the sample standard deviation over the 12-month forward (t1) period.  

Positive state prices impute efficient pricing.  For each month, the algorithm’s matrix 

algebra is solved for the state prices Q1 and Q2.  Each forward volatility value in the 

volatility time series is associated with its own set of state prices, elements found in the 

state price vector.  Volatility is an ex post measure. In terms of the representation matrix, 

the bond values are ex ante prices.  The algorithm confirms efficient pricing, arbitrage-

free outcomes when ex ante bond prices and the ex post volatility yield state prices that 

exist and are all greater than zero.    

 

The algorithm is linear but it is obviously not a linear programming methodology. Still, 

some conceptual attributes of the primal and dual problems are reflective of playing a 

similar role in the martingale representation through state prices and the shadow 

volatility metric.  The primal objective of optimal (efficient) pricing is satisfied through the 
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provision of a positive state price vector.  The dual variable is the shadow (price) 

volatility metric, counterfactually re-establishing efficient pricing and positive state prices 

in the time series.  The algorithm is applied to time-series data displaying episodes of 

both efficient and inefficient pricing.  The shadow volatility metric is similarly the imputed 

value of the input volatility resource that provides for optimal time-series pricing, just as  

the linear programming shadow prices are the imputed values of the scarce resource 

contributions that are owed to the resulting primal optimal (profit) value. [19]  

 

The study uses monthly US and Canadian government bond interest rate data taken 

from the Federal Reserve Board and Bank of Canada historical time-series data bases. 

The bond prices represent the standard conventional zero-coupon bond values as 

derived from the interest rate data.  Yield curve interest rates are available for the one-

year, two-year, three-year, five-year and seven-year government issues.  The four-year 

and six-year rates are interpolated.  Because of data availability limitations, Canadian 

dollar LIBOR rates were substituted for one-year rates from September of 2005 to April 

of 2006.  Pre- and post-crisis data (approximately 36 months before and 36 months after 

the crisis event) is purposely used, consistent with an event study.  The yield curve data 

sets run from September 2005 to September 2011, plus a 12-month forward-looking 

data requirement running through September 2012.  Model and data constraints limit the 

use of the algorithm to the one-year to six-year length of the yield curve.     

 

5 Risk Metric Output from the Algorithm  

The algorithm generates a time series of state prices.  The state price values calibrate 

around the financial crisis event date of September 2008.  State prices shift from positive 

to negative values, and signal pre-crisis elevated risk levels as US shorter-maturity Q2 

state prices (state prices may be viewed as elementary insurance contracts) gradually 
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approach 0.95.  Negative state prices represent sub-optimal, inefficient pricing of assets.  

For both the United States and Canada, truncated Q1 and Q2 state price time-series 

sequences are provided in Table 1 and Table 2, respectively.  The date of the first shift 

to negative state prices is recorded in bold text. 

________________________Table 1: US State Prices__________________________ 

US 
 
Dates 1Y Q1 Q2  2Y Q1 Q2  3Y Q1 Q2 

2008-03 0.3884319 0.5964017  0.2887435 0.6960901   0.126215 0.8586185 

2008-04 0.1095763 0.8733213  0.2252818 0.7576158  0.1231311 0.8597665 

2008-05 0.0140361 0.9657797  0.1379016 0.8419142    0.150766 0.8290498 

2008-06 0.0197917 0.9565801  0.0194763 0.9568955  0.1100725 0.8662993 

2008-07 0.0354408 0.9422675  -0.0480126 1.0257209  0.0240093   0.953699 

2008-08 -0.000693 0.9793581  -0.2024626 1.1811277  -0.1422123 1.1208774 

2008-09 -0.0461556 1.0274136  -0.4754465 1.4567045  -0.5269104 1.5081684 

2008-10 -0.5107997 1.4967985  -1.2927187 2.2787175  -1.2641839 2.2501827 

2008-11 -0.9318846 1.9212979  -1.6953625 2.6847758  -1.1521137 2.141527 

2008-12 -2.7418746 3.7369985  -1.9092983 2.9044222  -0.9740281 1.969152 

 

