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Abstract

In this thesis we investigate conditions for the existence of solitons for the

Ricci flow. The Ricci flow, first introduced by Richard Hamilton, changes a

Riemannian metric over time, in a way that the metric satisfies the partial dif-

ferential equation ∂g/∂t = −2 Ric(g). “Solitons” for this flow are solutions of

the equation where the metrics at different times differ by a diffeomorphism of

the manifold. The soliton condition, sufficient for an initial metric to give rise

to a soliton, is LX} = −∈Ric(}). We use the techniques of exterior differential

systems to show that this condition is involutive, and gives an elliptic equa-

tion in harmonic coordinates. However, globally-defined solitons are harder to

obtain on compact manifolds than locally-defined solitons: using techniques

from Hamilton’s earlier papers, we show that the only solitons on compact

three-manifolds are metrics of constant curvature. For compact manifolds of

higher dimension we investigate the possibility of deforming an Einstein met-

ric to a soliton, and we calculate the first-order deformation space explicitly

in the case of symmetric spaces of compact type. Using warped products and

ODE techniques, we also construct some examples of non-compact, complete

solitons.
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Introduction

What is the Ricci flow?

The Ricci flow is a way of evolving a Riemannian metric over time. The

evolution is specified by the partial differential equation

∂g

∂t
= −2 Rc(g),

which is known as the “heat equation” for Riemannian metrics. There are

situations — most notably, metrics with positive Ricci curvature on compact

three-manifolds — where this name is justified, and the behaviour of the flow is

indeed similar to that of the ordinary one-dimensional heat equation ft = fxx:

if the initial metric g0 has its curvature concentrated in a ‘lump’ in one place,

the Ricci flow smoothes out the lump, so that as time approaches infinity

the curvature is uniformly distributed. However, the nonlinear second-order

operator Rc, which yields the Ricci tensor of the metric g, is not elliptic,

so the Ricci flow is not strictly parabolic. The way in which it fails to be

parabolic is understood well enough that it has been termed weakly parabolic

(see [17], § 5,6).
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What is it good for?

Ever since Riemannian geometry was introduced in the nineteenth century,

curvature has been used to study the topology of manifolds. Of course, the

classic result in this area is the Gauss-Bonnet theorem: if M is a compact

orientable surface without boundary then the formula

1

2π

∫

M

K dA = χ(M)

relates a curvature integral to the Euler characteristic χ(M), a topological

invariant of M . Now, introducing a metric on a manifold adds an extra level

of complication, since the space of all available metrics is extremely large. We

can try to understand this complication by considering questions like

Is there a “nicest” metric we can put on M , that is, one where the

curvature is as simple as possible?

How does the topology of M influence the curvature of metrics

on M? In particular, how “nice” a metric can we get?

For example, if M is a two-dimensional torus the Gauss-Bonnet formula shows

that M cannot have a metric of strictly negative or strictly positive curvature.

On the other hand, the uniformization theorem says that an arbitrary complete

metric on any surface (compact or not) can be multiplied by a smooth function

to obtain a very nice metric, one of constant curvature.

Sometimes if a manifold admits a metric that is nice enough, we can com-

pletely determine its topology. For example, if M is a simply-connected surface

admitting a complete metric of constant negative curvature, then M must be
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the upper half-plane. Even if M is not simply-connected, we can lift the con-

stant negative curvature metric to its universal cover M̃ , which then must be

the upper half-plane. Furthermore, the deck transformations for this covering

must be isometries of M̃ , so they must lie in SL(2,R). It follows that any

hyperbolic surface M must be a quotient of the upper half-plane by the action

of a subgroup of SL(2,R). In this sense, the upper half-plane is a model space

for hyperbolic surfaces.

In the next dimension up, Thurston [28] has conjectured that three-manifold

topologies can be classified by a generalization of this argument. In brief, one

hopes to show that every compact three-dimensional manifold can be sliced

up into pieces, each of which admits a metric nice enough so that its universal

cover is one of eight homogeneous model spaces. The goal, in essence, is to

be able to use our understanding of nice geometries to investigate questions in

topology.

The Ricci flow comes in as a way of obtaining nice geometry. In general,

one starts with a metric g0 on M that satisfies some rather general curvature

condition C, and proves that as the Ricci flow runs, the metrics gt converge to

a limiting metric which satisfies a more restrictive — “nicer” — condition C ′.
For example, it is known that:

• If M is a compact three-manifold and g0 has positive Ricci curvature,

then gt converges to a metric of constant positive sectional curvature [17].

Thus, M must be a quotient of S3 by standard isometries.

• If M is a compact orientable surface, then gt converges to the constant

curvature metric appropriate to the topology of M — regardless of the

initial metric g0 [19],[10].
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• If M is a compact four-manifold and the Riemann curvature tensor of g0,

when viewed as a quadratic form on the space of two-forms on M , is posi-

tive semi-definite, then gt converges to a metric which is locally isometric

to one of S4, CP2, S3×R, S2×S2, or S2×R2, with the standard metric

in each case [18]. Thus M must be a quotient of one of these spaces.

• If M is a compact complex manifold and g0 is a Kähler metric with

non-negative holomorphic bisectional curvature, then gt remains Kähler

and has positive holomorphic bisectional curvature for large enough t. It

follows by algebro-geometric arguments that M is biholomorphic to CP2

[25].

Strictly speaking, the above results for compact manifolds apply to the nor-

malized Ricci flow

∂g

∂t
= −2 Rc(g) +

2

n
r(g) g,

where r(g) is the integral of the scalar curvature divided by the volume. This

normalization is rigged so that, while the metric changes, the volume of the

manifold is constant. (Without this normalization, Sn with constant curva-

ture +1 shrinks to a point in time 1/2(n − 1). On the other hand, for any

Einstein metric the right-hand side of the above equation is zero, and the nor-

malized Ricci flow leaves the metric fixed.) Since the two flows are equivalent

up to re-scaling and reparametrizing in time (see Chapter 3), one usually works

with the curvature evolution equations for the unnormalized flow and proves

convergence results for the normalized flow.

However, given an arbitrary initial metric on a compact three-manifold, the

normalized Ricci flow may develop singularities in finite time. For example,
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it is believed1 that if we give the three-sphere a metric so that the lateral

S2’s pinch in tightly in the middle, in finite time the Ricci flow will collapse

one of the S2’s to a point. (See Figure 0.1 for the analogous picture in two

dimensions; this phenomenon has been shown to occur for the mean curvature

Figure 0.1: A neck pinch

flow for embedded surfaces in R3 [16].)

The most ambitious conjecture for the Ricci flow is that the singularities

that develop are due to the topology of M3. Indeed, it is conjectured that

the singularities split M3 into less complicated pieces, and that away from the

singularities the Ricci flow is converging to one of the homogeneous geometries

proposed in the Thurston programme. To make progress along these lines, we

must try to understand the singularities of the Ricci flow on three-manifolds.

What are Ricci solitons?

In this subject it has become customary to call a solution of an evolution

equation that evolves along symmetries of the equation a soliton; another term

1This is claimed in the introduction to [22] but no references are given for the appropriate
numerical studies.
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used is self-similar solution (cf. [11]). To illustrate what we mean by “evolving

along symmetries”, consider the ordinary one-dimensional heat equation ft =

fxx. It is not too hard to see that the following vector fields are infinitesimal

symmetries of the equation — that is, each one generates a one-parameter

group of transformations that transform solutions to solutions:

X1 =
∂

∂x
translation in space

X2 =
∂

∂t
translation in time

X3 = f
∂

∂f
scaling in f

X4 = x
∂

∂x
+ 2t

∂

∂t
scaling in space and time

(Note that by no means do these exhaust the symmetries of the heat equation;

see [26], §2.4.) For the fundamental solution f(x, t) =
e−x2/4t

√
t

, we see that

f(λx, λ2t) = λ−2f(x, t)

for any λ > 0, so this solution is a soliton that evolves along the vector field

X = X4 − 2X3. (In fact, X is tangent to the graph of f(x, t).)

Another well-known evolution equation is the curve-shortening flow

∂X

∂t
= κ N,

for X(t) a one-parameter family of immersed plane curves with curvature κ and

unit normal vector N . The symmetries of this flow are the rigid motions of the

plane, translation in time, and simultaneous dilation in space and time. Among

the soliton solutions are the “spirograph” curves of Abresch-Langer [1], which

evolve by rotation and dilation, and the “Grim Reaper” cos x = e−y, which

evolves by translation in the y-direction.
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Figure 0.2: (a) some Abresch-Langer curves (b) the Grim Reaper

The Ricci flow
∂g

∂t
= −2 Rc(g) on a manifold M is an equation of tensors,

so all the diffeomorphisms of M are symmetries of the Ricci flow. We define a

Ricci soliton to be a solution where the metric gt at time t is the pullback of

the initial metric g0 by a diffeomorphism φt. It follows (see Chapter 1) that the

φt’s belong to a 1-parameter group of diffeomorphisms generated by a vector

field X. Then gt is a Ricci soliton solution if and only if for some complete

vector field X

LX }′ = −∈ Rc(}′).

We call this the Ricci soliton equation for an initial metric g0; if g0 satisfies

this, then as the Ricci flow runs, gt evolves along the vector field X. Notice

that the metric gt will be no nicer than our initial metric; in effect, the Ricci

flow is changing the coordinates but not the geometry.

Why should we care about Ricci solitons?

If we imagine the Ricci flow as the flow of some vector field on the space of

metrics, then solitons may act as attractors for this flow. In fact, in the case of
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two-dimensional spheres and spherical orbifolds, the flow is known to converge

to a soliton. Given this tendency, it becomes important to classify the possible

soliton metrics on a given compact manifold.

We are also interested in solitons on non-compact manifolds for the fol-

lowing reason. We can attempt to understand how singularities for the Ricci

flow form by defining a sequence of re-scaled solutions. Suppose (pk, Tk) is a

sequence of points and times along which the norm of the curvature of g(t)

achieves its maximum at each time and is going to infinity as k → ∞. For

each k, re-scale so that the norm of the curvature is bounded at pk:

gk(t) = λkg(Tk + t/λk)

The re-scaling and translation in time makes each gk(t) a solution of the Ricci

flow with bounded curvature at time zero. The boundedness of the product of

the maximum norm of the curvature and the time until blow-up is invariant

under these re-scalings. If it is bounded we say the singularity is “rapidly-

forming”; if it is unbounded we say the singularity is “slowly-forming”. In

the latter case, if the metrics gk(0), which have uniformly bounded curva-

ture as k → ∞, converge to anything, that metric must be a solution to the

Ricci flow for all time. The belief is that they converge to complete Ricci

solitons. If this is true, then we can understand the singularities of the Ricci

flow by understanding the solitons. (That a sequence of metrics on a com-

pact manifold can converge to a non-compact soliton is not an unreasonable

notion: it has been shown that, near a singularity, re-scaled solutions to the

curve-shortening flow approach one of two soliton solutions, either the compact

Abresch-Langer curves in the “rapidly-forming” case, or the Grim Reaper in

the “slowly-forming” case [2].)
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What is in this thesis?

In Chapter One, we review some standard material for the Ricci flow, par-

ticularly the curvature evolution equations and the notion of expanding and

shrinking solitons.

In Chapter Two, we investigate the local solution space for the Ricci soliton

equation using the techniques of exterior differential systems.

In Chapter Three, we prove that the only solitons on compact three-manifolds

are metrics of constant sectional curvature.

In Chapter Four, we investigate the solution space for the Ricci soliton equation

on compact manifolds by computing the deformation space of “trivial” compact

solitons — i.e., Einstein metrics.

In Chapter Five, we construct new examples of non-compact, complete Ricci

solitons in the form of a warped product of a Einstein manifold over Rn with

a radially symmetric metric.



Chapter 1

Background for the Ricci Flow

Curvature Evolution and the Uhlenbeck trick

The unnormalized Ricci flow implies the following evolution equation for the

curvature tensor:

∂

∂t
Rijkl = ∆Rijkl + 2(Bijkl −Bijlk + Bikjl −Biljk)

− (Ri
pRpjkl + Rj

pRipkl + Rk
pRijpl + Rl

pRijkp),

where the Laplacian is simply the trace of iterated covariant derivatives and

Bijkl = Ri
p
j
qRpkql. There is a trick, introduced in [18] and attributed there to

Karen Uhlenbeck, that simplifies the quadratic terms on the right-hand side.

Namely, assuming g obeys the Ricci flow, one constructs a gauge transformation

u : TM → TM so that h = u∗g does not vary with time.1 In terms of a local

frame for TM , suppose that hij = uk
i u

l
jgkl; then the components of u must

obey

∂

∂t
ui

j = gikRklu
l
j.

1This idea is motivated nicely in the first part of [20].

10
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If R̃ijkl denotes the pullback of the curvature tensor via u, then

∂

∂t
R̃ijkl = ∆R̃ijkl + 2(B̃ijkl − B̃ijlk + B̃ikjl − B̃iljk) (1.1.1)

where the covariant derivatives in ∆ are taken using the pullback of the Levi-

Civita connection.

Expanding Solitons and the Harnack Inequality

In the Introduction we mentioned that the symmetries of the Ricci flow on

M include the full group of diffeomorphisms of M . There is also a dilation

symmetry: if g1(t) satisfies the Ricci flow, so does g2(t) = λ g1(t/λ) for any

nonzero constant λ. If g2 = g1 for all λ > 0 then the metric is an expanding

solution for the Ricci flow:

g(t) = t g(1). (1.1.2)

It follows that g(t) shrinks to a point as t ↘ 0. If we plug (1.2) into the

equation for the flow we get

g(1) =
∂

∂t
g(t) = −2 Rc(g(t)) = −2 Rc(g(1));

so, g(1) is an Einstein metric with negative Ricci curvature.

