# PROPERTIES OF IRRESOLUTE-BITOPOLOGICAL GROUPS 

R. GIRIDHARAN AND N. RAJESH


#### Abstract

In this paper, we introduce and study a class of bitopologized groups called $(i, j)$-irresolute-bitopological groups.


## 1. Introduction

If $(G, \star)$ is a group, and $\tau_{1}$ and $\tau_{2}$ are topologies on $G$, then we say that $\left(G, \star, \tau_{1}, \tau_{2}\right)$ is a bitopologized group. Given a bitopologized group $G$, a question arises about interactions and relations between algebraic and bitopological structures: which topological properties are satisfied by the multiplication mapping $m: G \times G \rightarrow G,(x, y) \rightarrow x \star y$, and the inverse mapping $i: G \rightarrow G, x \rightarrow x^{-1}$. In this paper, we introduce and study a class of bitopologized groups called $(i, j)$-irresolutebitopological groups.

## 2. Preliminaries

Throughout this paper $\left(G, \star, \tau_{1}, \tau_{2}\right)$, or simply $G$, will denote a group $(G, \star)$ endowed with the topologies $\tau_{1}$ and $\tau_{2}$ on $G$. The identity element of $G$ is denoted by $e$, or $e_{G}$ when it is necessary, the operation $\star: G \times G \rightarrow G,(x, y) \rightarrow x \star y$, is called the multiplication mapping and sometimes denoted by $m$, and the inverse mapping $i: G \rightarrow G$, $x \rightarrow x^{-1}$ is denoted by $i$. For a subset $A$ of a topological space $\left(X, \tau_{i}\right)$, $i \mathrm{Cl}(A)$ and $i \operatorname{Int}(A)$ denote the closure of $A$ and the interior of $A$ in $\left(X, \tau_{i}\right)$, respectively.
Definition 2.1. [2] $A$ subset $S$ of a bitopological space $\left(X, \tau_{1}, \tau_{2}\right)$ is said to be $(i, j)$-semiopen if $S \subset j \mathrm{Cl}(i \operatorname{Int}(S))$. The complement of an $(i, j)$-semiopen set is called an $(i, j)$-semiclosed set.

Definition 2.2. [2] The intersection of all $(i, j)$-semiclosed sets containing $S \subset X$ is called the $(i, j)$-semiclosure of $S$ and is denoted by $(i, j)$-s $\mathrm{Cl}(S)$. The family of all $(i, j)$-semiopen (resp. $(i, j)$-semiclosed) sets of $\left(X, \tau_{1}, \tau_{2}\right)$ is denoted by $(i, j)-S O(X)$ (resp. $\left.(i, j)-S C(X)\right)$. The family of all $(i, j)$-semiopen (resp. $(i, j)$-semiclosed) sets of $\left(X, \tau_{1}, \tau_{2}\right)$ containing a point $x \in X$ is denoted by $(i, j)-S O(X, x)$ (resp. $(i, j)$ $S C(X, x))$.

[^0]Definition 2.3. A function $f:\left(X, \tau_{1}, \tau_{2}\right) \rightarrow\left(Y, \sigma_{1}, \sigma_{2}\right)$ is said to be:
(1) $(i, j)$-semicontinuous [2] if $f^{-1}(V) \in(i, j)-S O(X)$ for every $V \in \sigma_{i}$.
(2) $(i, j)$-irresolute [1] if $f^{-1}(V) \in(i, j)-S O(X)$ for every $V \in$ $(i, j)-S O(Y)$.
(3) pre-( $i, j)$-semiopen if $f(V) \in(i, j)-S O(Y)$ for every $V \in(i, j)$ $S O(X)$.
(4) $(i, j)$-semihomeomorphism if $f$ is bijective, $(i, j)$-irresolute and pre- $(i, j)$-semiopen.