Dates 4Y Q1 Q2  5Y Q1 Q2  6Y Q1 Q2 

2008-03 0.0962382 0.8885954  0.1743814 0.8104522  0.1627704 0.8220632 

2008-04 0.1112059 0.8716917  0.2070713 0.7758263  0.2024648 0.7804328 

2008-05 0.1541844 0.8256314  0.217476 0.7623398  0.2150901 0.7647257 

2008-06 0.1282859 0.8480859  0.2221941 0.7541777  0.2313158 0.745056 

2008-07 0.0556983 0.9220099  0.1592307 0.8184776  0.1734629 0.8042453 

2008-08 -0.042894 1.0215591  0.1124148 0.8662503  0.1401079 0.8385572 

2008-09 -0.2559814 1.2372394  0.0315554 0.9497025  0.0773013 0.9039567 

2008-10 -0.7467139 1.7327128  -0.1596659 1.1456648  -0.0723588 1.0583576 

2008-11 -0.6743195 1.6637328  -0.2098768   1.19929  -0.1217794 1.1111926 

2008-12 -0.4856719 1.4807958  -0.1488598 1.1439837  -0.0743936 1.0695175 

________________________________________________________________ 

For US state prices, some state prices turn negative before September 2008 and other 

state prices react one month later in October 2008.  One-year, three-year, and four-year 

maturity state prices begin to turn negative in August 2008.  The two-year maturity state 

price begins to turn negative in July 2008.  The five-year and six-year maturity state 

prices begin to turn negative in October 2008.     
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_______________________Table 2: Canadian State Prices______________________ 
Canada 

Dates 1YQ1 Q2  2YQ1 Q2  3YQ1 Q2 

2008-03 0.4382511   0.536883  0.413495 0.5616391  0.3525197 0.6226144 

2008-04 0.4502395 0.5235652  0.3240099 0.6497947  0.3933753 0.5804294 

2008-05 0.2962115 0.6757948  0.3451289 0.6268773  0.3593717 0.6126345 

2008-06 0.4941671 0.4744497  0.3763343 0.5922825  0.4257824 0.5428345 

2008-07 0.3729582 0.5983871  0.2491112 0.7222341  0.3277185 0.6436269 

2008-08 0.3932877 0.5806118  0.2651585   0.708741    0.321471 0.6524285 

2008-09 0.0889974 0.8852817  -0.1038397 1.0781187  0.1736073 0.8006717 

2008-10 0.4304623 0.5494495  -0.6780309 1.6579427  -0.3289343 1.3088461 

2008-11 -0.2085498 1.1927049  -1.11398 2.0981351  -0.5364787 1.5206338 

2008-12 -1.0761796 2.0677513  -1.1502229 2.1417946  -0.6367172 1.6282889 

         

 4YQ1 Q2  5YQ1 Q2  6YQ1 Q2 

2008-03 0.3312824 0.6438517  0.3370496 0.6380845  0.3291938 0.6459403 

2008-04 0.389291 0.5845136  0.3552816 0.618523  0.3499458 0.6238588 

2008-05 0.354108 0.6178982  0.3447175 0.6272887  0.3447977 0.6272085 

2008-06 0.4218188 0.546798  0.3858944 0.5827225  0.3820655 0.5865513 

2008-07 0.3225584 0.6487869  0.2814651 0.6898802  0.2817298 0.6896155 

2008-08 0.3160214 0.657878    0.263947 0.7099525  0.2595774 0.7143221 

2008-09 0.2353532 0.7389259  0.1464777 0.8278013  0.1420753 0.8322038 

2008-10 -0.176684 1.1565958  -0.0915929 1.0715047  -0.1234079 1.1033197 

2008-11 -0.312856 1.2970111  -0.0741372 1.0582923  -0.1000361 1.0841912 

2008-12 -0.3610214 1.3525931  -0.2365464 1.228118  -0.2391585 1.2307301 

________________________________________________________________ 
 
 
 