We define an expanding soliton to be a solution of the Ricci flow where

g(t) = t φ∗t g(1),

for some family of diffeomorphisms φt, t > 0, with φ1 = idM . Note that we do

not assume φt is a one-parameter group.
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Proposition 1.1 If g(t) is an expanding soliton then there is a vector field X

such that

g(1) + LX }(∞) = −∈ Rc(}(∞)). (1.1.3)

If g(1) has no Killing fields then X is uniquely determined, complete, and φt is

the flow of X up to reparametrization. Conversely if (1.3) holds for a complete

X then g(1) gives rise to an expanding soliton.

On M × R+ define the family of smooth maps

Φs(p, t) = (φs+t ◦ φ−1
t (p), s + t)

for s + t > 0. In particular Φs(p, 1) = φs+1(p, s + 1). For s ≥ 0, Φs is a

diffeomorphism and it is easy to check that Φs1 ◦ Φs2 = Φs1+s2 . Let X̃ be the

corresponding vector field on M×R+. It is clear that X̃ = ∂
∂t

+ X̃H , where X̃H

is tangent to the fibres of the projection π2 onto R+. Let Xt = (π1|M×{t})∗X̃.

If i is the inclusion of M as M × {1} in M × R+, then φt = π1 ◦ Φt−1 ◦ i. For

any covariant tensor ω on M

∂

∂t
φ∗t ω = i∗

∂

∂t
Φ∗

t−1(π
∗
1ω)

= i∗Φ∗
t−1(LX̃π∗∞ω)

= φ∗t (LXt ω)

If g(t) is to satisfy the Ricci flow, then

−2 Rc(g(t)) = φ∗t g(1) + t
∂

∂t
φ∗t g(1)

which implies

−2 Rc(g(1)) = g(1) + LtXt }(∞) ∀t > ′.
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To get the first statement of the proposition, we can let X = X1. If g(1) has no

Killing fields then tXt = X and the flow ψt of X is ψt = φet , so X is complete.

Similarly, to prove the converse we can let φt = ψlog t for ψt the flow of X.

Remark 1.2 By similar calculations, we can show that g(t) = φ∗t g(1) is equiv-

alent to the Ricci soliton condition LX }(′) = −∈ Rc(}(′)) (i.e. we may assume

that φt is a 1-parameter group) and that a shrinking soliton

g(t) = −tg(−1), t < 0

is equivalent to LX } + } = +∈ Rc(}) for g = g(−1). Shrinking solitons only

exist up finite time; for example, under the Ricci flow the standard metric on

Sn shrinks to a point in finite time.

Remark 1.3 One reason that expanding solitons are interesting is that they

constitute borderline cases for the Harnack inequality for the Ricci flow[20].

This asserts that when g(t) follows the Ricci flow and has positive semi-definite

curvature operator, a certain quadratic form on TM ⊕Λ2TM is positive semi-

definite. If W i and U ij = −U ji represent the components of a vector and

bivector with respect to some local frame, then the assertion is that

RijklUijU
kl + 2(∇iRjk −∇jRik)U

ijW k + MijW
iW j ≥ 0,

(1.1.4)

where

Mij = ∆Rij − 1

2
∇i∇jR−RikR

k
j + 2RikjlR

kl +
1

2t
Rij.

Now, if we have an expanding soliton, then at each time

1

t
g + 2 Rc(g) = LV(t) }
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for V (t) = −φ−1
t ∗ X(t). Setting U = V ∧W makes the left-hand side of (1.4)

zero for all W . Thus, expanding solitons show that the Harnack inequality

obtained by Hamilton is optimal.



Chapter 2

Local Analysis of the Soliton Equation

If we wish to classify Ricci solitons, it is helpful to start with the following

questions:

How large is the space of Ricci soliton metrics, modulo diffeomor-

phisms? For example, do they lie in a finite-dimensional space?

Are there any integrability conditions implied by the soliton condi-

tion that may help us classify solitons?

In this chapter we will use the techniques of exterior differential systems to

answer these questions. In particular, it will turn out that the soliton condition

is involutive, and, modulo diffeomorphisms, the n-dimensional soliton metrics

depend locally on n2 + n arbitrary functions of n − 1 variables. Prior to this

analysis, it was not known how large this space was. We will also investigate the

differential relations between a soliton metric g and the corresponding vector

field that are implied by the Ricci soliton condition.

15
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The meaning of involutivity

A system of k-th order PDE

F ρ(xi, uα,
∂uα

∂xi
, . . . ,

∂kuα

∂xI
) = 0, |I| = k, ρ = 1 . . . r

for s unknown functions uα of x1, . . . , xn determines, and is in fact equivalent

to, a submanifold R in the space Jk(Rn,R∼) of k-jets of functions from Rn

to R∼. In fact if xi, uα, pα
i , pα

ij, . . . , pα
I are the usual coordinates on Jk(Rn,R∼)

then R is cut out by the functions

F ρ(xi, uα, pα
i , . . . , pα

I ) = 0, ρ = 1 . . . r

A solution of the PDE corresponds to an integral manifold N ⊂ R of the

contact system on Jk(Rn,R∼). We can also define the prolongation R(‖+∞) ⊂
J ‖+∞(Rn,R∼) of R = R(‖) as being cut out by the functions F ρ and their

total derivatives
DF ρ

Dxi
, i = 1 . . . n; similarly we can define R(‖+∈), R(‖+3), etc.

The “forgetful functors” πl : J l+1(Rn,R∼) → Jl(Rn,R∼), which remember

only the l-jet, are submersions, and of course πl(R(l+∞)) ⊂ R(l). However,

there is no guarantee that R(l+∞) submerses onto R(l) via πl. Put another

way, there is no guarantee that an l-jet solution can be extended to an (l + 1)-

jet solution of the PDE.

To give a simple example, consider the following PDE for functions u and

v of x and y:

ux = v + f1(x, y)

uy = f2(x, y)

These define a smooth manifold R(∞) ⊂ J∞(R2,R2) of codimension two. R(∈)
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is cut out by these equations and their derivatives

uxx = vx + ∂xf1

uxy = vy + ∂yf1

uxy = ∂xf2

uyy = ∂yf2

which imply that vy + ∂yf1 = ∂xf2, i.e. R(∈) lies over a submanifold of codi-

mension three in J1(R2,R2).

Another example is the PDE for isometrically embedding a Riemannian

surface in Euclidean 3-space. Let gij be the metric with respect to local co-

ordinates x1, x2 on the surface. The PDE for the map (u1, u2, u3) into R3

is
∑

α

∂iu
α∂ju

α = gij α = 1, . . . , 3, i, j = 1, 2

Differentiating by xk gives, after a little manipulation,
∑

α

∂iu
α∂jku

α = 1
2
(∂kgij + ∂jgik − ∂igjk) (2.2.1)

and differentiating again gives

∑
α

(∂ilu
α∂jku

α + ∂iu
α∂jklu

α) = 1
2
∂l(∂kgij + ∂jgik − ∂igjk).

Let [i, jk] stand for the left-hand side of (2.1). Then skew-symmetrizing in k

and l in the last equation gives the Gauss equation

∑
α

(∂11u
α∂22u

α − (∂12u
α)2)− gij([i, 11][j, 22]− [i, 12][j, 12]) = K(g11g22 − g2

12),

an extra condition on the 2-jets of the uα that we obtained by differentiating

twice and equating mixed partials. In this case R(∈) submerses onto R(∞) but

R(3) does not submerse onto R(∈).
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When a system of PDE becomes involutive at the k-jet level, each R(l+∞)

submerses ontoR(l) for l ≥ k, and the rank of the submersion can be calculated

(see [7], Thm IV.4.4). In fact, involution implies that not only is there no

obstruction to extending a kth degree Taylor polynomial to a formal power

series solution, but (in the case when the functions F ρ are analytic) the power

series will converge on a small neighbourhood in Rn.

Ellipticity of the soliton condition

In light of Proposition 1.1, we will consider a slightly generalized soliton con-

dition

LX } = ∈ Rc(}) + λ } (2.2.2)

where λ is some constant. In this section, we will show this is an elliptic

equation.

As it stands the condition is underdetermined; and, since it is invariant

under diffeomorphisms, the solution space is at least as big as n arbitrary

functions of n variables. To get a determined equation, and mod out by the

diffeomorphism group, we adjoin the condition that the local coordinates xi

be harmonic functions with respect to the metric1. This is actually a trace

condition on the Christoffel symbols: gijΓk
ij = 0. Since any new harmonic

coordinate is a solution of an elliptic equation, the space of diffeomorphisms

that preserve this condition is finite-dimensional. Putting this together with

(2.2) we get a system that is, by a naive count, determined, first order in X,

1This fairly well-known trick is originally due to DeTurck; see [5], Chapter 5.
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and of mixed second-order and first-order in g:





gijΓk
ij = 0

Rij(g) + λ gij −∇iXj −∇jXi = 0
(2.2.3)

(Here Xi denotes components of the metric dual of X.) Although the principal

symbol of this system is degenerate, it turns out to be elliptic in the generalized

sense of Douglis-Nirenberg [12]. This implies that g and X will be analytic in

these coordinates. Since any other harmonic coordinates yi satisfy an elliptic

equation, they will also be analytic functions of the coordinates. We conclude

Theorem 2.1 If M has a metric g satisfying (2.2), then M has the structure

of a real analytic manifold with respect to which g and X are analytic.

Rather than calculating the Douglis-Nirenberg condition, we will calculate the

characteristic variety of the corresponding differential system. In fact, this is

essentially the same calculation, and it will allow us to set up the machinery

for the involutivity calculation.

The soliton system and its characteristic variety

Let x1 . . . xn be local coordinates on an open set U ⊂ Rn, and let ωi be short-

hand for d(xi). Let Ω = ω1 ∧ . . .∧ ωn, and let ω(ii...ik) be the wedge product of

the ω’s such that

ω(ii...ik) ∧ ωi1 ∧ . . . ∧ ωik = Ω;
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for example, ω(2) = ω3 ∧ ω1 when n = 3 and ω(41) = −ω2 ∧ ω3 when n = 4. It

is easy to verify that

ω(j) ∧ ωi = δi
jΩ

ω(jk) ∧ ωi = δi
jω(k) − δi

kω(j)

ω(ijk) ∧ ωp = δp
i ω(jk) − δp

j ω(ik) + δp
kω(ij)

We will now set up our exterior differential system. Let U be an open set

in Rn, let S+ denote the open set of positive definite symmetric n×n matrices

gij and let C be a n
(

n+1
2

)
-dimensional vector space with coordinates Γi

jk = Γi
kj.

Let gij denote the inverse of gij, and let R ⊂ C be the codimension-n subspace

cut out by gijΓk
ij = 0. Let fi and fij be coordinates on Rn and Rn2 . On

U × S+ ×R define the forms

φi
j = Γi

jkω
k

γij = dgij + gikφj
k + gkjφi

k

Φi
j = dφi

j + φi
k ∧ φk

j

Φij = Φi
kg

kj

A metric on U can be thought of as a section of U × S+, equivalently a n-

dimensional submanifold which submerses onto U , equivalently one on which

the n-form Ω does not vanish. If we have a section of U × S+ × C on which

the forms γij vanish, then the Γi
jk are the Christoffel symbols of the metric,

Φi
j = 1

2
Ri

jklω
k ∧ ωl, and one can show that the Ricci tensor appears naturally

in the (n− 1)-form

Φij ∧ ω(pij) = Rj
jω(p) − 2Rj

pω(j).

If we want the fi to be the components of the dual of X, we should also require

that the following forms vanish on a section of N = U × S+ ×R× Rn × Rn2 ,
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the space of 1-jets of solutions to (2.3):

σi = dfi − fjφ
j
i − fijω

j

Θp = Φij ∧ ω(pij) + 2(fpj + fjp)g
jkω(k) − 2gijfijω(p)

Note that the (n − 1)-forms Θi encode the soliton condition. To the forms

γij, σi, Θi we need to add their differentials. If we define

τij = dfij − fikφ
k
j − fkjφ

k
i

Ψij = Φij + Φji

then

dγij ≡ Ψij mod{γij}

dσi ≡ −τij ∧ wj − fpΦ
p
i mod{γij, σi}

dΘi ≡ 2gjk(τijw(k) + τjiw(k) − τjkω(i)) mod{γij, σi, Ψ
ij}.

(In fact, if the vanishing of Θi corresponds to prescribing the Ricci tensor, then

the vanishing of dΘi corresponds to the second Bianchi identity gjk(∇iRjk −
2∇kRij) = 0.)