Lemma 2.4. If $f:\left(X, \tau_{1}, \tau_{2}\right) \rightarrow\left(Y, \sigma_{1}, \sigma_{2}\right)$ is an $(i, j)$-semihomeomorphism, then:
(1) $(i, j)-s \mathrm{Cl}(f(A))=f((i, j)-s \mathrm{Cl}(A))$ for all $A \subset X$;
(2) $(i, j)-s \operatorname{Int}(f(A))=f((i, j)-s \operatorname{Int}(A))$ for all $A \subset X$.

## 3. Irresolute-bitopological groups

Definition 3.1. A bitopologized group $\left(G, \star, \tau_{1}, \tau_{2}\right)$ is called an $(i, j)$ -irresolute-bitopological group if for each $x, y \in G$ and each $(i, j)$-semiopen neighborhood $W$ of $x \star y^{-1}$ in $G$ there exist $(i, j)$-semiopen neighborhoods $U$ of $x$ and $V$ of $y$ such that $U \star V^{-1} \subset W$.

Lemma 3.2. If $\left(G, \star, \tau_{1}, \tau_{2}\right)$ is an $(i, j)$-irresolute-bitopological group, then we have the following
(1) $A \in(i, j)-S O(G)$ if, and only if $A^{-1} \in(i, j)-S O(G)$.
(2) If $A \in(i, j)-S O(G)$ and $B \subset G$, then $A \star B, B \star A \in(i, j)-$ $S O(G)$.

Proof. The proof is clear.
Theorem 3.3. If $\left(G, \star, \tau_{1}, \tau_{2}\right)$ is an $(i, j)$-irresolute-bitopological group, then the multiplication mapping $m: G \times G \rightarrow G$ and the inverse mapping $i: G \rightarrow G$ are $(i, j)$-irresolute.

Proof. Let $(x, y) \in G \times G$ and let $W \subset G$ be an $(i, j)$-semiopen neighbourhood of $m(x, y)=x \star y$. Since $G$ is an $(i, j)$-irresolute-bitopological group, and $W$ is an $(i, j)$-semiopen neighbourhood of $x \star\left(y^{-1}\right)^{-1}$, there exist $(i, j)$-semiopen neighborhoods $U$ of $x$ and $V$ of $y^{-1}$ such that $U \star V^{-1} \subset W$. From Lemma 3.2, $V^{-1}$ is an $(i, j)$-semiopen neighbourhood of $y$, and $U \star V^{-1}$ is an $(i, j)$-semiopen neighbourhood of $(x, y) \in G \times G$. Then $m\left(U \star V^{-1}\right) \subset W$ just means that $m$ is irresoute at $(x, y)$, and, as $(x, y)$ was an arbitrary point in $G \times G$, that $m$ is $(i, j)$-irresolute on $G \times G$. For $i$ is $(i, j)$-irresolute, let $x \in G$ be a point and let $W$ be an $(i, j)$-semiopen neighbourhood of $i(x)=x^{-1}$. Then by Lemma 3.2, $W^{-1}$ is an ( $i, j$ )-semiopen neighbourhood of $x$ satisfying $i\left(W^{-1}\right)=W$, which means that $i$ is $(i, j)$-irresolute at $x$, hence on $G$.

Remark 3.4. If $\left(G, \star, \tau_{1}, \tau_{2}\right)$ is an ( $i, j$ )-irresolute-bitopological group such that the family $(i, j)-S O(G)$ is a topology on $G$ with $(i, j)-S O(G) \neq$ $\tau_{i}$, then $(G, \star,(i, j)-S O(G))$ is a topological group.

Theorem 3.5. Let $\left(G, \star, \tau_{1}, \tau_{2}\right)$ be an $(i, j)$-irresolute-bitopological group and $\left(H, \circ, \tau_{1}\left|H, \tau_{2}\right| H\right)$ a bitopological group. If $f: G \rightarrow H$ is a pairwise homeomorphism and $(i, j)$-semihomeomorphism, then $H$ is also an ( $i, j$ )-irresolute-bitopological group.

