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Abstract 

 

In this paper we consider the set B of all countable bounded subsets of V, where V is a 

totally ordered -Dedekind complete Riesz space equipped with the order topology. 

We show that on B there exists a function that in a sense behaves as an invariant 

“mean”. To do this, we construct a set of “approximately invariant means” and we show, 

using the Ultrafilter Theorem, that this set has a cluster point. This cluster point is the 

“invariant mean” on B that we are looking for.  
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1. Introduction 

 

A Riesz space V (see [5]) is a vector space endowed with a partial order “ ” that: 

   (a) If ,  then  , , ,x y x z y z x y z V . 

   (b) If , then  , ,x y x y x y V and 0 a  . 

   (c) For all ,x y V ,  their “supremum” x y  and their “infimum” x y  with respect to “ ”  

        exist and are elements of V . 

 

Here we let V to be a totally ordered -Dedekind complete Riesz space. The total ordering ensures 

that all elements are comparable with respect to  and hence the order topology is well defined on 

V.  The -Dedekind completeness means that every countable subset of V which is bounded above 

has a least upper bound (supremum). We set the order topology ordT  on V. Thus, ( , )ordV T is in a 

sense a generalization of ( , )ordT . Hence, ( , )ordV T  becomes a regular space (we refer to [7] for 
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details regarding the order topology).  It is well known (see [2]) that every element x  in a Riesz 

space V has unique positive 0x x  and negative 0x x  parts. Also, x x x  and 

an absolute value is defined as x x x . Regarding convergence in a Riesz space V , a net 

{ }x  in V  is said to converge monotonely, if it is a monotone decreasing (respectively increasing) 

net and its infimum (respectively supremum) x  exists in V and is denoted by x x  (respectively

x x  ). A net { }x in a Riesz space V is said to converge in order to x if there exists a net { }a

in V such that 0a   and        .nx x a    

 

Example 1.1: Consider 
n
  with the usual vector operations, its usual norm derived by the order 

topology, and the partial order defined by: 

                                                          , 1,2,...,k kx y x y k n . 

Then, 
n
is a totally ordered -Dedekind complete Riesz space. 

 

It is worth noting that we can also define a norm on a Riesz space V in such a way that it 

becomes a normed lattice ( , )V  . That is, if , then x y x y , Vyx  , . 

A normed lattice which is also a Banach space is called a Banach Lattice  (see [2]) . 

 

Example 1.2: All of the classical Banach Spaces, lp , c, co , ( )C K , ( )pL  are Banach lattices in 

 their usual norm and the pointwise (almost everywhere in the case of ( )pL ) order.  

 

The next result shows that there exists a relation between ( , )ordV T and ( , )V . Our proof-and hence 

the result- also holds for order intervals in general partially ordered Riesz spaces. 

 

Lemma 1.3 

The closed order intervals of ( , )ordV T  are also closed in ( , )V . 

Proof: At first we show that the positive cone ( , )ordV T  is normed closed. To see this, assume that 

a net { }y V satisfies y y in ( , )V  . We have to show that y V . Indeed, since 

y y y y V   and since is a lattice norm, y y y y   and hence y y . 

From the uniqueness of the limit point (since ,V  is Hausdorff), y y . Hence, y V . Thus, 

V is closed.  Now let ,x y V   and assume w.l.o.g. that x y . Then, it is easy to observe (see [5]) 

that the order closed interval [ , ]x y  is written as [ , ] ( ) ( )x y x V y V . Since ( , )ordV T  is 

https://en.wikipedia.org/wiki/Monotone_sequence
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normed closed, so are the sets ( ), ( )x V y V , and hence their intersection. Thus, [ , ]x y   is 

normed closed. □ 

 

 

 

2. The Mean of a Set of Sequences 

 

The question that we answer affirmatively here is the following: Is there any natural way of 

associating a shift invariant “mean”-like function to the set of countable bounded subsets of 

( , )ordV T ? Intuitively, this function should be analogous and a generalization of the standard 

(weight-free) mean value/average on finite sets of ( , )ordT .   

 

Formulation of the problem: Consider doubly infinite sequences { }n nx in ( , )ordV T , that is, 

elements of V . Now let B V  be the set of all such sequences that are bounded. That is, if 

{ }n nx x B , then there is a b V  with  sup{ }n nx b . This set is well defined, since by 

assumption V  is totally ordered -Dedekind complete. We set the product topology on V , where 

( , )ordV T has the order topology, and we consider B V  with the subspace topology induced by 

the topology of V . It is worth mentioning that apart from the topology considered in our problem, 

one can put a norm on B , by setting sup n
n N

x x . This norm induces a metric yxyxd ),(  

and hence another topology.  