At a point x ∈ N , an integral n-plane of this system is an n-dimensional

subspace of TxN to which the forms

γij, σi, Ψ
ij, dσi, Θi, dΘi (2.2.4)

restrict to be zero. We will only consider those integral n-planes E which

satisfy the independence condition Ω|E 6= 0. Even so, at every point of N there

are integral n-planes. This is because such an integral element is in fact a 2-jet

of a metric and a 2-jet of a vector field satisfying (2.3). We can always find

a metric on a small neighbourhood with prescribed curvature at one point by

using power series. We can then obtain harmonic coordinates with the same

1-jet as our given coordinates in a neighbourhood of that point.
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Given an integral n-plane E ⊂ TxN we can obtain a coframe ωi, γij, πi
jk,

σi, σij for the larger space U × S+ × C × Rn × Rn2 at x, with πi
jk = πi

kj,

πi
jk ≡ dΓi

jk mod ωi, σij ≡ τij mod ωi, such that





gjkπi
jk|TxN= 0

Ψij = (gjkπi
kl + gikπj

il) ∧ ωl

dσi ≡ σij ∧ ωj + fpπ
p
il ∧ ωl

Θi = gkpπj
pl ∧ ωl ∧ ω(ijk)

dΘi ≡ 2gjk(σijw(k) + σjiw(k) − σjkω(i))

(2.2.5)

and πi
jk, σij vanish on E. We will refer to this as a torsion-absorbed coframe.

On any other integral n-plane at x the 1-forms of (2.4) vanish and πi
jk = si

jklω
l,

σij = tijkω
k, where the si

jkl and tijk must satisfy some homogeneous linear

equations dictated by (2.5). Thus, the space of integral n-planes naturally

forms an affine bundle over N ; we will calculate the rank of this bundle later.

A hyperplane in E is characteristic if it is contained in more than one

integral n-plane. The characteristic variety ΞE is the set of directions in P(E∗)

that cut out characteristic hyperplanes, and the complex characteristic variety

ΞCE is cut out by the same equations considered over C. There is a simple-

minded algorithm for calculating the characteristic variety by duality.

Proposition 2.2 Let E be an integral n-plane of an arbitrary exterior differ-

ential system and let ωi, πa be a coframe with πa|E= 0. Given a nonzero ξ ∈ E∗

(expressed as a linear combination of the ω′s), for each form ψ in the system

of degree at most n there is an expansion

ψ ∧ ξ =
∑

I

πψ
I ∧ ωI + . . .
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where for each multi-index I, πψ
I is some linear combination of the πa and we

leave off wedge products of two or more πa’s. (If the system is linear there

will be none of these anyway.) Then ξ is in the (deprojectivized) characteristic

variety exactly when the span of all the 1-forms πψ
I , taken over all algebraic

generators ψ of the system of degree at most n, is a proper subspace of the span

of the πa.

The hyperplane ξ⊥ is characteristic when its polar space

H(ξ⊥) = {v ∈ TxN |(v ψ)|ξ⊥= 0,∀ generators ψ}

is larger than E (cf. Defn. III.1.5 and V.1.1 in [7]). The condition on v is

equivalent to

((v ψ) ∧ ξ)|E= 0;

since ψ vanishes on E this is equivalent to

(v (ψ ∧ ξ))|E= 0.

Using the above expansion for ψ ∧ ξ yields

H(ξ⊥) = {v ∈ TxN |v πψ
I = 0, ∀ψ, I}.

Proposition 2.3 If ξ ∈ E∗ ⊗ C is characteristic for E an integral n-plane of

(2.4), then gijξiξj = 0. Since gij is positive definite this implies there are no

real characteristics.

Let ξi = gijξk, |ξ|2 = gkmξkξm, and

ρijk = gipπ
p
jk + gjpπ

p
ik.
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(Note that gjkπi
jk = 0 implies gjkρjki = 2gjkρijk.) The forms that cut out

H(ξ⊥) comprise γij, σi, and the 1-forms

ψijlm = ξlρijm − ξmρijl

σijk = ξk(σij + flπ
l
ij)− ξj(σik + flπ

l
ik)

θij = ξk(ρkij − ρijk + πp
kpgij)− ξiπ

k
jk

αi = (σij + σji)ξ
j − gjkσjkξi

which arise from wedging ξ with Ψij, dσi, Θi, and dΘi respectively. One can

calculate that if

βij =
1

2
(θij + θji + gkm(ψikjm + ψjkim)) = −ρijkξ

k + gijg
lmρlmkξ

k

then

ψijlmξm + ξl(βij − 1

n− 2
gijg

klβkl) = −|ξ|2ρijl;

also,

ξk(σijk − σjik − σkij) + ξjαi − ξiαj ≡ |ξ|2(σij − σji) mod{πi
jk}

and

ξk(σijk+σjik)+
1

2
(ξiαj+ξjαi) ≡ |ξ|2(σij+σji)−glmσlmξiξj mod{πi

jk, σij−σji}.

This shows that if |ξ|2 = gijξiξj 6= 0, the span of the 1-forms ψijlm, σijk, θij, αi

is the same as that of πi
jk, σij, and H(ξ⊥) = E.

Testing for Involutivity

First we will calculate the rank of the bundle of integral n-planes over each

point of N .
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Proposition 2.4 At each point of N the space of integral n-planes of (2.4)

has dimension

(
n + 1

2

)2

− n2 −
(

n + 1

2

)
+ n

(
n + 1

2

)
− n.

To obtain an integral n-plane, set πi
jk = gipspjklω

l, σij = tijkω
k, where

the tijk have no symmetries but sijkl = sikjl, which we abbreviate by saying

sijkl ∈ V ⊗ S2V ⊗ V . When we substitute into (2.5), the resulting linear

equations for the sijkl and tijk are

gjksijkl = 0 (2.2.6)

sijkl + sjikl − sijlk − sjilk = 0 (2.2.7)

tikl − tilk = −fpg
pj(sjikl − sjilk) (2.2.8)

gjk(sl
jli − sl

jil)− gjl(sk
jli − sk

jil) + glm(sj
lmj − sj

ljm)δk
i = 0

(2.2.9)

gjk(tijk + tjik − tjki) = 0 (2.2.10)

where si
jkl = gipspjkl. The linear map in (2.7) can be factored as

V ⊗ S2V ⊗ V
∼=−→ S2V ⊗ V ⊗ V

∧34³ S2V ⊗ Λ2V

where the first map is symmetrization on factors 1 and 2. The kernel of the

second map is clearly S2V ⊗ S2V ; so, to solve (2.7) set

sijkl = bijkl + bikjl − bjkil

for bijkl ∈ S2V ⊗ S2V . Then (2.6) and (2.9) become

(2bijkl − bjkil)g
jk = 0 ∀i, l (2.2.11)

gjlbikjl − gikg
jlgmpbjmlp = 0 ∀i, k (2.2.12)
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For any aij ∈ S2
oV (i.e. such that gijaij = 0), bijkl = (n − 2)aijgkl + 2gijakl

is a solution of (2.11). Substituting this in the left-hand side of (2.12) yields

n(n − 2)aij. Meanwhile bijkl = 2ngijgkl + (n − 2)(gilgjk + gjlgik) also satisfies

(2.11) and substituting this into (2.12) yields (n2 + n− 2)(2−n)gik. Together,

these two calculations show that the kernel of the linear map in (2.11) surjects

onto S2V under the linear map in (2.12). Thus the dimension of the space of

sijkl satisfying (2.6), (2.7), (2.9) is
(

n+1
2

)2 − n2 − (
n+1

2

)
.

On the other hand the linear map on the tijk in (2.8) is clearly surjective

with kernel V ⊗ S2V and it is easy to show that this kernel surjects onto V

under the linear map in (2.10). Thus given a solution sijkl of (2.6), (2.7), (2.9),

the dimension of the solution space of the remaining equations for the tijk is

n
(

n+1
2

)− n.

Using the algorithm contained in Prop. III.1.15 in [7], we will calculate the

Cartan characters s1, · · · sn of (2.4) with respect to the flag

0 ⊂ E1 ⊂ · · ·En−1 ⊂ En = E,

where Ej ⊂ E is annihilated by the forms ωk, k > j. If we use ρijk =

gipπ
p
jk + gjpπ

p
ik as before, the structure equations (2.5) become

2gjkρijk = gjkρjki (2.2.13)

Ψij = ρijkω
k (2.2.14)

dσi ≡ σij ∧ ωj mod{ρijk} (2.2.15)

(−1)n−3 2Θi = gjkglmρiklω(jm) − gjkglmρlmkω(ij) (2.2.16)

dΘi ≡ 2gjk(σijw(k) + σjiw(k) − σjkω(i)). (2.2.17)
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When n > 3, we can inspect the 2-forms in (2.14), (2.15) to calculate the

characters s1, · · · , sn−3. For m < n− 2 we find

s1 + · · ·+ sm = m

(
n + 1

2

)
+ mn

where the first term comes from the ρijk, k ≤ m, and the second from the

σik, k ≤ m. By the same count sn−2 ≥
(

n+1
2

)
+ n, but we must also take into

account the extra polar space annihilators that occur as coefficients of ω(n−1,n)

in (2.16).

To simplify the relation (2.13), assume that gij is the identity matrix; later,

it will turn out this assumption is not important. To simplify notation in

subscripts, let 6 stand for n − 1 and 7 stand for n, and let a circumflex over

repeated indices represent a summation where the index runs over values less

than 7. Now solve the relation (2.13):

ρi77 =

{
1
2
ρjji − ρi bjj, i < 7

ρ bjj7 − 2ρ7 bjj, i = 7.

Using these equations, the coefficient of ω(67) in Θi is congruent to





ρi67 − ρi76, i < 6
ρ766 + ρ667 − 2ρ bjj7, i = 6

2ρ bjj6 − 2ρ666 + ρjj6, i = 7

modulo the ρijk for k < 6. With these extra annihilators, we get

sn−2 =

(
n + 1

2

)
+ n + n.

From our calculation in the proof of Prop. 2.3, sn = 0 and

s1 + · · ·+ sn−1 = codim E = n

(
n + 1

2

)
− n + n2
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so sn−1 = 2
(

n+1
2

)
. Now we compute that

s1 + 2s2 + 3s3 + · · ·+ nsn =

(
n + 1

2

)2

− n2 −
(

n + 1

2

)
+ n

(
n + 1

2

)
− n.

Since the space of integral elements of (2.4) satisfying the independence con-

dition form a smooth affine bundle over N with rank precisely this number, by

Cartan’s Test (III.1.11 in [7]) we conclude that our arbitrary integral n-plane E

at a point where gij = δij is ordinary. However Gl(n) has an obvious action on

the fibre of N over U , under which any gij can be taken to the identity matrix.

Since the structure equations (2.5) are Gl(n)-invariant, we can conclude that

every integral n-plane is ordinary. Thus the system is involutive. In particular,

applying the Cartan-Kähler Theorem (III.2.3 in [7]) we conclude

Theorem 2.5 Through every point in N there exists a smooth analytic integral

n-manifold of the system (2.4) satisfying the independence condition Ω 6= 0. In

particular, every 1-jet of a vector field and 1-jet of a metric satisfying gijΓk
ij = 0

is the 1-jet of an analytic soliton metric defined on a small neighbourhood in

U .

Note that all local solitons are obtained this way, since by Prop. 2.3 they will

be analytic.

We can now improve on Prop. 2.3 by noting that involutivity and our

calculation above imply that the codimension of the characteristic variety ΞCE

is one and the degree is sn−1 = 2
(

n+1
2

)
(see Cor. V.3.7 in [7]). Since we proved

that ΞCE is contained in the irreducible quadric hypersurface gijξiξj = 0, we

deduce that ΞCE must be this quadric counted with multiplicity
(

n+1
2

)
.

The classical inference that soliton metrics in harmonic coordinates depend

on sn−1 = n(n + 1) arbitrary functions of n − 1 variables comes from the
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mechanism in the proof of Cartan-Kähler used to create a sequence of problems

to which the Cauchy-Kowalevski theorem applies. After going through the

involutivity calculation, one should attempt to find out just what the arbitrary

functions are. In fact, the author has calculated that if the vector field X is

assumed to be the coordinate vector field
∂

∂xn

then the components gij of the

metric, and their first derivatives in the xn direction, can be specified along the

hyperplane xn = 0 transverse to X; this would account for n(n + 1) arbitrary

functions along the hyperplane.

Counting identities and the system with fixed

metric

When an exterior differential system becomes involutive we know that all its

prolongations will also be involutive, and there is a simple way of calculating

the Cartan characters of successive prolongations. This in turn enables us to

calculate the rank of the bundle of integral n-planes for each prolongation.

This gives a count of identities satisfied by solutions, in the following way.

In terms of our earlier discussion of involutivity, if we know the rank of the

submersion R(‖+∞) →R(‖), we can calculate the codimension of R(‖+∞) in the

space of “free” (k + 1)-jets. We will think of this as the number of identities

the (k + 1)-jets of solutions satisfy. Finally, R(‖+∞) is the bundle of integral

elements of the contact system on R(‖), since a possible tangent plane to an

integral manifold passing through a point of R(‖) (i.e. a k-jet of a solution) is

a (k + 1)-jet of a solution.

We are interested in identities that result from imposing the soliton con-

dition in addition to the harmonic coordinate condition, so we will base our
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comparisons on the latter. The system for a metric gij with respect to which

the coordinates are harmonic lives on U × S+ × R and is generated by the

1-forms

γij = dgij − ρijkω
k,

where ρijk ≡ gipdΓp
jk + gjpdΓp

ik mod ωl and we have the dependence relation

gjk(2ρijk − ρjki) = 0.

It is easy to calculate that this system is involutive with characters s1 = . . . =

sn−1 =
(

n+1
2

)
, sn =

(
n+1

2

)−n. These characters will let us count the dimensions

of the free k-jets relative to the soliton condition.