Proof. Let $x$ and $y$ be any two points in $H$ and let $W \subset H$ be an $(i, j)$ semiopen neighbourhood of $x \circ y^{-1}$. Let $a=f^{-1}(x), b=f^{-1}(y)$. Since $f$ is an ( $i, j$ )-irresolute mapping, the set $f^{-1}(W)$ is an $(i, j)$-semiopen neighbourhood of $a \star b^{-1}$, and as $G$ is an $(i, j)$-irresolute-bitopological group there are $(i, j)$-semiopen neighbourhoods $A$ and $B$ of $a$ and $b$, respectively with $A \star B^{-1} \subset f^{-1}(W)$. Pre- $(i, j)$-semiopenness of $f$ implies that the sets $U=f(A)$ and $V=f(B)$ are $(i, j)$-semiopen neighbourhoods of $x$ and $y$ that satisfy $U \circ V^{-1}=f(A) \circ(f(B))^{-1}=$ $f\left(A \star B^{-1}\right) \subset W$. This means that $\left(H, \circ, \tau_{1}\left|H, \tau_{2}\right| H\right)$ is an $(i, j)$ -irresolute-bitopological group.

Theorem 3.6. Let $f: G \rightarrow H$ be a pairwise homeomorphism, where $\left(G, \star, \tau_{1}, \tau_{2}\right)$ and $\left(H, \circ, \tau_{1}\left|H, \tau_{2}\right| H\right)$ be (i,j)-irresolute bitopological groups. If $f$ is $(i, j)$-irresolute at the neutral element $e_{G}$ of $G$, then $f$ is $(i, j)$ irresolute on $G$.

Proof. Let $x \in G$ be an arbitrary element, and let $W$ be an $(i, j)$ semiopen neighbourhood of $y=f(x)$ in $H$. Since the left translations in $H$ are $(i, j)$-semihomeomorphisms, there is an $(i, j)$-semiopen neighbourhood $V$ of the neutral element $e_{H}$ of $H$ such that $l_{y}(V)=$ $y \circ V \subset W$. From $(i, j)$-irresoluteness of $f$ at $e_{G}$ it follows the existence of an $(i, j)$-semiopen neighbourhood $U$ of $e_{G}$ such that $f(U) \subset V$. But $l_{x}: G \rightarrow G$ is a pre- $(i, j)$-semiopen mapping, so that the set $x \star U$ is an $(i, j)$-semiopen neighbourhood of $x$, for which we have $f(x \star U)=f(x) \circ f(U)=y \circ f(U) \subset y \circ V \subset W$ : Hence $f$ is $(i, j)-$ irresolute at the point $x$ of $G$, and since $x$ was an arbitrary element in $G, f$ is $(i, j)$-irresolute on $G$.

Theorem 3.7. Every biopen subgroup $H$ of an ( $i, j$ )-irresolute-bitopological group $\left(G, \star, \tau_{1}, \tau_{2}\right)$ is also an ( $i, j$ )-irresolute-bitopological group.