 

Definition 2.1: A mean on the set B is a linear map : B V such that for every { }n nx x B

we have, inf ( ) supn n
n n

x x x .  

 

Notice that the inf and the sup are well defined, since { }n nx is bounded from above and below 

and ( , )ordV T is totally ordered and -Dedekind complete.  

 

Example 2.2: Consider the set B  of doubly bounded real valued sequences. 

(i) Define : B  by ( ) n n

n

a w a , where nw  is a weight such that 1n

n

w . Then, 

according to Definition 2.1, μ is a mean on B. 

 

(ii) Define : B  by ( ) n

n K

a a , where K is a finite subset of . Then, according to 

Definition 2.1, μ is a mean on B. 
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The two “means” in the above example are fundamentally different, in the sense that the second, in 

contrast to the first one, is in addition shift invariant according to the following definition.  

 

Definition 2.3: Let B V  be the set of doubly infinite bounded sequences in ( , )ordV T . The shift 

operator BBS : , is defined by S(xn) = xn+1 , where { }n nx x B .  A mean is said to be shift 

invariant if for all x B it holds that μ(S(x)) = μ(x). 

 

Here note that the second function in Example 2.2, as being shift invariant, can be considered as an 

averaging procedure, where the mean value is not affected by which element of the sequence is 

considered as the ‘center’ (position “0”) of the sequence. 

 

The question that we discuss here it now becomes concrete: Does such a shift invariant mean 

function on B V  exist?  And if it does, can we provide a method of constructing it? We pursue 

this question in the following section and with the aid of a weak version of the Axiom of Choice 

(namely the Ultrafilter theorem) we show that such a function exists on B V . Since our proof is 

purely an existential one, as it uses a version of the Axiom of Choice, most probably a constructive 

method is hard to be given.  

 

 

 

3. Invariant Means-Main Result 

 

In this section we present the main result of this article. At first, we construct “approximately 

invariant means” and then we show the existence of shift invariant means from the approximately 

invariant means.  

 

Next we present some preliminary results necessary for the proof of the main theorem. 

 

Definition 3.1: A sequence { }n n
 of means is approximately invariant if for all x B

lim ( ( )) ( )n n
n

S x x . 

 

The existence of such approximate means is guaranteed by the following Lemma.  

 

Lemma 3.2: There is a sequence { }n n  of means such that for all x B , )())((lim xxS nn
n

 


. 

Proof:  For { }n nx x B , let 



n

i

in x
n

x
1

1
)( . Then, by definition 2.3,

n

x

n

xx
xxS

n

nn

2
)())((

11






 , where 


n

Nn

xx sup .   

Thus, 0)())((lim 


xxS nn
n

 .                     



5 
 

How to conclude the existence of invariant means? Interestingly, the proof of the existence of 

invariant means will be non-constructive. Basically, we consider the set BVM of all means and 

we topologize it in such a way that M  becomes a compact space. To do this we use a special case 

of Tychonoff’s theorem that is equivalent to the Ultrafilter Theorem
1
. Then we show that the 

sequence { }n n
 of the approximately invariant means has a cluster point , which is shift 

invariant. That  is the mean-like function we are looking for.   

 

We view M  as a subset of BV , by identifying a mean μ with the indexed family Bxx ))(( . We 

then give BV the product topology and M  the subspace topology. This way, the evaluation maps 

(projections) Bxx ,)( , are continuous maps from M  to V  for each x B . Notice also 

that the definition of a “mean” actually makes M  a subset of a product of ordered closed 

intervals
2
. That is, [ ( ), ( )]

x B

m x M xM , where ( ) inf n
n

m x x  and ( ) n
n

M x sup x  . 

For the proof of the proposition 3.4, we need the next lemma. Its proof is presented in the 

Appendix and it does not use the general Tychonoff’s theorem (and thus it avoids general Axiom 

of Choice) but instead the strictly weaker Ultrafilter Theorem.  

 

Lemma 3.3: Let I  be an indexed set and assume that  ,i iX T , i I , are compact Hausdorff 

spaces. Then ,i pr

i I

X T


 
  
 
  with the product topology is also compact. 

 

Proposition 3.4: The set of all means BVM  is a compact space. 
 