 
        

For Canadian state prices, one-year to four-year maturity state prices turn negative two 

to three months later than comparable US state prices.  Five-year and six-year maturity 

state prices respond identically to US state prices.  The one-year maturity state price 

begins to turn negative in November 2008.  The two-year maturity state price begins to 

turn negative in September 2008.  The three-year, four-year, five-year and six-year 

maturity state prices begin to turn negative in October 2008. 

 

The shift to negative state prices is uniformly characterized by compressions in ex post 

volatilities.  Ex ante bond prices are incongruent with ex post volatilities.  Market 
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sentiment rushes to hold cash or risk-free, cash-equivalent short-term US Treasuries.  

The Panic of 1907, arguably the most similar financial panic to this crisis, shows similar 

behavior.  The banking system collapsed almost overnight.  Reserves were depleted as 

people rushed to hoard cash or its equivalent, gold.  The circulation of available cash 

disappeared, and liquidity vanished. [20] When liquidity vanishes, there is no trading and 

volatilities compress.  In the subsequent volatility time-series analysis, the failure to 

reject the unit root is consistent with the argument that financial panics are ultimately 

liquidity crises.      

 

To restore optimal or efficient pricing in time series displaying episodes of inefficient 

pricing, an imputed or shadow volatility metric is used.  Each realized volatility value 

found in the inefficient pricing segment of the volatility time series is multiplied by a 

common multiple (X) to counterfactually restore all negative state prices found in the 

state price time series to positive state prices.  The common multiple adjustment to the 

volatility time series re-establishes efficient pricing by removing the inefficient pricing 

externality and counterfactually restoring positive state price vectors.  The common 

multiple magnitude is referred to as the X-factor.  The X-factor adjusted portion of the 

realized volatility time series is the shadow volatility metric, the time-series volatility 

adjustment that re-establishes the optimization of the primal objective of efficient pricing. 

This follows from the fact that a shadow value or price is the imputed economic measure 

of value relative to the optimal objective value. [21] 

 

The X-factor is a dimensionless, scaled metric measure of systemic risk.  In terms of a 

generalized interpretation of the X-factor magnitude, although mathematically quite 

different in construct, it is interpretively analogous to the moment magnitude scaled 

metric used to measure tremor events.  The X-factor value is the metric measuring the 
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magnitude of systemic risk.  Equivalently, it is also the measure for the magnitude of the 

economic externality.  The X-factor is an extreme value measure in that it is the common 

volatility adjustment multiple required to counterfactually remove all the inefficient pricing 

found in the time series and counterfactually fully restore efficient pricing and positive 

state prices.  Given the use of US treasury data and the US dollar’s status as the de-

facto world reserve currency, the X-factor provides a benchmark macro-foundation 

systemic metric for the 2008 “global” financial crisis.  

 

For the US data, the X-factor values for the one-year to six-year maturities are 32.25, 

14.75, 14.5, 9, 5.25 and 5, respectively.  For the Canadian data, the X-factor values for 

the one-year to six-year maturities are 13.75, 6.75, 4.25, 4.5, 3.25, and 3.25, 

respectively.   The corresponding X-factors are of larger magnitudes for the US, 

indicating larger externalities resulting from the financial crisis.  Based on the X-factor 

values found along the yield curve, the risk diffusion process displays a tendency to 

diminish.  Equivalently, the absolute size of the externality tends to diminish moving out 

along the yield curve.   Since the crisis originated in the US, and the Canadian X-factors 

display lower values, the metrics suggest a cross-country diminishing contagion diffusion 

process. Table 3 records the X-factor values for each volatility maturity for both 

countries.  