In the following table, the entry in the kth row, k ≥ 0, is the dimension

of the bundle of k-jets of solutions over a (k − 1)-jet solution. To obtain the

number of identities at each level we subtract the number in the third column

from the sum of the numbers in the first two columns.

gij with harmonic vector solution to (2.3) # of
coordinates field X identities

0-jets
(

n+1
2

)
n

(
n+1

2

)
+ n —

1-jets n
(

n+1
2

)− n n2 n
(

n+1
2

)− n + n2 —

2-jets
(

n+1
2

)2 − n2 n
(

n+1
2

)
n(n+1)(n2+3n−6)

4

(
n+1

2

)
+ n

3-jets n2(n2−1)(n+4)
12

n
(

n+2
3

)
n(n−1)(n3+7n2+6n−12

12
n
(

n+1
2

)
+ n2 − n

4-jets n2(n2−1)(n+2)(n+5)
48

n
(

n+3
4

)
n2(n−1)(n+7)(n2+3n−2)

48

(
n+1

2

)2
+ n

(
n
2

)

It is easy to see that the 2-jet identities must be

Xij + Xji = Rij + λ gij,

which is second-order only in g, together with

gjk(Xijk + Xjik −Xjki) = 0,
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which is implied by the second Bianchi identity for the covariant derivative

of the Ricci tensor.2 Moreover, involutivity implies that the identities on the

3-jets will be obtained by differentiating the identities on the 2-jets just once

— i.e. no further identities will appear by differentiating twice and equating

mixed partials.

Suppose, however, that we only want to know what identities there are

that are first-order in X, and we do not care how many derivatives of g are

involved. Then what we should do is start with a fixed metric g, and find out

what integrability conditions arise from (2.2), which is now an overdetermined

equation for X.

To this end we will define a differential system on the orthonormal frame

bundle F of g, with canonical forms ωi and Levi-Civita connection forms φi
j

satisfying the structure equations

dωi = −φi
j ∧ ωj

φj
i = −φi

j

dφi
j = −φi

k ∧ φk
j + Φi

j

Φi
j = 1

2
Ri

jklω
k ∧ ωl

On F × Rn × R(n2) define the forms

ηi = dXi − (Xjφ
j
i + (Rij + λδij + Aij)ω

j), Aji = −Aij

Then −dηi ≡ XjΦ
j
i + (Rijkω

k + πij) ∧ wj mod ηl, where

πij = dAij − Aikφ
k
i − Akjφ

k
j

2If we assume that X is a divergence, i.e. fij = Rij + λ gij for some function f , then this
identity simplifies to

2fjR
j
i +∇iR = 0,

which would determine f up to a constant if the Ricci curvature were non-degenerate.
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and Rijk = ∇kRij is the covariant derivative of the Ricci tensor.

We are looking for n-manifolds along which Ω 6= 0 and the 1-forms ηi

vanish. The Cartan system for this Pfaffian system is {ωi, ηi, πij}. When we

try to find integral n-planes we can ignore the 1-forms φi
j in our coframe which

do not appear in this system. (Strictly speaking, the Pfaffian system drops to

the quotient F/O(\), but we will continue to work with forms on F .) It turns

out that there is a unique integral n-plane at each point, given by

πij|E= (Rkij −Rkji −XpR
p
kij)ω

k.

Thus we should add the corresponding 1-forms

θij = πij + (XpR
p
kij −Rkij + Rkji)ω

k

to our system. Now the θij must be closed modulo the system {ηi, θij}; other-

wise, there will be no integral n-planes satisfying Ω|E 6= 0. In this way, calcu-

lating dθij gives us integrability conditions.

The expression of this integrability condition has the following interesting

geometric interpretation. Let Θ be the sheaf of germs of Killing fields on a

Riemannian manifold, and let D0 be the first-order linear differential operator

taking X to the symmetric bilinear form Xij + Xji. In the case where the

metric has constant curvature Calabi [8] defined a fine resolution of Θ

0 → Θ ↪→ Φ0 D0−→ Φ1 D1−→ Φ2 D2−→ . . .

where Φ0 is the sheaf of sections of TM , Φ1 is the sheaf of symmetric bilinear

forms, and Φk is the sheaf of sections of the kernel of the map

Λ2T ∗M ⊗ ΛkT ∗M → T ∗M ⊗ Λk+1T ∗M
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which anti-symmetrizes on the last k+1 factors. (In particular the symmetries

of the Riemann curvature tensor imply that it lies in Φ2.) Gasqui and Gold-

schmidt have also achieved resolutions of Θ in the case of locally symmetric

[14] and conformally flat spaces [15].

For our purposes, define D1 : Φ1 → Φ2 as follows: if s ∈ Φ1 has components

sij, let

D1(s)ijkl = siljk − sjlik − sikjl + sjkil + sipR
p
jkl − sjpR

p
ikl,

where sijkl are the components of the second covariant derivative of s. (It is

clear that D1(s) is a section of Λ2T ∗M ⊗ Λ2T ∗M ; to see that D1(s) ∈ Φ2,

calculate

D1(s)ijkl ω
j ∧ ωk ∧ ωl = (siljk − sikjl − sjpR

p
ikl) ωj ∧ ωk ∧ ωl

= (sijkl − sijlk − (sjpR
p
ikl + sipR

p
jkl)) ωj ∧ ωk ∧ ωl = 0

using the first Bianchi identity, Rp
jklω

j ∧ ωk ∧ ωl = 0.) This D1 coincides with

Calabi’s operator in the constant curvature case. D1◦D0 is not zero in general,

but it is only first-order in X:

D1 ◦D0(X)ijkl = 2(Xp(R
p
lijk −Rp

kijl) + XpkR
p
lij −XplR

p
kij)

+ (Xip −Xpi)R
p
jlk + (Xpj −Xjp)R

p
ilk.

Now, the soliton condition (2.2) can be written as

D0(X) = 2 Rc +λ g

and the integrability condition for the exterior differential system with g fixed

is

D1(D0(X)) = D1(2 Rc +λ g)

which is first-order in X but fourth-order in g. The author has calculated

that the soliton system for 1-jets of X and 4-jets of g satisfying the above
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two conditions in involutive. Hence these exhaust the identities implied by the

soliton condition that are first-order in X.



Chapter 3

Solitons on Compact Three-Manifolds

The work of Hamilton [19] on the Ricci flow on S2 might be summarized as

1. prove long-time existence

2. prove convergence to a soliton

3. classify solitons on S2

The last step is easy in two dimensions since the vector field X must be con-

formal and a divergence. The only vector field available forces the metric to

have an S1 symmetry, and then it comes down to classifying the solutions to

an ODE.

In this chapter we extend the classification of solitons to compact three-

manifolds. We show that, in fact, the only solitons are constant curvature

metrics.

Solitons and Breathers

In general, a “breather” is a solution to an evolution equation that is periodic

over time. For our purposes, it means a solution to the normalized Ricci flow

35



36

that is periodic, up to diffeomorphism; that is,

gT = φ∗g0

for some fixed period T and diffeomorphism φ. It follows that breathers, like

solitons, have uniformly bounded curvature and volume. It will turn out that

in dimension three the Ricci flow does not admit any non-trivial breathers

either.

Proposition 3.1 Any soliton or breather on a compact connected manifold is

either Einstein with nonpositive Ricci curvature, or has positive scalar curva-

ture.

The scalar curvature obeys

∂R

∂t
= ∆R + 2|Rt |2 +

2

n
R(R− r) (3.3.1)

where ‘Rt’ is the traceless part of the Ricci tensor. Consider a point in space

and time where R is at a global minimum. If R < 0 there, then ∆R ≥ 0 and

∂R

∂t
= 0 force Rt = 0 and R = r there; hence R is constant over M at this

time. By applying the same argument at each point of M at this time, we the

metric is Einstein. Otherwise, R ≥ 0 always.

Assume R has minimum value zero; using (3.1), we know that ∆R ≤ 0 at

this point. Let Ω be the open set where ∆R < 0 at this time. If Ω is not

empty, then R can only achieve its infimum — zero — on the boundary of

Ω, and by the Hopf maximum principle the outward normal derivative of R is

negative there. This contradicts dR = 0 there. Then Ω is empty, and since R

achieves its maximum somewhere, R is constant — in fact, identically zero —
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by the maximum principle, and the metric is Einstein by the same argument

as above.

It follows that solitons and breathers have a positive lower bound for the

scalar curvature. Now we can apply the main result of this chapter :

Theorem 3.2 If gt obeys the normalized Ricci flow on a compact M3 and has

scalar curvature bounded below by a positive constant R0 for all t ≥ 0, then

there exists a function φ(t) > 0 such that

Rc(gt) ≥ −φ(t) gt

and lim
t→∞

φ(t) = 0.

The proof of this theorem will depend on applying a maximum principle to

the curvature tensor. We will actually run the unnormalized flow on the same

initial metric, since the corresponding evolution equations for the curvature

are simpler and we know how to go back and forth between the two flows. We

will show that as the manifold shrinks to a point, the minimum as well as the

maximum of the scalar curvature approach infinity. This is important since

we will construct a pinching set — that is, a set defined by inequalities on the

curvature that are preserved by the flow — that forces the lowest eigenvalue

of Rc at a point to go towards zero as R →∞ at that point.

Theorem 3.3 If gt obeys the normalized Ricci flow on compact M3 and has

Rc ≥ 0, and average scalar curvature r bounded above for all t ≥ 0, then gt

converges to a metric of constant positive curvature.

In [18], Hamilton has shown that either the Ricci curvature becomes positive

immediately, or M splits locally as a product of a one-dimensional flat factor
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and a surface with positive curvature, and this splitting is preserved by the

flow. In the former case, we know gt converges to constant positive curvature.

To rule out the latter case, consider the evolution equation for r under the

normalized flow:

d

dt

∫
Rµg = −

∫
<

∂g

∂t
, Rc−1

2
Rg > µg.

(Here we have fixed the volume to be one.) We can calculate the integrand on

the right pointwise by diagonalizing the Ricci tensor. We obtain

< 2rg/n− 2 Rc, Rc−Rg/2 >= −rR/3

and d/dt r = r2/3. This would mean r increases without bound, contradicting

our assumption.

Corollary 3.4 There are no three-dimensional solitons or breathers on a com-

pact connected M3 other than constant curvature metrics.

The metrics gt must have r bounded, and by the proposition above, R > 0

or else the metric is Einstein, i.e. constant curvature. If R > 0 then, by our

main result, the lower bound for the lowest eigenvalue of the Ricci tensor goes

to zero from below as t → ∞. But since the minimum over M of the lowest

eigenvalue is a periodic function of time, it must have been at least zero to

begin with. Now Theorem 3.3 completes the proof. In the remainder of this

chapter we will prove Theorem 3.2.

Controlling the Scalar Curvature

Suppose s is the time coordinate under the normalized flow, and let gt on Mn

be the unnormalized flow with the same initial data. Then gs and gt differ by
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a change in scale and a reparametrization in time: if ψ(t) = vol(gt)
−2/n then

gs is given by

s =

∫ t

0

ψ(t)dt

gs = ψ(t)gt.

We assume gs evolves with scalar curvature bounded above R0 > 0. Con-

sider the evolution equation for the volume of gt:

d

dt
log vol(gt) = −r(gt) = −r(gs)ψ(t) ≤ −R0 vol(gt)

−2/n.

Since the integrals of the ordinary differential equation d/dt log v = −R0v
−2/n

go to zero in finite time, we know that vol(gt) hits zero at some finite time

T . (Note that gt remains smooth until time T since gs is smooth.) Since

R(gt) ≥ ψ(t)R0, the scalar curvature of gt goes to infinity everywhere on M at

time T .

Some Three-Dimensional Geometry

On a three-dimensional oriented inner product space V , the volume form gives

us an isometry between V and Λ2V . Under this isometry, an orthonormal basis

(e1, e2, e3) is carried to (e2 ∧ e3, e3 ∧ e1, e1 ∧ e2). Given any quadratic form on

Λ2V , we can find an orthonormal basis of V so that the form is diagonalized in

the corresponding basis for Λ2V . What this means for Riemannian geometry

is that at every point p of a three-dimensional Riemannian manifold (M, g)

we can choose an orthonormal basis for TpM that diagonalizes the curvature

tensor; that is,

R2323 = m1, R3131 = m2, R1212 = m3
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and all other components are zero.

The mi are the eigenvalues of the curvature operator. It is easy to check

that in this frame the Ricci tensor is also diagonalized. We will assume

m1 ≤ m2 ≤ m3;

then m1 + m2 ≤ m1 + m3 ≤ m2 + m3 are the eigenvalues of the Ricci tensor,

and R = 2(m1 + m2 + m3).

The Maximum Principle

Rather than evolving a metric g on the tangent bundle, we will use the “Uhlen-

beck trick” (see [18]), that is, evolve a gauge transformation on TM so that

g pulls back to be a fixed metric h. If we diagonalize the curvature tensor

Rm with respect to g at a point, we also diagonalize the its pullback R̃m with

respect to h. Since the metric on V = Λ2T ∗M is fixed, the following maximum

principle applies to R̃m.

Theorem 3.5 (Hamilton [18]) Let V be a vector bundle on a compact mani-

fold M and h be a fixed metric on V . Suppose g is a metric on M and ∇ a

connection on V compatible with h, both possibly varying in time. Let φ be

a vector field on V tangent to the fibers. Assume X is a closed subset of V ,

convex in each fibre, invariant under parallel translation at all times, and such

that solutions of the ODE ds/dt = φ(s) for sections of V remain inside X.

Then solutions of the heat equation ∂s/∂t = ∆s + φ(s) also remain inside X.