Proof: We show that M is a closed subset of a compact space. Since [ ( ), ( )] ( , )ordm x M x V T is an 

ordered closed and bounded interval that it has the least upper bound property (recall that, ( , )ordV T

is -Dedekind complete space), the Heine-Borel 
3
 theorem implies that it is also compact (see [7] 

Thm. 27.1). Moreover, [ ( ), ( )]m x M x  with the subspace topology induced by the ordT  on V is a 

Hausdorff space.  Hence, from Lemma 3.3, [ ( ), ( )]
x B

X m x M x   is a compact space. We show 

that 1(0)fM , for various continuous maps :f X V . Recall also that the evaluation maps

Bxx ,)( , are continuous. Recall (see definition 2.1) that an element M  is a “mean”, 

if and only if is a bounded linear map. That is, , ,x y B , 

                                                             
1 In contrast to the general version of Tychonoff’s Theorem that is equivalent to the Axiom of Choice (see [6]), the 

version that we use here is equivalent to the Ultrafilter Theorem (See the Appendix) . It is also well know that 

Ultrafilter theorem is strictly weaker that the Axiom of choice (see [4]).  
2 which by Lemma 1.3 are also normed closed. 
3 Note that the Heine-Borel theorem can be proved in ZF without using any version of the Axiom of Choice. The proof  

of this is given in 4.6 of [4].  
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                                                     0)()()(  yxyx   

                                                            0)()(  xx    

 

where, for every { }n nx x B we have, inf ( ) supn n
n n

x x x .  

Hence, 1(0)f M , where f ’s are the above evaluation maps )(x . Since f is continuous, 

then )0(1f  is closed (because {0} is closed in ( , )ordV T ). Thus, since M  is the intersection of 

closed sets, it is closed. □ 

 

The next lemma is a version of the Bolzano-Weierstrass property for compact spaces. A concise 

proof is presented in the appendix. 

 

Lemma 3.5: If X is a compact space then every sequence n n
x


in X has a cluster point. That is, 

there is a point Xx such that for every open neighborhood xU  of Xx , x n n
U x X


   

contains infinitely many points.  

 

Now it follows the proof of the main result of this article.  

 

Theorem 3.6: There exists an invariant mean M . 
 

Proof: Applying Lemma 3.5 on M  (which is compact by Proposition.3.4) and on the sequence of 

approximately invariant means { }n n
 (see definition 3.1), we conclude that { }n n

has a cluster 

point . We show that this is shift invariant. Let Bx arbitrary, and consider the neighborhood 

U of :  

                         { : , ( ) ( ) ( ( )) ( ( )) }U x B x x and S x S xM  

 

Actually this is a basic neighborhood defined by imposing conditions on two coordinates of a 

general element BVM . Since is a cluster point of { }n n , then  Un   for infinitely 

many n. Let ε > 0 (arbitrary), then n n n so that  Un   . We can take n  large enough 

such that we have (see also Lemma 3.2)   )())(( xxS nn ,  Un  . Thus, 

 

                3)()()())(())(())(()())((  xxxxSxSxSxxS nnn  

 

Since ε > 0 is arbitrary, ).())(( xxS    □ 

 

 

 

https://www.google.com/search?q=Weierstrass&spell=1&sa=X&ved=0ahUKEwiklraKiPXJAhUFfRoKHc-JCNUQvwUIGigA&biw=1920&bih=920
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4. Conclusion 

 

In this paper we have shown how one can derive the existence of invariant “mean-like” function 

for any countable sequence of elements in a σ-Dedekind-complete totally ordered Riesz Space. For 

this we have used a weaker version of the Axiom of Choice, namely the Ultrafilter Theorem. At 

first, we provided an example on  in which the interpretation of the “mean” seemed quite 

intuitive and natural. It would be interesting to provide an interpretation, if any, of the “mean” in 

Riesz Spaces. Also, it would be interesting to extend these results in more general topologically 

ordered spaces.   

 

As we have seen, the proof of Proposition 3.4 relies on the Heine-Borel Theorem. Recall that a 

topological vector space has the Heine–Borel property, if and only if, every closed and bounded 

subset of it is compact. For example, this theorem does not hold as stated for general topological 

vector spaces. Many metric spaces fail to have the Heine–Borel property. For instance, the metric 

space of rational numbers (or indeed any incomplete metric space) fails to have the Heine–Borel 

property. Complete metric spaces may also fail to have the property. For example, no infinite-

dimensional Banach space has the Heine–Borel property. On the other hand, some infinite-

dimensional Fréchet spaces do have the Heine–Borel property. The space ( )C K
 of smooth 

functions on a compact set 
nK  , considered as a Fréchet space, has the Heine–Borel property, 

as can be shown by using the Arzelà–Ascoli theorem. We ultimately aim to investigate how the 

concept of invariant mean or an analogous one can be defined whenever we have an ordered 

structure on a topological vector space that satisfies the Heine-Borel property. Since any nuclear 

Fréchet space (see [3]) has the Heine–Borel property it is natural to consider at first these spaces.  
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Appendix 

In this appendix we prove Lemmas 3.3 and 3.5 that are crucial for the proof of our main result.  