_______________Table 3: Scaled X-factor Metric for US and Canada______________ 
 1Y  2Y  3Y  4Y  5Y  6Y___ 
US 32.25X  14.75X  14.50X  9.00X  5.25X  5.00X 
Can 13.75X    6.75X    4.25X  4.50X  3.25X  3.25X 
______________________________________________________________________ 
Note: the X-factor is the common adjustment multiple to all negative state price associated realized volatilities found in the 
time series needed to adjust the realized volatilities to satisfy optimal (efficient) pricing positive state price; and a 
magnitude scaled metric measure for the intensity of actual agent market behavior driven systemic risk.  

 

The nature of the calculation for the X-factor metric suggests complete independence 

between individual X-factor values by maturity.  The very small sample size (N=6) limits 
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any meaningful inferential statistical analysis.  The standard principle for diffusion in 

finance imputes a Brownian Motion diffusion process.   

 

The X-factor sequences recording year-to-year percentage changes are provided for 

both countries.  The one-year maturities, sometimes referred to as epicenters given their 

largest magnitudes, are sequenced as Xo.    

US 

%∆X1+%∆X2+%∆X3+%∆X4+%∆X5 = (-0.543)+(-0.017)+(-0.379)+(-0.417)+(-0.048) (5) 

Canada 

%∆X1+%∆X2+%∆X3+%∆X4+%∆X5 = (-0.509)+(-0.370)+(0.059)+(-0.278)+(0.00)   (6) 

 

Based on visual inspection of the two sequences, a normalized first-order diffusion 

process looks to follow a random process, where most magnitudes are associated with 

negative values. 

 

Arguably, the epicenter magnitude (Xo) may conceivably be the actual driver of the 

diffusion process as agent market behavior reflects a (quasi) complete-markets 

approach through a pro rata allocation of additional risk moving out along the yield 

curve.  The summation of the ratios of the epicenter X-factor value, Xo, to each of the 

five subsequent X-factor values, Xi, is provided for both countries:    

US:   Σ Xi/Xo = .457+.450+.279+.163+.155 =1.504   (7)  

Canada: Σ Xi/Xo = .491+.309+.327+.236+.236 = 1.600   (8) 

The two epicenter-based pro rata allocation sequences comprising the summations look 

to follow a diffusion process that generally diminishes moving out along the yield curve.  

Interestingly, in total, the two pro rata risk allocations converge to similar values of 1.504 
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and 1.6.  One interpretation is that market agents allocated, on a complete-markets pro 

rata basis, an additional 150 to 160 percent of systemic risk.  Despite different epicenter 

magnitudes of 32.25 and 13.75, market agents allocated the same additional risk.  The 

pro rata allocations differ between maturity values and between market agents of 

different countries, but in total, the pro rata risk allocations are seemingly epi-center 

uniform.    

 

The X-factor metrics, for the most part, reveal diffusion processes displaying diminished 

allocations of systemic risk: (1) when moving away from the epicenter magnitudes, (2) 

for cross-country contagion from the originating country to the contagion county, and (3) 

from a complete-markets, pro rata risk allocation perspective.    

 

6 Time-Series Analysis of the Algorithm Output 

The representation algorithm empirics are organized around time-series data as 

opposed to a single data point.  Evaluating for covariance-stationary time-series 

properties is therefore a natural extension of the representation algorithm empirics.   

Two types of time-series volatility data sets are tested for unit root - the original, realized 

volatility time series and a constructed shadow volatility time series.  The shadow 

volatility time series is built by splicing the positive state price volatilities with the shadow 

volatility metric (X-factor) adjusted volatilities that counterfactually restore realized 

negative state prices to positive state prices.    

 

The model specification used is the standard re-parameterized model (non-zero 

unconditional mean) to test for unit root.    