Fortunately, when we diagonalize the curvature, the right-hand side of the

ODE that corresponds to the Uhlenbeck-normalized evolution equation for
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curvature is also diagonalized. Now we can write down a system of ODE for

the eigenvalues of the curvature:

ṁ1 = m2
1 + m2m3

ṁ2 = m2
2 + m1m3

ṁ3 = m2
3 + m1m2.

Since the right-hand side is homogeneous in the mi, dilation in space and time is

a symmetry of this system. This means that the integral curves of this system

in R3 project onto a well-defined set of trajectories on the unit sphere (see

Figure 3.1). We will just be interested in the behaviour of the ODE restricted

to the wedge defined m1 ≤ m2 ≤ m3 and m1 + m2 + m3 > 0. There, the

integral curves are attracted either to the line m1 = m2 = m3 or to the line

m1 = m2 = 0.

The Pinching Set

Our set X will be given by m1 + m2 ≥ −2f(z) for a positive function f of

z = m1 + m2 + m3 = R/2. Since X is defined in terms of eigenvalues relative

to h it will be invariant under parallel translation. We will require

1. f ′′(z) ≤ 0, in order for X to be convex in each fibre;

2. X to be preserved by the ODE; and

3. limz→∞ f(z)/z = 0.

This will then force (m1 + m2)/R, which is a dilation-invariant quantity, to be

at least zero as R →∞.
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To compute condition (2), note that

d

dt
(m1 + m2 + 2f(z)) = (m1 + m2)z−m1m2 + 2(z2− (m1 + m2)m3−m1m2)f

′

Along the boundary of X given by m1+m2 = −2f(z) we need this derivative to

be nonnegative. Assume f ′ > 0; then for a fixed z the derivative is minimized

when m2 = m1. Then our condition for f becomes

f ′ ≥ m2
1 −m1z

z2 − 2m1z + 3m2
1

=
f(f + z)

2f 2 + (z + f)2

By making df/dz larger than necessary we get a simpler ODE for f . Choose

f ′ =
f

f + z

Solutions of this ODE are invariant under the dilation f → λf , z → λz; and,

once f is positive it is an increasing function of z. Thus we can choose f so

that infM m1 +m2 ≥ −f(infM z) for the initial metric g0, so that the curvature

of g0 lies inside X.

To see that f ′′ ≤ 0, let p = z/f . Then

dp

dz
=

1

f + z
=

p

p + zp

Since p is monotone increasing, f ′ = 1/(p + 1) is decreasing. Finally, by

separation of variables log p + p = log z + C, so limz→∞ p = ∞; thus f/z → 0.

This ends the proof of Theorem 3.2.
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Figure 3.1: Trajectories on the unit sphere: the projection is

x =
m1 −m2√

3(m1 + m2 + m3)
, y =

m1 + m2

m1 + m2 + m3

− 2

3
; the large triangle is Rc

≥ 0, and the small triangle is Rm ≥ 0.



Chapter 4

Deformation Theory of Compact

Solitons

In this chapter we investigate the deformation theory of compact Einstein man-

ifolds as compact Ricci solitons. Since Einstein metrics are a kind of trivial

compact soliton, the first-order Einstein deformations are a subspace of the

first-order soliton deformations. We show that there is a complementary sub-

space, consisting of genuine soliton deformations, which is isomorphic to a

certain eigenspace for the Laplacian. This isomorphism enables us to calculate

this subspace for any compact symmetric space, and draw some conclusions

about higher-order integrability for these deformations.

Notation and Conventions

M will always be an oriented compact manifold, g a metric on M . On the

complex A•(T ∗M) of differential forms, the adjoint of d is δ and the Laplace-

Beltrami operator is ∆ = dδ + δd. On sections of ⊗kT ∗M the rough Laplacian

is ∇∗∇, where −∇∗ takes a covariant derivative and traces on the last two

indices. (In this chapter only we take the “geometer’s sign convention”, so that

44
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the ordinary Laplacian and rough Laplacian have non-negative eigenvalues.)

The operator div is the restriction of ∇∗ to sections of S2(T ∗M), so it takes a

symmetric bilinear form sijω
i ⊗ ωj to −gjksijkω

i, ωi being some coframe. Its

adjoint, div∗, takes aiω
i to 1

2
(aij + aji)ω

i ⊗ ωj, so that div∗ α = 1
2
Lα# g. For a

1-form α we have the identity δα = − trg div∗ α and the Weitzenbock formulas

∆α−∇∗∇α = R̃c(α)

(
1

2
δd + dδ)α− div div∗ α = R̃c(α)

where R̃c represents the Ricci tensor raised to be an endomorphism of T ∗M .

(So, for example, R̃c is a scalar on an Einstein manifold.)

The Ebin Slice Theorem

The set of all metrics on manifold M may be thought of as an open subset

in the infinite-dimensional vector space of sections of S2T ∗(M). Of course

the diffeomorphisms of M act on this set by pull-back, and we regard as being

geometrically distinct only those metrics that do not differ by a diffeomorphism.

In order to talk about the metrics near, but distinct from, a given metric g, we

need a transversal to the orbits of the diffeomorphism group. This is what the

slice theorem gives us, up to the isometries of g.

Let M∫ be the Banach manifold of Hs-metrics on M , i.e. metrics defined

almost everywhere on M whose first s derivatives are square-integrable with

respect to some fixed norm. If we identify metrics that are a.e. the same, then

the Sobolev embedding theorem gives M∫ ↪→ C‖(S∈T ∗) for s ≥ k + n/2. The

space D∫+∞ of Hs+1-diffeomorphisms acts on M∫ .
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Theorem 4.1 (Ebin [13]) Assume s > n/2 + 2. Let g be an Hs-metric on

M and Ig the group of Hs+1-isometries of g. Then there exists a canonically

defined submanifold Ss of M∫ such that

1. for any φ ∈ Ig, φ(Ss) ⊂ Ss

2. if γ ∈ D∫+∞ is such that γ(Ss) ∩Ss is not empty, then γ ∈ Ig

3. there is a neighbourhood U of the coset Ig in D∫+∞/I} and a lift of U

into D∫+∞ that makes U ×Ss homeomorphic to a neighbourhood of g in

M∫ .

Moreover, the tangent space to Ss at g is the kernel of divg.

Remark 4.2 Let M∫
c ⊂ M∫ be the set of metrics of a fixed volume c. Then

there is also a smooth slice Ss
c ⊂ M∫ through g, whose tangent space at g is

ker divg

⋂
ker

∫
tr, where

∫
tr h =

∫
M

trg hµg.

The slice theorem gives us a reasonable facsimile of the moduli space of

metrics near g. Since the slice S is the same as the moduli space up to the

action of a finite-dimensional Lie group, it is a kind of local pre-moduli space.

The Soliton Pre-Moduli Space

From now on let g be a fixed Einstein metric on M with Einstein constant ε,

and let Sc be the slice through g. It has been shown (see [5], p.351) that the

set of Einstein metrics in an open neighbourhood of g inside S lie in a finite-

dimensional smooth submanifold ZE of S and in fact form a C-analytic set —

that is, a set which is locally defined as the zero locus of a finite number of
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real-analytic functions. ZE is constructed in such a way that its tangent space

at g is the space of first-order Einstein deformations of g.

To a similar end, on Sc × Hs−1(T∗M), where Hs−1(T ∗M) is the space of

Hs−1 differential 1-forms, we define

Sol(g, ξ) = Ein(g)− div∗g ξ = Rc(g)− r

n
g − div∗g ξ.

Then compact solitons near g are exactly the zero locus of Sol.

Theorem 4.3 There is an open neighbourhood U of (g, 0) inside Sc×Hs−1(T∗M)

and a smooth finite-dimensional submanifold ZS ⊂ U such that the zeros of Sol

inside U form a C-analytic set that lies in ZS.

We will construct ZS by an implicit function argument. In order to use

the Banach space implicit function theorem we will have to find a vector space

onto which the differential of Sol at (g, 0) surjects. Suppose h ∈ TgSc and

η ∈ Hs−1(T ∗M); this differential turns out to be

Sol
′
g(h, η) = F (h)− div∗g η

where, as calculated in [5] and [23], F is an elliptic operator defined by

F (h) =
1

2
∇∗∇h− 1

2
∇2 tr h− R̃m(h)

and

R̃m(h)ij = Ri
k
j
lhkl.

Because F is elliptic we have the decomposition Hs−2(S2T ∗) = im F ⊕
ker F ∗. Since Hs(S2T ∗) = ker div⊕ im div∗ = TgSc ⊕ Rð ⊕ im div∗ as an
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orthogonal direct sum — under the L2 inner product — and F (div∗ ξ) =

div∗ div(div∗ ξ), F (g) = −εg, then

Hs−2(S2T ∗) = (F (TgSc) + im(div∗ div))⊕ Rð⊕ kerF∗,

where, again, the direct sums are orthogonal. (When ε = 0, the Rð term

is absorbed into ker F ∗ = (im F )⊥.) Let π1 be orthogonal projection onto

the first direct summand and π2 be orthogonal projection onto the remainder,

which is finite-dimensional. Then π1 ◦ Sol has surjective differential at (g, 0) ∈
Sc × Hs−1(T∗M), and by the implicit function theorem its zero locus ZS is a

smooth submanifold near (g, 0).

The tangent space to ZS at (g, 0) consists of (h, η) such that

div h = 0,

∫
tr h = 0, F (h) = div∗ η (4.4.1)

Define the Bianchi operator1 β : Γ(S2T ∗) → Γ(T ∗) by

β(h) = 2 div(h) + d(tr h).

Then β ◦ F = (∆ − 2ε) ◦ div, so the above equations imply β(div∗ η) = 0.

By a Weitzenbock formula, β ◦ div∗ = ∆ − 2ε, so η is a 2ε-eigenvector for

the Laplacian. Since for any given η the solution space for F (h) = div∗ η is

finite-dimensional by ellipticity, it follows that the tangent space to ZS at (g, 0)

is finite-dimensional.

Finally, π2 ◦ Sol|ZS
is clearly analytic in g and ξ, and its image lies in a

finite-dimensional vector space, so its zero locus inside ZS is a C-analytic set.

When F (h) = 0, h is just a first-order Einstein deformation of g, and when

div∗ η = 0, η is dual to a Killing field of g. Hence we will call such solutions of

1We give this operator this name since the second Bianchi identity for the Ricci tensor can
be expressed as β(Rc(g)) = 0
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the first-order soliton deformation equations (4.1) E-K deformations. If these

are the only first-order soliton deformations of g, we say g is relatively infinites-

imally non-deformable (R∞ND). If there are actually no soliton metrics near g

that are not Einstein, we say g is relatively rigid.

It may happen that g is R∞ND but not relatively rigid, i.e. there may be a

curve through g in the space of solitons but is tangent to the space of Einstein

deformations at g. However, there are special cases where an inference can be

made:

Proposition 4.4 If an Einstein metric g admits no Einstein deformations

and is R∞ND, then it is relatively rigid. In particular, Sn is relatively rigid.

By assumption the only solutions to (4.1) are h = 0 and η being dual to

a Killing field of g. In particular ZS has the same dimension as the space of

Killing fields, and thus ZS is filled out by Killing fields.

For Sn sitting in n + 1-dimensional Euclidean space, the Einstein constant

is ε = n−1 and the eigenvalues of the Laplacian on functions are 0, n, 2(n+1),

etc. (see, for example, II.4 in [9]). Then by Prop. 4.6 below, the only soliton

deformations of Sn are E-K deformations. By Theorem 12.30 in [5], these must

have trg h = 0. Since Sn has constant curvature, F (h) = 1
2
∇∗∇h; so F (h) = 0

implies h is parallel. Since the holonomy of Sn acts irreducibly on the tangent

space of any point, and h is traceless, h must be zero. We should point out

that rigidity of Sn as a soliton also follows from the pinching results obtained

for the Ricci flow in [21] and [24].
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The First-Order Deformation Space

Theorem 4.5 Suppose (M, g) is a compact Einstein manifold with Einstein

constant ε. When ε ≤ 0 the only first-order soliton deformations are E-K

deformations. When ε > 0 and n > 2 the space of solutions (h, η) of the first-

order soliton deformation equations (4.1) at (g, 0) splits as an orthogonal direct

sum of the E-K deformations and deformations of the form

h = ∇2f + εfg, η = −ε(n− 2)

2
df

where f is a 2ε-eigenfunction on (M, g).

As seen in the proof of 4.3, the deformation equations imply (∆−2ε)η = 0;

since δ commutes with the Laplace-Beltrami operator, δη is a 2ε-eigenfunction.

Now let <,> indicate the L2 inner product for tensors. Then by a Weitzenbock

formula,

< div∗ η, div∗ η >=< div div∗ η, η >=
1

2
< (∆−2ε)η+dδη, η >=

1

2
< δη, δη > .

Since δη integrates to zero, ε ≤ 0 implies δη = 0, which implies div∗ η =

F (h) = 0, and (h, η) is an E-K deformation.

Now assume ε > 0, and let A
√
λ be the λ-eigenspace for the Laplacian on

p-forms. Suppose θ ∈ A∞
∈ε is orthogonal to d(A′

∈ε); then 0 =< θ, dδθ >=<

δθ, δθ > and the previous calculation show that div∗ θ = 0. Together with

β ◦div∗ = ∆−2ε, this shows that A∞
∈ε = A′

∈ε⊕ker div∗ as an orthogonal direct

sum. Thus we can always arrange that η = df by subtracting out the duals of

Killing fields.