Proof. We prove that for each $x, y \in H$ and each $(i, j)$-semiopen neighbourhood $W \subset H$ of $x \star y^{-1}$ there exist $(i, j)$-semiopen neighbourhoods $U \subset H$ of $x$ and $V \subset H$ of $y$ such that $U \star V^{-1} \subset W$. Since $H$ is biopen, and $W$ is $(i, j)$-semiopen in $G$, the set $W \cap H=W$ is an $(i, j)$ semiopen in $G$ and contains $x \star y^{-1}$. Apply now the fact that $G$ is an $(i, j)$-irresolute-bitopological group to find $(i, j)$-semiopen neighbourhoods $A$ of $x$ and $B$ of $y$ such that $A \star B^{-1} \subset W$. The sets $U=A \cap H$ and $V=B \cap H$ are ( $i, j$ )-semiopen subsets of $H$ which contain $x$ and
$y$ and satisfy $U \star V^{-1} \subset A \star B^{-1} \subset W$, which means that $H$ is an ( $i, j$ )-irresolute-bitopological group.
Theorem 3.8. A nonempty subgroup $H$ of an $(i, j)$-irresolute-bitopological group $G$ is $(i, j)$-semiopen if, and only if its $(i, j)$-semiinterior is nonempty.
Proof. Assume $x \in(i, j)-s \operatorname{Int}(H)$. There is an $(i, j)$-semiopen set $V$ such that $x \in V \subset H$. This implies $x \star V \subset H$. For every $y \in H$ we have $y \star V=y \star x^{-1} \star x \star V \subset y \star x^{-1} \star H=H$. Since $y \star V$ is $(i, j)-$ semiopen we conclude that $H=\cup\{y \star V: y \in H\}$ is $(i, j)$-semiopen as the union of $(i, j)$-semiopen sets. The converse is trivial.
Theorem 3.9. Let $\left(G, \star, \tau_{1}, \tau_{2}\right)$ be an $(i, j)$-irresolute-bitopological group. Then every biopen subgroup of $G$ is $(i, j)$-semiclosed in $G$.
Proof. Let $H$ be a biopen subgroup of $G$. Then every left coset $x \star H$ of $H$ is $(i, j)$-semiopen because $l_{x}$ is a pre- $(i, j)$-semiopen mapping. Thus, $Y=\underset{x \in G \backslash H}{\cup} x \star H$ is also $(i, j)$-semiopen as a union of $(i, j)$-semiopen sets. Then $H=G \backslash Y$ is $(i, j)$-semiclosed.

Theorem 3.10. Let $U$ be a symmetric $(i, j)$-semiopen neighbourhood of the identity $e$ in an ( $i, j$ )-irresolute-bitopological group $G$. Then the set $L=\bigcup_{n=1}^{\infty} U^{n}$ is an $(i, j)$-semiopen and $(i, j)$-semiclosed subgroup of $G$.

Proof. It is easy to see that $L$ is a subgroup of $G$ : if $x \in U^{p}, y \in U^{q}$ are elements from $L$, then $x \star y \in U^{p+q} \subset L$; if $x \in L$, say $x \in U^{k}$, then $x^{-1} \in\left(U^{-1}\right)^{k}=U^{k} \subset L$. Because all translations in $G$ are pre- $(i, j)-$ semiopen mappings, $U^{n}$ is $(i, j)$-semiopen for each $n \in N$, and thus also $L$ is $(i, j)$-semiopen in $G$. By Theorem 3.9, $L$ is $(i, j)$-semiclosed.
Corollary 3.11. Let $G$ be an $(i, j)$-irresolute bitopological group, and $\mu_{e}$ the collection of all $(i, j)$-semiopen neighbourhoods of $e$. Then
(1) for every $U \in \mu_{e}$, there is a $V \in \mu_{e}$ such that $V^{-1} \subset U$;
(2) for every $U \in \mu_{e}$ and every $x \in U$, there is $V \in \mu_{e}$ such that $x \star V \subset U$.
Proof. (1). It follows from the fact that the inverse mapping $i$ is $(i, j)-$ irresolute and $i(e)=e$.
(2). This is follows from: ' $x$ is an ( $i, j$ )-semihomeomorphism, and $l_{x}(e)=x$, so that there is a neighbourhood $V$ of $e$ such that $l_{x}(V) \subset U$, that is, $x \star V \subset U$.
Theorem 3.12. Let $G$ be an $(i, j)$-irresolute bitopological group, $A \subset G$ and $\mu_{e}$ the system of all $(i, j)$-semiopen neighbourhoods of $e$. Then $(i, j)-s \operatorname{Cl}(A)=\cap\left\{A \star U: U \in \mu_{e}\right\}$.
Proof. Let $x \in(i, j)-s \mathrm{Cl}(A)$ and let $U$ be an $(i, j)$-semiopen neighborhood of $e$. The inverse mapping $i$ is $(i, j)$-irresolute, so that $i(e)=e$
implies the existence of an $(i, j)$-semiopen neighbourhood $V$ of $e$ such that $i(V)=V^{-1} \subset U$. From $x \star V \cap A \neq \emptyset$, it follows that for some $v \in V$ and some $a \in A$ it holds $a=x \star v$, that is, $x=a \star v^{-1} \in$ $A \star V^{-1} \subset A \star U$. As $U$ is an arbitrary element from $\mu_{e}$ it follows $(i, j)-s \mathrm{Cl}(A) \subset \cap\left\{A \star U: U \in \mu_{e}\right\}$. Conversely, let $x \notin(i, j)-s \mathrm{Cl}(A)$. Then there exists $V \in \mu_{e}$ such that $x \star V \cap A=\emptyset$. Pick an $(i, j)-$ semiopen neighbourhood $U$ of $e$ such that $U^{-1} \subset V$; the existence of such a set $U$ follows from the $(i, j)$-irresoluteness of the inverse mapping $i$ at $e$. Then $\left(x \star U^{-1}\right) \cap A=\emptyset$, thus $x \neq A \star U$. Therefore, $\cap\left\{A \star U: U \in \mu_{e}\right\} \subset(i, j)-s \mathrm{Cl}(A)$, and the theorem is proved.