   ∆σ = α + (Φ-1) σ-1 + ϵ      (9) 
 
To correct for autocorrelation, the equation is augmented by adding first differences 
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lagged variables (∆σ-1, ∆σ-2) until the autocorrelation is reduced to white noise. [22]   

Some equations do not need to be augmented, while other equations require one or two 

augmentations.  The test for autocorrelation is the standard Durbin h statistic. [23] For all 

the volatility time series recorded in Table 4, the Durbin h statistic fails to reject the 

absence of autocorrelation at the five percent (5%) level of significance.   

_____________Table 4: US Realized Volatility Time-Series Analysis_______________  

Year   Φ-1  Stnd Error  S-NS ADF Statistic Durbin h Rho ACA__ 
1Y -0.0241  0.0119  NS -2.0204  -0.2466  -0.0293    2  
2Y -0.0343  0.0149  NS -2.3024  -0.5149  -0.0610    2 
3Y -0.0644  0.0163  S -3.9393   1.4626   0.1719    1 
4Y -0.0800  0.0190  S -4.2127   1.0425   0.1221    1 
5Y -0.0977  0.0225  S -4.3290   0.6890   0.0802    1 
6Y -0.1054  0.0245  S -4.3015   0.5420   0.0629    1 
_____________________________________________________________________________ 

 
____________________US Shadow Volatility Time-Series Analysis________________  
Year   Φ-1  Stnd Error  S-NS ADF Statistic Durbin h Rho ACA__ 
1Y -0.4001  0.0953  S -4.1985   0.2852   0.0197    0  
2Y -0.2450  0.0781  S -3.1358   0.2803   0.0247    0 
3Y -0.0699  0.0428  NS -1.6345   0.4231   0.0464    0 
4Y -0.0620  0.0396  NS -1.5646   1.3785   0.1529    0 
5Y -0.0664  0.0330  NS -2.0074  -0.2720  -0.0310    1 
6Y -0.0689  0.0339  NS -2.0290  -0.2189  -0.0249    1 
_____________________________________________________________________________ 

 
_______________Canadian Realized Volatility Time-Series Analysis_______________  
Year   Φ-1  Stnd Error  S-NS ADF Statistic Durbin h Rho ACA__ 
1Y -0.0526  0.0176  S -2.9892   0.6073   0.0712    1  
2Y -0.0657  0.0205  S -3.2054   0.1901   0.0222    1 
3Y -0.0786  0.0244  S -3.2223  -0.0929  -0.0107    1 
4Y -0.0867  0.0257  S -3.3721   0.1106   0.0128    1 
5Y -0.1008  0.0285  S -3.5376   0.2208   0.0254    1 
6Y -0.1107  0.0293  S -3.7711   0.2447   0.0281    1 
_____________________________________________________________________________ 

 
_______________Canadian Shadow Volatility Time-Series Analysis________________  
Year   Φ-1  Stnd Error  S-NS ADF Statistic Durbin h Rho ACA__ 
1Y -0.0708  0.0411  NS -1.7220   0.4267   0.0474    1  
2Y -0.0775  0.0429  NS -1.8073  -0.0927  -0.0101    0 
3Y -0.0637  0.0329  NS -1.9373  -0.3921  -0.0447    1 
4Y -0.0662  0.0336  NS -1.9703  -0.2695  -0.0306    1 
5Y -0.1600  0.0623  NS -2.5661   0.1172   0.0117    0 
6Y -0.1541  0.0614  NS -2.5063   0.1545   0.0155    0 
_____________________________________________________________________________ 

 
For the US and Canadian data, Table 4 contains both the original realized and shadow 

volatility time-series analysis information, including the maturity dates, estimated 
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parameters, standard errors, covariance-stationary property (S-NS), augmented Dickey- 

Fuller tau (ADF), number of autocorrelation adjustments (ACA), Durbin h statistic, and 

rho for the error term. 