Once η = df , tracing F (h) = div∗ η gives (∆− ε) tr h = −δη. This implies

δη +ε tr h ∈ A′
ε. But by a theorem of Lichnerowicz (see 12.30 in [5]) the lowest
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positive eigenvalue of ∆ on functions is at least nε/(n− 1), so −ε tr h = δη =

2εf . Thus we are led to try a solution of the form

h = A∇2f + Bfg, η = df

for some constants A and B.

Next we calculate ∇∗∇(∇2f)2:

gklfijkl = gkl(fklij + fk[il]j + fki[jl] + f[ik]jl + fi[jk]l)

= gkl(fklij + (fpR
p
kil)j + fpiR

p
kjl + fkpR

p
ijl + (fpR

p
ijk)l)

= −∇2∆f + 2ε∇2f − 2R̃m(∇2f) + fpg
klRp

ijkl

Since on an Einstein manifold, gjlRijkl = εgik is parallel, then 0 = gjm(Rijkml +

Rijmlk + Rijlkm) shows gjmRijklm = 0. Then 0 = gjm(Rijklm + Rikljm + Riljkm)

shows gjmRikljm is symmetric in k and l, which implies gjmRikljm = 0.

Thus ∇∗∇(∇2f) = 2R̃m(∇2f). We also calculate ∇∗∇(fg) = 2εfg =

2R̃m(fg). If we plug the above guess into the deformation equations (4.1), we

get

div h = A(∆− ε)df −Bdf = 0 =⇒ B = εA

tr h = (−2εA + nB)f =⇒
∫

tr h = 0

F (h)− div∗ η = −1

2
(n− 2)εA∇2f −∇2f

This determines A and B, and we obtain the form in the statement of the

theorem by rescaling f . The direct sum decomposition now follows from the

linearity of (4.1).

2Here, square brackets around indices indicates an alternating sum of the corresponding
tensor components
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By Richard Hamilton’s work [19], we know the only soliton on S2 is the

constant curvature metric. Nevertheless for completeness we include the fol-

lowing

Proposition 4.6 On Sn, n ≥ 2, with the standard metric g of constant cur-

vature +1, the only first-order soliton deformations are E-K deformations.

By the proof of 4.5 we can assume η = df and trg h = −2f . So write

h = k − 2
n
fg, where k is traceless. Then F (h) − div∗ η = 1

2
∇∗∇k − R̃m(k).

Since we have constant curvature, this is 1
2
∇∗∇k+k. Since the rough Laplacian

∇∗∇ can only have non-negative eigenvalues, k = 0. Then 0 = div h = − 2
n
df

implies f = 0 as well.

Next we will consider some Einstein manifolds where the first-order defor-

mation spaces can be realized in a concrete fashion.

First-Order Deformations of Symmetric Spaces

Suppose M = G/K is a compact Einstein symmetric space with ε > 0. Then it

follows that G is a compact semisimple Lie group and a bi-invariant metric on

G such that the projection π : G → M is a Riemannian submersion must be a

negative multiple of the Killing form. (In fact, if we use the metric which is −1

times the Killing form B, the Einstein constant ε on G (and M) is exactly 1/2.)

Under a bi-invariant metric the left cosets gK in G are totally geodesic, so it

follows that the Laplacian on functions commutes with pullback via π (see [29]).

The group G acts on C∞(M,C) and C∞(G,C) by pullback: g ·f = (Lg−1)
∗f . If

we use the −B metric on G, the Laplacian exactly coincides with the Casimir

operator for C∞(G,C) as a g-module.
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For compact symmetric spaces, there is a one-to-one correspondence be-

tween (G-irreducible components of) eigenspaces of the Laplacian on M =

G/K and irreducible G-modules that are “of class 1” with respect to K —

that is, modules which admit a line fixed by K. Indeed, let V be the module

and v ∈ V a vector fixed by K, and let <,> be a G-invariant inner product

on V . Then to a vector w ∈ V we associate the function

ϕw(gK) =< w, g · v >

which is well-defined on M . The map ϕ : V → C∞(M,C) is equivariant

and nonzero — since ϕv(K) =< v, v > — so is injective. The fact that the

G-modules V fill out all of C∞(M,C) follows from Theorem 8.1 in [29].

So, in order to enumerate symmetric spaces admitting non-trivial soliton

deformations, we should figure out what compact semisimple Lie groups have

irreducible representations with Casimir operator +1.

Lemma 4.7 (Koiso [23], 5.1, 5.2) If g is a simple complex Lie algebra of

compact type then the Casimir operator for any g-module V is greater than

1/3. Moreover, the Casimir operator is +1 if and only if V = g, the adjoint

representation.

Suppose G/K decomposes as a product of irreducible symmetric spaces

Gi/Ki. (We can pass to a finite cover, if necessary, to do this, and not lose

any eigenfunctions.) It follows from the first assertion of the lemma that a

G-module with Casimir +1 comes from at most two irreducible factors, and,

if two, neither can be of type II. If V = V1 ⊗ V2, where Vi is an irreducible

Gi-module, then one module, say V1, has Casimir operator at most ε = 1/2.

By the theorem of Lichnerowicz, the Einstein manifold G1/K1 cannot have
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eigenvalue ε, so V1 cannot be class 1 with respect to K1. When one considers

how V splits as a sum of irreducible K-modules, it is clear that V cannot have

a fixed line. Thus we only need to consider irreducible symmetric spaces; all

other symmetric space deformations with break up as sums of deformations on

the irreducible factors.

When (M, g) is a compact irreducible symmetric space of type I, A′
∈ε is

nonzero iff M is hermitian and the corresponding representation is the adjoint

representation. (This follows from the second assertion of the lemma: if g

has a line fixed by K, then that line must lie in the Lie algebra of K; so K

is not semisimple, which is equivalent, by Cor. 8.7.10 in [30], to G/K being

hermitian.) When (M, g) is of type II, A′
∈ε is nonzero only when M is G2, G

is G2 × G2, and V is tensor product of two copies of the seven-dimensional

G2-module (see p. 655 in [23]).

In [23], Koiso used these facts to calculate the space of Einstein deforma-

tions for symmetric spaces of compact type. In the table that follows, we show

how our results compare. For example, we obtain deformations for CPn, n ≥ 2,

while Koiso shows that CPn is rigid as an Einstein manifold. This is due to

the fact that for h to be an infinitesimal Einstein deformation, the trace of h

must be identically zero. However, in the case of products like CPn × CP1,

Koiso overcomes this restriction by letting h = ∇2f1 + εf2g2, where the fi are

2ε-eigenfunctions from CPn and g2 is the metric on CP1.
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Einstein- soliton-
space deformable deformable dim M dimA′

∈ε

SU(n)

SO(n)
, n > 2 yes no

SU(2n)

Sp(n)
, n > 2 yes no

SU(p + q)

S(U(p)× U(q))
if p, q ≥ 2 if p + q ≥ 3 2pq (p + q)2 − 1

SO(p + 2)

SO(p)× SO(2)
no yes 2p

(
p+2
2

)

SO(p + q)

SO(p)× SO(q)
no no

SO(2n)/U(n) no yes n(n− 1)
(
2n
2

)

Sp(n)/U(n) no yes n(n + 1) 2n2 + n

E6

SO(10)U(1)
no yes 32 78

E6/F4 yes no

E7

E6U(1)
no yes 54 135

other type I no no

SU(n), n > 2 yes no
G2 no yes 14 49
other type II no no

Higher-Order Integrability

We will begin to consider the higher-order integrability by reviewing some stan-

dard material on integrability and obstructions to integrability (see also [5], p.348f).

Suppose we have a smooth curve g(t) through g = g(0) in a Banach space

and E is a smooth map to another Banach space. Let

hk = (
d

dt
)kg(t)|t=0
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Ek
g (h1, . . . hk) = (

d

dt
)kE(g)|t=0

(The second definition makes sense since the right-hand side only depends

on the first k derivatives of g(t).) Note that Ek
g is polynomial in the hi and

linear in hk. A formal power series g +
∑ tk

k!
hk at g is said to be a formal

solution to E(g(t)) = 0 if E(g) = 0 and Ek
g (h1, . . . hk) = 0 for all k. A first-

order deformation h1 is formally integrable if it can be extended to a formal

solution.

If the differential E
′
g = E1

g is surjective then formal integrability is auto-

matic for any h1. This is because we can calculate that Ek
g (h1, . . . hk) =

E1
g (hk) + P k

g , where P k
g depends only on h1, . . . , hk−1. (In particular, P 2

g is

a quadratic in h1.)

If E1
g does not surject, then suppose some linear operator Bg, depending

smoothly on g, kills the image of E1
g . If we have solved Ej

g(h1, . . . , hj) = 0 for

j < k, then Bg(P
k
g (h1, . . . , hk−1)) = 0. Thus the quotient ker Bg/ im E1

g is the

obstruction space for extending our power series solution.

• In the case of deformations of complex structures, E1
J is ∂̄ : Λ0,1(T 1,0M) →

Λ0,2(T 1,0M), BJ is ∂̄, and the obstruction space is isomorphic to H2(M, Θ),

where Θ is the sheaf of germs of holomorphic vector fields.

• In the case of deformations of Einstein metrics, the obstruction space is

isomorphic to ker E1
g , the space of first-order Einstein deformations.

Proposition 4.8 In the case of soliton deformations of Einstein metrics, the

complement of the image of TgM∫ ×H∫−∞(T ∗M) under the differential of Sol

is

(im Sol
′
g)
⊥ = EID⊕β∗(d(A′

∈ε))⊕ Rð,
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where EID is the space of Einstein deformations of g, β∗ is the adjoint of β,

and Rð are the multiples of g.

In [23], Koiso shows that im(Ein
′
g|ker

R
tr) ⊕ EID = ker β

⋂
ker

∫
tr. Since

∫
tr ◦ Sol = 0 then

∫
tr ◦ Sol

′
g = 0, so we can’t have multiples of g in the image.

Since Ein
′
g(g) is at most a multiple of g, we can use Koiso’s result to see that

(im Sol′)⊥ =

(
EID⊕

(
ker β

⋂
ker

∫
tr

)⊥) ⋂
ker div +Rð.

Now, (ker β
⋂

ker
∫

tr)⊥ = im β∗ + Rð since β is an underdetermined elliptic

operator. Since β = 2 div +d ◦ tr, then β∗ = 2 div∗ +gδ. It is easy to see

that im β∗ is disjoint from the multiples of g: if β∗(ξ) = cg, then tracing gives

(n − 2)δξ = cn, which implies dδξ = 0 =⇒ δξ = 0 =⇒ c = 0 if n 6= 2, or

c = 0 immediately if n = 2. Furthermore, div ◦β∗(ξ) = (∆− 2ε)ξ. Since on an

Einstein manifold we have A∞
∈ε = ker div∗⊕d(A′

∈ε) and β∗(ker div∗) = 0, the

above decomposition follows.

As was just observed, we can at least take Bg =
∫

trg. If it happens that

EID is zero then d(A′
∈ε) is the obstruction space; for example, second-order

integrability depends on whether or not P 2
g (h1) has any component in d(A′

∈ε)

— which we cannot hit.

In the case of symmetric spaces, the above table gives many examples where

the space EID is zero. Moreover, the quadratic P 2
g , restrictied to first order

deformations h1 coming from V = A′
∈ε, will be a G-module map from S2V to

sections of S2T ∗M . If S2V has no component isomorphic to V , then P 2
g (h1)

must be orthogonal to d(A′
∈ε). By checking how S2V decomposes as a direct

sum of irreducible G-modules, we obtain
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Proposition 4.9 Any first-order soliton deformation is integrable to second

order in the case of SO(p + 2)/SO(p) × SO(2), SO(2n)/U(n), Sp(n)/U(n),

E6/SO(10)U(1), E7/E6U(1), and G2.

This argument does not apply to the complex Grassmannians because, for

G = SU(n), n ≥ 3, the module S2g always has an irreducible component

isomorphic to g. This does not necessarily imply that the deformations are not

integrable to second order. That has to be checked. The case of CPn is the

most tractible, since the gradient of a 2ε-eigenfunction is a holomorphic vector

field, and the holomorphic sectional curvature is constant. However, even this

calculation might prove to be rather long — cf. [23], p. 650-652, 663-667.

On the other hand, suppose M is one of the symmetric spaces to which

the above proposition applies, and let V be the G-module giving rise to the

2ε-eigenfunctions. Since we have to solve the equation −E1
g (h2) = P 1

g (h1),

and E1
g is linear, we can assume that h2 is drawn from submodules of the

space of sections of S2T ∗M isomorphic to the irreducible components of S2V .

Now, P 2
g (h1, h2) is a sum of a cubic term in h1 and a bilinear term in h1 and

h2. If V ⊗ S2V has no components isomorphic to V , then P 2
g (h1, h2) will be

orthogonal to the obstruction space and we can integrate to third order. In

fact, we can assume that h3 is drawn from V ⊗ S2V . The induction step can

be stated as

Proposition 4.10 Let M and V be as above. If Ek
g (h1, . . . , hk) = 0 and h1 is

drawn from V , h2 from S2V , h3 from V ⊗ S2V , and so forth, and (⊗k−1V )⊗
S2V has no components isomorphic to V , then there is an hk+1 drawn from

(⊗k−1V )⊗ S2V such that Ek+1
g (h1, . . . , hk+1) = 0.
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In view of the rapid growth of (⊗k−1V )⊗ S2V , it seems unlikely that this

calculation would show integrability to any high order. If it turned out to do

so, it would be a remarkable fact in itself and would provide us with some

evidence for formal integrability of the soliton deformations for that space.