Theorem 3.13. Let $A$ and $B$ be subsets of an $(i, j)$-irresolute-bitopological group $G$. Then we have the following
(1) $(i, j)-s \mathrm{Cl}(A) \star(i, j)-s \mathrm{Cl}(B) \subset(i, j)-s \mathrm{Cl}(A \star B)$;
(2) $((i, j)-s \mathrm{Cl}(A))^{-1}=(i, j)-s \mathrm{Cl}\left(A^{-1}\right)$;
(3) $((i, j)-s \operatorname{Int}(A))^{-1}=(i, j)-s \operatorname{Int}\left(A^{-1}\right)$.

Proof. (1). Suppose that $x \in(i, j)-s \mathrm{Cl}(A), y \in(i, j)-s \mathrm{Cl}(B)$. Let $W$ be an $(i, j)$-semiopen neighbourhood of $x \star y$. Then there are $(i, j)$ semiopen neighbourhoods $U$ and $V$ of $x$ and $y$ such that $U \star V \subset W$. Since $x \in(i, j)-s \mathrm{Cl}(A), y \in(i, j)-s \mathrm{Cl}(B)$, there are $a \in A \cap U$ and $b \in B \cap V$. Then $a \star b \in(A \star B) \cap(U \star V) \subset(A \star B) \subset W$. This means $x \star y \in(i, j)-s \mathrm{Cl}(A \star B)$, that is, we have $(i, j)-s \mathrm{Cl}(A) \star(i, j)$ $s \mathrm{Cl}(B) \subset(i, j)-s \mathrm{Cl}(A \star B)$.
(2). Since the inverse mapping $i: G \rightarrow G$ is an $(i, j)$-semihomeomorphism, then by Lemma 2.4 we have $(i, j)-s \mathrm{Cl}(i(A))=(i, j)-s \mathrm{Cl}\left(A^{-1}\right)=i((i, j)-$ $s \mathrm{Cl}(A))=((i, j)-s \mathrm{Cl}(A))^{-1}$.
(3). Since the inverse mapping $i$ is an $(i, j)$-semihomeomorphism, which by Lemma 2.4 gives $\left.(i, j)-s \operatorname{Int}\left(A^{-1}\right)=(i, j)-s \operatorname{Int}(A)\right)^{-1}$.

## References

[1] S. N. Maheshwari and R. Prasad, On pairwise irresolute functions, Mathematica, 18(41) 2(1976), 169-172.
[2] S. N. Maheshwari and R. Prasad, Semiopen sets and semicontinuous functions in bitopological spaces, Math. Notae, 26(1977/78), 29-37.

Durkai Amman Kovil Street, Veeraganur, Salem 636 116, Tamilnadu, India.
E-mail address: giri88maths@gmail.com
Department of Mathematics, Rajah Serfoji Govt. College, Thanjavur613 005, Tamilnadu, India.
E-mail address: nrajesh_topology@yahoo.co.in


[^0]:    2000 Mathematics Subject Classification. 54C10, 54C08, 54C05.
    Key words and phrases. Bitopological group, $(i, j)$-semiopen sets.