 
Given the Dickey-Fuller tau (ADF) statistics for the original realized volatilities (time 

series that includes both efficient and inefficient pricing episodes), only the US one-year 

and two-year realized volatility time series are found to be non-stationary processes with 

ADF statistics of -2.0204 and -2.3024, respectively.  All other US and all Canadian 

realized volatility time series are found to be stationary processes at the five percent 

(5%) level of significance.  For the US data, ADF statistics range from a value of -3.9393 

to a value of -4.3290.  For the Canadian data, ADF statistics range from a value of  

-2.9892 to a value of -3.7711.   In most of the original realized volatility time series 

tested, post crisis episodes of inefficient pricing are not associated with volatility 

compressions significant enough to indicate a non-stationary stochastic process.       

 

For the X-factor constructed shadow volatility time series, the US one-year and two-year 

maturities are found to be stationary processes at the five percent (5%) level of 

significance with ADF statistics of -4.1985 and -3.1358, respectively.  For all other US 

and all Canadian shadow volatility time series, there is a failure to reject the unit root, 

indicating non-stationary volatility time series processes.  For the US data, the ADF 

statistics range from a value of -1.5646 to a value of -2.029.  For the Canadian data, the 

ADF statistics range from a value of -1.7220 to a value of -2.5661. [22]  

 

For all the time series, original realized volatility time series switch from stationary (non-

stationary) to non-stationary (stationary) when moving to their respective shadow 

volatility time series.  The uniform time series covariance-stationary process reversals 
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found when moving from original realized time series to shadow volatility time series 

validate the shadow volatility metric as having attributes of a dual variable.  Inefficient 

pricing under a stationary process must revert to a non-stationary process to restore 

efficient pricing, and vice versa.  Given ex ante bond prices, the shadow volatility metric 

consistently adjusts the time series back to optimal (efficient) pricing conditions.  As 

found from the unit root test, the provision of efficient pricing in the representation 

algorithm can co-exist with either stationary or non-stationary time-series volatility 

processes.     

 

For both the US and Canadian data, one anomaly does appear in the one-year volatility 

time series.  Specifically, both US and Canadian one-year time series display episodes 

of negative state prices prior to the September 2008 crisis epicenter.   Based on the 

representation algorithm, the US had a brief inefficient pricing episode from July 2006 to 

November 2006, where an X-factor adjustment of 3.5 is required to re-instate efficient 

pricing.  Canada had a longer episode of inefficient pricing from December 2005 to 

December 2006, where an X-factor adjustment of 3.75 is required to re-instate efficient 

pricing.  These pre-crisis, inefficient pricing episodes are not unusual as the 

representation algorithm is quite robust in that mispricing is also identified outside of a 

major financial event.  When X-factor adjusting US realized (July to November 2006) 

and shadow volatility time series for these pre-crisis, inefficient pricing episodes, the 

time-series statistics remain generally consistent with the US one-year statistics 

recorded in Table 4.  When X-factor adjusting the Canadian original realized time-series 

data (December 2005 to December 2006), the realized time series is a non-stationary 

process, resulting in a deviation from the statistical data recorded in Table 4.  The X-

factor adjustment to the Canadian shadow volatility time series is a non-stationary  
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process, and remains consistent with the statistics recorded in Table 4.  The full 

statistics are recorded in Table 5.   

____Table 5: Pre-Crisis Adjusted US Realized and Shadow Volatility Time Series_____ 
Year   Φ-1  Stnd Error  S-NS ADF Statistic Durbin h Rho ACA__ 
1Y -0.0832  0.0490  NS -1.6968  -0.0144  -0.0015    0  
1Y -0.4096  0.0961  S -4.2618   0.3312   0.0225    0 

______________________________________________________________________ 
 
__________Pre-Crisis Adjusted Canadian Realized and Shadow Volatility Time Series_  
Year   Φ-1  Stnd Error  S-NS ADF Statistic Durbin h Rho ACA__ 
1Y -0.0612  0.0432  NS -1.4163  1.6108   0.1765    0  
1Y -0.0841  0.0451  NS -1.8625  0.3861   0.0423    1 

______________________________________________________________________ 
 
Aside from the one violation described above, as recorded, the Dickey-Fuller statistics 

for unit root are consistent across the time-series tested.  The covariance-stationary 

properties recorded are reliable in the context of the martingale representation algorithm. 