Chapter 5

Constructions of Complete Solitons via

Warped Products

Let (Mn, dσ2) be a compact Einstein manifold with Einstein constant ε > 0.

Let dθ2 denote the standard metric of constant curvature +1 on Sk, k ≥ 1.

On Rk+1 ×M, with radial coordinate t, consider the doubly-warped product

metric

ds2 = dt2 + f(t)2dθ2 + g(t)2dσ2, (5.5.1)

where f and g are some functions of the radial coordinate. We wish to construct

Ricci soliton metrics with this special form. Since M could be a symmetric

space, and Sk has a lot of symmetry, it makes sense that the Ricci flow should

only move in the radial direction. Matters being so, let us assume that the

vector field X points in the radial direction, and is in fact the gradient of a

function h(t). Then it only remains to solve the equation ∇2h = Ric(ds2).

As we will see below, this condition leads to a system of second-order ODE

for f , g, and h. We will show that there exists a 1-parameter family of solutions

which give rise to complete Ricci metrics on Rk+1 ×M. In trying to find the

right solutions it will be helpful to “mod out” by the symmetries of the ODE;

60
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our problem will essentially be reduced to examining the trajectories of a vector

field in a phase space of dimension four (dimension three if k = 1). We will

eliminate a large number of solutions using the following criteria for the metric

(5.1) to be smooth near the copy of M lying over the origin in Rk+1:

Proposition 5.1 ([4], §8.9) Assume f , g are smooth positive functions de-

fined on an interval (0, r). Then ds2 extends to give a smooth positive definite

metric on a neighbourhood of t = 0 if and only if

1. f(t) extends smoothly to an odd function of t with f ′(0) = 1

2. g(t) extends smoothly to a strictly positive, even function of t.

The ODE and its first integral

First we will derive the ODE from the structure equations for the metric (5.1).

Let ωi be a local orthonormal coframe on M and let ηα be a local orthonormal

coframe on Sk. Then dt, fηα, gωi is an orthonormal coframe for (5.1). If the

matrix-valued Levi-Civita connection forms for ωi and ηα are W , N respec-

tively, satisfying dω = −W ∧w and dη = −N ∧η, then the structure equations

for the new metric are

d




dt
fη
gω


 = −




0 −f ′ tη −g′ tω
f ′η N 0
g′ω 0 W


 ∧




dt
fη
gω


 .

(In this chapter, let a prime denote differentiation by t.) These structure

equations give the Levi-Civita connection forms; after calculating the curvature

forms one can obtain the components of the Ricci tensor with respect to the
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(new) coframe:

R11 = −n
g′′

g
− k

f ′′

f

Rαβ =

(
−n

f ′g′

fg
− f ′′

f
+ (k − 1)

(
1− (f ′)2

f 2

))
δαβ

Rij =

(
ε

g2
− (n− 1)

(
g′

g

)2

− g′′

g
− k

f ′g′

fg

)
δij.

Using the fact that h is a function of t alone, we compute

∇2h = h′′dt2 + ff ′h′dθ2 + gg′h′dσ2.

Hence ∇2h = Ric(ds2) amounts to





h′′ = −n
g′′

g
− k

f ′′

f

f ′′ = −n
f ′g′

g
− h′f ′ + (k − 1)

(
1− (f ′)2

f

)

g′′

g
=

ε

g2
− (n− 1)

(
g′

g

)2

− k
f ′g′

fg
− h′

g′

g
.

(5.5.2)

In order to use Prop. 5.1 we have to know when solutions extend to smooth

odd and even functions of t. In this matter we have

Proposition 5.2 Suppose f , g, h are smooth solutions of (5.2) for t > 0, and

lim
t→0+

f = 0, lim
t→0+

g > 0, lim
t→0+

f ′ = 1,

and g′/f and (k − 1)

(
1− (f ′)2

f 2

)
− h′f ′

f
are bounded for t near zero. Then

f , g, h extend to smooth odd, even and even functions, respectively, satisfying

(5.2).
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By hypothesis we can extend f , g, h to odd, even and even functions which

are C1 at t = 0; then it is easy to verify that they are solutions for t < 0

as well. If (5.2) is re-written as a first-order system, as t → 0 the right-hand

side approaches a finite, nonzero limit. (For example, the t-derivative of f

approaches one.) If we think of our solution as a trajectory in a six-dimensional

space (with coordinates f , g, h, f ′, g′, h′), the trajectory approaches a point

where the vector field is nonzero. Thus our solution curve must coincide with

the smooth integral curve through this point guaranteed by standard ODE

theory.

The system (5.2) has a first integral which follows from the Bianchi identity.

Namely, if we substitute ∇2h = Ric into the formula gik(hijk − hikj) = hpR
p
j ,

and use the second Bianchi identity 2gijRikj = ∇kR for the Ricci tensor, we

get d(∆h) = d((h′)2), where the Laplacian has non-negative spectrum. If we

eliminate the second derivatives using (5.2), this first integral implies

2kn
f ′g′

fg
+n(n−1)

(
g′

g

)2

−nε

g2
+2nh′

g′

g
+2kh′

f ′

f
+(h′)2−k(k−1)

(
1− (f ′)2

f 2

)
= C

for some constant C.

From now on we will assume that ε = 1, since we can still scale the Einstein

metric on M as much as we like using the function g.

Modding out by symmetries

In the ODE (5.2), t and h do not not appear. Thus the symmetries include

translation in t and h, but we can also scale f , g and t simultaneously by

the same positive factor. The following quantities are invariant under these
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symmetries:

x = g′, z = g
f ′

f
, y = gh′ + nx + kz, w =

g

f
.

(When k = 1, we can also scale in f independently of the other coordinates on

the jet space, so only x, y, and z are invariant in this case.) The ODEs implied

by (5.2) for the new coordinates are





g
dx

dt
= 1− xy + x2

g
dy

dt
= x(y − nx)− kz2

g
dz

dt
= z(x− y) + (k − 1)w2

g
dw

dt
= w(x− z)

(5.5.3)

The quantities x, y, z, w were chosen to simplify the first integral: it becomes

y2 − nx2 − kz2 − k(k − 1)w2 = Cg2 + n

In particular, the two-sheeted hyperboloid y2 − nx2 − kz2 − k(k − 1)w2 = n is

a stable set for (5.3): integral curves that start inside the hyperboloid stay in

the hyperboloid.

Because of the factor g, (5.3) does not give a well-defined dynamical system

in x, y, z, w-space; rather, we have a Pfaffian system

dx

1− xy + x2
=

dy

x(y − nx)− kz2
=

dz

z(x− y) + (k − 1)w2
=

dw

w(x− z)
.

Given an integral curve of this differential system, we can obtain a solution to
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the original ODE (5.2) by the quadratures

dg

g
=

xdx

P (x, y)
,

dt =
gdx

P (x, y)
,

dh =
(y − nx− kz)dx

P (x, y)

where P (x, y) = 1 − xy + x2, and we obtain f(t) by f = g/w. (When k = 1

and w is not available, we have to integrate df/f = z dx/P (x, y).)

In order for the corresponding metric to extend smoothly across the origin

in Rk+1, by 5.2 we need w →∞, z →∞, x → 0, and y →∞ as t → 0 on the

curve. In fact, we can compute that

y

w
=

gh′ + ng′ + kgf ′/f
g/f

−→ k.

In order to examine what happens to integral curves at “infinity”, we will

change coordinates to

Y =

√
n

y
X =

√
n

x

y

Z =
√

k
z

y
W =

√
k(k − 1)

w

y

In these coordinates we compute




g

y

dX

dt
= X(X2 + Z2 − 1) + αY 2

g

y

dY

dt
= Y (X2 + Z2 − αX)

g

y

dZ

dt
= Z(X2 + Z2 − 1) + βW 2

g

y

dW

dt
= W (X2 + Z2 − βZ),

(5.5.4)
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where α = 1/
√

n and β = 1/
√

k. We could again regard this as a Pfaffian

system in the variables X, Y, Z, W , but instead we will choose a new time

coordinate, and replace
g

y

dX

dt
by

dX

ds
, etc. In these coordinates the stable

hyperboloid becomes the sphere X2 + Y 2 + Z2 + W 2 = 1, and in fact we have

Liapunov function:

d

ds
(X2 + Y 2 + Z2 + W 2 − 1) = 2(X2 + Y 2 + Z2 + W 2 − 1)(X2 + Z2).

Ricci-flat metrics and radially symmetric soli-

tons

We will motivate our main calculation by looking at integral curves of (5.3)

and (5.4) lying in stable sets of low dimension.

Setting h′ = 0 in ∇2h = Ric gives a Ricci-flat metric, and this corresponds

to y = nx+ kz in our first set of invariant coordinates. It is easy to verify that

the intersection of the stable hyperboloid with the hyperplane y = nx + kz is

also stable. (To get a compact picture, we will usually think instead in terms

of the stable unit sphere in the X,Y, Z, W coordinates, and the hyperplane

X/α + Z/β = 1.) Now, when k = 1 we do not have the invariant coordinate

w; but the system we get in the invariant coordinates x, y, z is the same as the

restriction of (5.3) to the stable hyperplane w = 0. Thus when k = 1 we can

intersect these three hypersurfaces to get a single integral curve that gives rise

to a Ricci-flat metric on an open subset of R2 ×M. (In fact, it is not difficult

to verify that on the two-sphere given by W = 0 and X2 + Y 2 + Z2 = 1,

every integral curve is given by the intersection of the sphere with a 2-plane

through the critical points X = α, Y = ±√1− α2, Z = 0, W = 0.) If we
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take the portion of the integral curve with Y > 0 and Z > 0, and integrate

the above quadratures, it turns out that t → 0 near the “zenith” point X = 0,

Y = 0, Z = 1, while t → ∞ near the equator. In fact this gives the complete

Ricci-flat metric discovered by Bérard-Bergery ([4], §§9.5, 9.6) that is known

as the Riemannian Schwarzschild metric (cf. 9.118 in [5]).

Another stable set is the plane obtained by setting Z and W to zero. Integral

curves in this plane give product metrics on S1 ×M1, where M1 is a warped

product of M over an interval. Since f is constant these metrics cannot close

up in accordance with Prop. 5.2, but we can look at the case when M = Sn and

g goes to zero at one end of the interval. The condition that the soliton metric

on M1 can be smoothly extended to Rn+1 has been studied (for n = 2) by

Bryant [6]. The phase portrait for the system 5.4 restricted to the X,Y -plane

looks like Figure 5.1. Bryant showed that the separatrix that runs from the

Figure 5.1:

critical point with X = α and Y =
√

1− α2 to the center of the disc gives rise

to a complete radially symmetric soliton on R3. The dimension n appears only



68

as a parameter in the system, and in fact the same separatrix gives a complete

soliton on Rn+1 for all n ≥ 2.

Now consider how the integral curves for the Schwarzschild metric and the

radially symmetric soliton look in the same picture (Figure 5.2) in X, Y, Z-

space. Since the soliton curve has
∫

dt unbounded as it approaches the centre

Figure 5.2:

of the sphere, while the Schwarzschild metric closes up nicely as the curve

approaches the zenith of the sphere, it makes sense to look for a curve that

interpolates between these two desirable boundary conditions. At least in the

case k = 1, this was the motivation for what follows.

An interpolating solution

For simplicity we will deal with the case k > 1 first. By Prop. 5.2 we want

Y → 0, X → 0, f ′ =
√

k − 1Z
R
→ 1 and R →

√
1− β2. These values for

X, Y, Z, W give a critical point of (5.4); if we linearize about this point, we

find the Jacobian of (5.4) has two positive and two negative eigenvalues. Thus

in the unstable manifold of this critical point there is a one-parameter family

of curves that should give rise to metrics that close up nicely near the origin
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in Rk+1.

Lemma 5.3 Assume k > 1. Let S denote the one-parameter family of integral

curves of (5.4) that lie in the unstable manifold of the point X = 0, Y = 0,

Z = β, R =
√

1− β2, and lie strictly in the interior of the sphere X2 + Y 2 +

Z2 + W 2 = 1, and in the half-space Y > 0. Then curves in S give rise to

solutions of (5.2) that fulfil the conditions of Prop. 5.2.

We will begin by establishing the limiting value of X/Y 2 as we approach

the critical point along a curve in S. From the equation

dX

ds
= X(X2 + Z2 − 1) + αY 2

we see that X ≥ 0 along this curve, since the last term is positive; similarly,

d

ds
((1+β2)X−αY 2) = (X2+Z2−1)((1+β2)X−αY 2)+αY (Y (1+β2)+αX−1)

shows that
X

Y 2
≤ α

1 + β2
for X, Y near zero, since the last term becomes

negative. Now that we know X/Y 2 is bounded in absolute value,

2
d/ds X

d/ds Y 2
=

X

Y 2

(
X2 + Z2 − 1

X2 + Z2 − αX

)
+

α

X2 + Z2 − αX
(5.5.5)

shows that X/Y 2 has the limiting value α/(1 + β2).1

Since X ∼ α/(1 + β2) Y 2,

dg

g
=

X(Y dX −XdY )

Y (X2 −X/α + Y 2)
∼

α2

β2(1 + β2)
Y dY. (5.5.6)

1This follows from a recursive form of l’Hôpital’s Rule: if f ′(x)/g′(x) = q(x) f(x)/g(x) +
p(x), and f/g is bounded as x → a, and lim q(x) is finite and different from 1, then
lim f/g = lim p/(1− q).
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So by integration we can obtain g → c > 0 as Y → 0 along the curve. Next,

dt

g
=

Y dX −XdY

X2 −X/α + Y 2
∼

α

cβ2
dY, (5.5.7)

so we can arrange that t → 0+. Since f =
g

w
=

α
√

1− β2gY

β2W
, f ′ =

z

r
=

√
1− β2Z

βW
, and

gg′

f
= xw =

β2XW

α
√

1− β2Y 2
, all the requirements of Prop. 5.2

follow immediately except for the last one. We calculate that

(k − 1)g2

(
1− (f ′)2

f 2

)
− g2h′f ′

f
= (k − 1)(w2 − z2)− w(y − nx− kz) = nxw

+

(
β3W√
1− β2

− (1− β2)Z

)(
Z − β

α2Y 2

)
+β(βW+

√
1− β2Z)

(
W −

√
1− β2

α2Y 2

)
.