        

From the time-series analysis, the US one-year and two-year original realized volatilities 

record large magnitude volatility compressions resulting in non-stationary time-series 

processes.  All other original realized volatility time series are found to be stationary 

processes, not displaying large volatility compressions.   

 

Based on the time-series analysis, in a financial crisis, systemic risk is not uniform. This 

finding is more than likely counter to the seemingly rational perception that large crises 

or panics have large uniform across-the-board impacts.  In fact, there is more market 

resilience than probably acknowledged, and less market allocated systemic risk moving 

further out the yield curve.        
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7 Risk Metric Output Policy Implications 

The martingale representation algorithm is a valid empirical platform for identifying 

episodes of efficient and inefficient pricing, and for measuring and evaluating systemic 

risk dynamics.  Extrapolating from the systemic risk empirics derived from the two-

country event study, several key findings have policy implications.  

 

Systemic risk metrics should not be expected to be uniform for (1) all asset maturities 

and (2) on a cross-country basis, indicating elements of resilience.  Contrary to differing 

cross-country systemic risk magnitudes, individual country diffusion patterns might be 

expected to more uniform, but not necessarily independent of their respective epi-center 

magnitudes.    

 

Based on asset maturity, episodes of inefficient pricing should not be expected to be 

uniform.   Longer dated maturities will most likely lag the epicenter event date.  For the 

crisis originating location, shorter maturities will most likely lead the epicenter event date.  

For contagion locations, the shorter maturities will most likely lag the epicenter event 

date.  Inefficient pricing dynamics found along the yield curve seem to be complicated.   

 

The extreme market response by economic agents to risk-aversion, as measured by 

large US systemic risk metric magnitudes of 32.25 and 14.75, are shown to confirm the 

use of extraordinary monetary policy by US authorities during the aftermath of 

September 2008.   The metrics demonstrate the extreme risk-off market response and 

severe liquidity dislocations in US money markets. 

 

The paradigm shift from a market sentiment (confidence) of risk-on to risk-off can be 

sudden and violent, suggesting that market opinion has its own volatility that can quickly 



 

25 

 

and significantly reverse episodes of optimal, efficient pricing and result in dramatic 

shifts in systemic risk profiles and contagion.  Financial crises or panics reflect sudden 

reversals in market opinion or confidence, and the resulting risk-aversion impacts to 

liquidity conditions and contagion can be enormous to multiple segments of a market 

economy.  Therefore, the ideology of unregulated financial markets guaranteeing 

complete information and complete markets that yield optimal risk-return pricing and 

dampening effects on market instability should be seriously re-evaluated.  Macro-

prudential financial regulation most likely is a very prudent endeavor.             

 

8 Conclusion 

The standard core asset valuation model in modern analytical finance, a martingale 

representation, is used as a one-period, re-setting algorithm to effectively differentiate 

episodes of efficient and inefficient pricing in time series.   As applied, the algorithm is 

shown to be extremely simple to utilize, and powerful and robust in calibrating and 

measuring systemic risk and diffusion dynamics. The algorithm derives precise, 

consistent and plausible systemic risk metrics based on actual agent market behavior. 

The use of the shadow volatility metric provides a scaled metric quantifying systemic risk 

through the re-establishment of efficient pricing in the time series. The algorithm-derived 

metrics signal the impending pre-crisis risk buildup and calibrate around the critical 

financial crisis event date of September 2008.  The time-series analysis validates the 

use of the shadow volatility metric as exhibiting attributes of a dual variable and confirms 

efficient pricing that is consistent with both stationary and non-stationary processes. The 

algorithm sacrifices abstraction and micro-foundation detail in favor of providing a 

complete system, economy-wide measure of systemic risk. The risk metrics are 

heuristically consistent with the historical stylized facts of financial crises related to 

confidence, liquidity conditions and contagion.  The risk metrics confirm the 
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extraordinary policy response by US officials.  The algorithm is robust in that it effectively 

exploits inefficient pricing episodes under both normal and crisis conditions.   

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

27 

 

References 
 

[1] M. Brunnermeier and M. Oehmke, “Bubbles, financial crises and systemic risk,” 

Working Paper 18398, National Bureau of Economic Research, Massachusetts, 2012.  

[2] J. Ocampo, C. Rada, and L. Taylor, “Growth and policy in developing countries: A 

structuralist approach,” Columbia University Press, 2009. 

[3] B. Malkiel, “The efficient market hypothesis and its critics”, The Journal of Economic 

Perspectives, vol.17, no. 1, Winter 2003, pp. 75-76. 

[4] R. Thaler, “Misbehaving: The makings of behavioral economics,” W. W. Norton and 

Company, 2015.  

[5] N. Taleb, “Antifragile: Things that gain from disorder,” Random House, 2012. 

[6] G. Gorton, “Some reflections on the recent financial crisis,”, Working Paper 18397, 

National Bureau of Economic Research, Massachusetts, 2012. 

[7] L. Hansen, “Challenges in identifying and measuring systemic risk”, Working Paper, 

University of Chicago and National Bureau of Economic Research, Chicago, 2012. 

[8] D. Acemoglu, A. Ozdaglar, and A. Tahbez-Salehi, “Systemic risk and financial 

stability in networks,” American Economic Review, vol. 105, no. 2, February 2015, pp. 

564-608. 

[9] F. Allen, A. Babus, and E. Carletti, “Financial connections and systemic risk,” 

Working Paper 16177, National Bureau of Economic Research, Massachusetts, 2010. 

[10] M. Brunnermeier, and P. Cheridito, “Measuring and allocating systemic risk”, 

Working Paper, Princeton University, Princeton, 2014. 

[11] D. Bisias, M. Flood, A. Lo, and S. Valavanis, “The survey of systemic risk analytics”, 

Working Paper Series #0001, Office of Financial Research, US Department of the 

Treasury, Washington, 2012. 

 



 

28 

 

[12] J. Silvestre, “The Market-power foundations of macroeconomic policy,” vol. 31, no. 

1, March 1993. pp. 105-109. 

[13] A. Blinder, “After the music stopped: The financial crisis, the response, and the work 

ahead,” The Penguin Press, 2013.    

[14] R. McKinnon, “International money in historical perspective,” Journal of Economic 

Literature, vol. 31, no. 1, March 1993, pp. 3-4. 

[15] G. Akerlof and R. Shiller, “Animal spirits: How human psychology drives the 

economy, and why it matters for global capitalism,” Princeton University Press, 2009. 

[16] S. LeRoy, “Efficient capital markets and martingales”, The Journal of Economic 

Literature, vol. 27, no. 4, December 1989, pp. 1594-1595. 

[17] S. Neftci, “Principles of financial engineering,” Elsevier Academic Press, 2004. 

[18] S. Neftci, “An introduction to the mathematics of financial derivatives,” Elsevier 

Academic Press, 2000. 

[19] W. Baumol, “Economic theory and operations analysis,” Prentice-Hall, 1977.  

[20] R. Lowenstein, “America’s bank: The epic struggle to create the federal reserve,” 

The Penguin Press, 2015. 

[21] H. Taha, “Operations research: An introduction,” Macmillan Publishing Company, 

1987. 

[22] G. Gonzalez-Rivera, “Forecasting for economics and business,” Pearson Education, 

2013. 

[23] G. Judge, R. Hill, W. Griffiths, H. Lutkepohl, and TC. Lee, “Introduction to the theory 

and practice of econometrics,” John Wiley and Sons, 1982.  

 