To see that (Z − β)/Y 2 and (W −
√

1− β2)/Y 2 are bounded as s → −∞ on

the curves in question, we will have to work harder. First of all, for any λ > 0,

d

ds
(Z − β − λY 2) = (X2 + Y 2 − 1)(Z − β − λY 2)

+ λY 2(2αX −X2 − Z2 − 1) + β(X2 + Z2 + W 2 − 1),

and this shows that Z −β−λY 2 ≤ 0 on these curves. Then Z −β ≤ 0 implies

W −
√

1− β2 ≤ 0, by examining the tangent plane to the unstable manifold

at the critical point. Then, when (Z − β)/Y 2 and (W −
√

1− β2)/Y 2 are

non-positive, there exist positive constants k1, k2, k3 such that for s < s0,

(
− d

ds

)(
Z − β

α2Y 2

)
= (1 + X2 + Z2 − 2αX − β(Z + β))

(
Z − β

α2Y 2

)

− β(W +
√

1− β2)

(
W −

√
1− β2

α2Y 2

)
− β

X2

Y 2
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≥ (1− β2 + βek1s)

(
Z − β

α2Y 2

)
− β(2

√
1− β2 − ek2s)

(
W −

√
1− β2

α2Y 2

)
− βek3s

(
− d

ds

) (
W −

√
1− β2

α2Y 2

)
= (βZ + Z2 + X2 − 2αX)

(
W −

√
1− β2

α2Y 2

)

−
√

1− β2

(
Z

(
Z − β

α2Y 2

)
+

X2

Y 2

)

≥ 2β2

(
W −

√
1− β2

α2Y 2

)
−

√
1− β2

(
(β − ek1s)

(
Z − β

α2Y 2

)
+ ek3s

)

Since the exponential terms die out as s → −∞, and the solutions of the linear

ODE for two variables (obtained by ignoring the exponentials) have (Z−β)/Y 2

and (W −
√

1− β2)/Y 2 bounded for as long as they are both negative, we are

done.

Lemma 5.4 Let S be as in Lemma 5.3. Then as s →∞ curves in the set S

tend to the center of the sphere X2 + Y 2 + Z2 + W 2 = 1 exponentially, and

give rise to metrics with
∫

dt unbounded as s →∞.

Let L = X2+Y 2+Z2+W 2; then d/ds L = 2(X2+Z2)(L−1), so L is strictly

decreasing for curves inside the sphere. But since L < 1, d/ds L ≥ 2L(L− 1),

so L → 0 exponentially. Hence, curves approach the center of the sphere

exponentially.

First we will show that X/Y 2 is bounded on these curves, and has limiting

value α. Since

d

ds

X

Y 2
= α− X

Y 2
(X2 + Z2 − 2αX + 1)

we see that once X/Y 2 is non-negative it stays non-negative; combined with

the limiting value obtained in Lemma 5.3, this means X/Y 2 ≥ 0. Since the
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curves approach the origin only exponentially, there exists a k > 0 such that

d

ds

(
X

Y 2
− α

)
≤

(
X

Y 2
− α

)
(e−ks − 1) + αe−ks.

By solving the corresponding one-variable ODE, we see that X/Y 2 − α stays

bounded. We can apply the mean value theorem2 to (5.5) to get

α

2(X2 + Z2 − αX)
= δ

{
X

Y 2

}
+

(
1− X2 + Z2 − 1

2(X2 + Z2 − αX)

)
X

Y 2
.

Multiplying through by X2 +Z2−αX and taking the limit shows lim
s→∞

X/Y 2 =

α.

Next we need to know that Z/Y 2 is bounded: to see this, note that

d

ds
log

(
βW

αY

)
= αX − βZ ≤ e−ks

for some k. It follows that W/Y is bounded. Then since

d

ds

(
Z

W 2

)
= β +

Z

W 2
(2βZ −X2 − Z2 − 1)

we can show Z/W 2 is bounded by the same argument just used for X/Y 2.

This will enable us to find the limiting value of (X − αY 2)/Y 4 — i.e. the

next term in the power series of X. First we calculate that

d

ds

(
X − αY 2

Y 4

)
= (−1−3(X2+Z2)+4αX)

(
X − αY 2

Y 4

)
− α

Y 2
(X2+Z2−2αX).

2In the proof of the recursive l’Hôpital’s rule, one applies the mean value theorem to get
f ′(c)(g(x) − g(a)) = g′(c)(f(x) − f(a)) for some c between x and the limiting value a.
Using the special form assumed for f ′/g′, one gets

p(c) = δ

{
f

g

}
+ (1− q(c))

f(c)
g(c)

,

where δ{F} = F (x)− F (c). The rule then follows by letting x → a.
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When (X − αY 2)/Y 4 > 0 there are constants C, k1, k2 such that

d

ds

(
X − αY 2

Y 4

)
≤ (−1 + e−k1s)

(
X − αY 2

Y 4

)
+ 2α2 + Ce−k2s

and when (X − αY 2)/Y 4 < 0 we similarly have

d

ds

(
X − αY 2

Y 4

)
≥ (−1 + e−k1s)

(
X − αY 2

Y 4

)
+ 2α2 − Ce−k2s.

Solving the corresponding one-variable ODEs shows that (X − αY 2)/Y 4 is

bounded. Finally,

d/ds (X − αY 2)

d/ds Y 4
=

(
X − αY 2

Y 4

)( −1

4(X2 + Z2 − αX)

)
− α

2Y 2
+

X(X2 + Z2)

4Y 4(X2 + Z2 − αX)
.

Applying the mean value theorem argument again, one obtains lim
s→∞

(X −

αY 2)/Y 4 = 2α3.

Now we will check the quadratures (5.6) and (5.7). Using the last result,

we find that

dg

g
∼ −dY

Y

and so there is a constant c > 0 such that gY → c. Then

dt

g
∼ − dY

αY 2

shows that t →∞ as Y → 0.

We will now turn to the special case k = 1; hence, we will restrict our

attention to the restriction of (5.4) to the hyperplane W = 0.

If we linearize (5.4) about the zenith of the sphere, the Jacobian has two

positive eigenvalues and one zero eigenvalue. The first two eigenvectors span
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the Y Z plane, while the zero eigenvalue corresponds to moving in the direction

parallel to the X-axis; in fact this is the tangent direction to circle of critical

points of (5.4), given by the intersection of the sphere with the Y = 0 plane.

On the other hand, the Center Manifold Theorem (see [3] §4.2) asserts that

there is a smooth two-dimensional unstable manifold S swept out by integral

curves X(s), Y (s), Z(s) that exponentially approach the zenith as s → −∞.

Lemma 5.5 Assume k = 1. Let S denote the one-parameter family of integral

curves of (5.4) that lie in the unstable manifold of the point X = 0, Y = 0,

Z = 1, and lie strictly in the interior of the sphere X2 + Y 2 + Z2 = 1, and

in the half-space Y > 0. Then curves in S give rise to solutions of (5.2) that

fulfil the conditions of Prop. 5.2.

As in 5.3 we obtain X/Y 2 → α/2, g → c > 0, and t → 0+ as s → −∞. In

order to compute df/f , we will need to know that (Z−1)/Y 2 is bounded on the

curves we are interested in. Since the curves approach the zenith exponentially,

and using the fact that Z ≤ 1, there exist k1, k2 such that

(
− d

ds

)(
Z − 1

Y 2

)
= (X2 + Z2 − Z + 2αX)

(
Z − 1

Y 2

)
− X2

Y 2

≥ ek1s

(
Z − 1

Y 2

)
− ek2s

for s tending to −∞. By comparing with a one-variable ODE, we conclude

that (Z − 1)/Y 2 is bounded below.

Now we have

df

f
=

Z(Y dX −XdY )

αY (X2 −X/al + Y 2)
∼

dY

Y
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so that f ∼ c1Y for some c1 > 0. Since f ′ =
fZ

αgY
, we can choose c1/c to

arrange that f ′ → 1. Then since
gg′

f
=

g

f

(
X

Y

)
and

gh′

f
=

1− Z

αfY
− X

α2fY
,

the rest of the requirements of Prop. 5.2 can be verified immediately.

Lemma 5.6 Let S be as in Lemma 5.5. Then as s →∞ curves in the set S

tend to the center of the sphere X2 + Y 2 + Z2 = 1 exponentially, and give rise

to metrics with
∫

dt unbounded as s →∞.

The proof of Lemma 5.4 works here as well, except for getting Z/Y 2 to be

bounded. For this we just use

d

ds

Z

Y 2
=

Z

Y 2
(2αX −X2 − Z2 − 1) ≤ − Z

Y 2
(1− e−ks)

for some k and s large, and compare with the solution of the one-variable ODE.

Theorem 5.7 There exists a one-parameter family of smooth complete Ricci

soliton metrics of the form (5.1) on M×Rk+1, where M is a compact Einstein

manifold of positive scalar curvature and k ≥ 1. These metrics have positive

Ricci curvature away from t = 0. Metrics in a given family are not equivalent

under diffeomorphisms that preserve the submersion onto Rk+1.

Existence and completeness follows from the previous four lemmas. Recall

that

Ric = ∇2h = h′′dt2 + ff ′h′dθ2 + gg′h′dσ2.

We calculate that gh′/y = 1−X/α− Z/β and

d

ds
(1−X/α−Z/β) = (X2 +Z2−1)(1−X/α−Z/β)+1−X2−Y 2−Z2−W 2.
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This shows that h′ > 0 for t > 0, and from our calculations above we know

g′ = x > 0. To see that h′′ > 0, we calculate that

g2h′′

y2
=

X

α
+

Z

β
+ W 2 −X2 − Y 2 − (

2

β2
− 1)Z2.

Let Q stand for the quantity on the right; then

d

ds
Q = (X2 + Z2 − 1)Q + (X2 + (

2

β2
− 1)Z2)(1−X2 − Y 2 − Z2 −W 2)

+ 2(
1

β2
− 1)Y 2Z2 + 2R2((1− Z/β)2 + X2)

shows that Q > 0 for t > 0.

Given one of these metrics, the origin in the base Rk+1 is the point over

which the fibres have least volume. The coordinate t measures distance in

Rk+1 from the origin. The Einstein constant for the fibres is 1/g(t), and the

k-dimensional volume of the spheres in Rk+1 at distance t from the origin is

f(t) up to a universal constant depending on k. When Ric > 0, the value of

h′(t) is also recoverable from the curvature. Thus the geometric data uniquely

determine the integral curve of (5.4), and the last assertion of the theorem is

proved.

Remark 5.8 Since M can be an arbitrary Einstein manifold with ε > 0, we do

not have much control over the sectional curvature of the metrics constructed.

In particular, these solitons do not necessarily fall into the domain of Hamil-

ton’s Harnack inequality [20], which assumes non-negative curvature operator.

Remark 5.9 One might generalize our construction (at least in the k = 1

case) in the following way: rather than using M ×R2, let the underlying mani-

fold be a non-trivial complex line bundle over M , where M is now assumed
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to have an almost complex structure for which the Einstein metric is hermi-

tian and the Kähler form is closed. We assume the unit circle bundle has a

Yang-Mills connection, and warp this over an interval to get the metric on

the line bundle. (This is inspired by the construction of Page-like complete

Einstein metrics — see [5], §9.K.) The corresponding ODE for solitons lives

naturally in a five-dimensional phase space. Metrics that close up smoothly

near the origin of the fibre and are complete correspond to integral curves lying

in the intersection of the unstable manifold of one point in phase space and

the stable manifold of another point. If these manifolds intersect transversely,

their intersection is a single curve, giving the Ricci-flat metric obtained by

Bérard-Bergery [4]. So, it seems unlikely that new soliton metrics arise in this

way.

Remark 5.10 For the radially symmetric solitons on Rn, n ≥ 3, obtained by

Bryant, the largest eigenvalue of the curvature falls off like the reciprocal of

the distance from the origin and the volume of balls grows only like the radius

to the exponent (n + 1)/2. So these metrics do not satisfy the hypotheses of

Shi’s main theorem [27]. (They had better not, since Shi proves convergence of

the Ricci flow to a flat metric.) In fact, we conjecture that these solitons are

“attractors”, in the sense that if an initial metric on Rn has similar curvature

and volume growth, perhaps the Ricci flow converges to a symmetric soliton.

A first step would be to study the Ricci flow for radially symmetric metrics,

which comes down to a non-linear one-dimensional heat equation.
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