For the proof of Lemma 3.3 we use the Ultrafilter theorem, that is: “Every filter on a set can be 

extended to an ultrafilter”.  

It should be mentioned that the Ultrafilter Theorem is equivalent to many useful theorems of ZFC: 

Compactness theorem in logic; completeness theorem in logic; Tychonoff’s theorem for Hausdorff 

spaces; and more. However, even if the general version of Tychonoff’s Theorem is equivalent to 

Axiom of Choice (see [6]), the Ultrafilter Theorem is strictly weaker than the Axiom of Choice. 

That is, the Axiom of Choice implies the Ultrafilter Theorem; however the implication cannot be 

reversed. Specifically, in Cohen's first model (see [4]) the Axiom of Choice fails badly: The real 

numbers cannot be well-ordered, and the Axiom of Countable Choice fails (and consequently the 

Axiom of Choice). However, in that model the Ultrafilter Theorem holds.  

Next, we show that the Ultrafilter theorem implies the Tychonoff Theorem in the case of 

Hausdorff spaces
4
. (That is, “The product of compact Hausdorff spaces is compact”). To do this 

we need the following results from the general theory of filters (see [1]). 

 

 

Useful Results from the theory of Filters 

 

A: Let   be an ultrafilter on the set X  and let :f X Y  be a map of sets. Then, 

  1* :f A Y f A    is an ultrafilter on Y .  

 

B: A filter   on a topological space Y  converges to a point y Y  if for all open sets U  that 

contain y , U   . 

 

                                                             
4 Actually it can be proven that the reverse implication also holds (see 4.37, p 61 in [4]). 
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The Ultrafilter Theorem is essential for the proof of the next two results (see [1]). 

 

C: A topological space Y  is compact, if and only if every ultrafilter   on Y  converges to at least 

one point. 

 

D: A topological space Y  is Hausdorff, if and only if every ultrafilter   on Y  converges to at 

most one point. 

 

From C and D we have: 

 

E: A topological space Y  is compact and Hausdorff, if and only if every ultrafilter   on Y  

converges to exactly one point.  

 

 

Lemma 3.3: Let I  be an indexed set and assume that  ,i iX T  , i I , are compact Hausdorff  

spaces. Then ,i pr

i I

X T


 
  
 
  with the product topology is also compact.  

 

Proof: Let i i I
X


 be the collection of compact Hausdorff spaces. To show that ,i pr

i I

X T


 
  
 
  is 

compact it is enough to show (see result C) that every Ultrafilter   on i

i I

X X


  has a limit 

point. Let :i ip X X  be the thi  projection map. Note that the product topology prT  on 

i

i I

X X


 is generated by the sets   1 : ,i ip U i I U T   . In other words, 

  1 : ,i ip U i I U T    is a sub-basis for prT . By result A,   1* :i i ip G X p G    is an 

ultrafilter on iX  . Since iX is compact and Hausdorff, by result E, it has exactly one limit point, 

i ix X . Thus, i ii I
i I

x x X




  5
.    

The following claim concludes the proof.     

 

We claim that the above point i i I
x x X


  , is a limit point for the Ultrafilter . 

 

                                                             
5
 Note that here we do not use the Axiom of Choice (or any its versions) because the i ix X  , i I , are unique, and 

thus, there is no need for any selection principle.  
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Indeed, since   1 : ,i ip U i I U T    is a sub-basis of prT  on i

i I

X X


 ,  any open set G  of X

containing i i I
x x


 , it contains also a finite intersection of sets of the form

  1 : ,i ip U i I U T    which contain i i I
x x


 . That is,  1

i

i J I

x p U G

 

   for some finite 

subset J   of I  and any open set G in prT  with x G .  To show that i i I
x x


 is a limit point of 

 , it is enough to show that  contains every open neighborhood of i i I
x x


 . 

Since filters are closed under supersets and finite intersections, according to the above it is enough 

to show that if  1
ix V p U   , where , ii I U T  , then V  .  

Indeed, suppose x V  . Since ( )i ip x x U   is a limit point of *ip  , we have by result B that 

*iU p   for all i I  . Hence, i I  ,   1
iV p U  . 

This concludes the proof of the theorem.   

 

 

The following result is a version of Bolzano-Weierstrass  property for general topological compact 

spaces.  

 

Lemma 3.5: If X is a compact space then every sequence n n
x


of X  has a cluster point. That 

is, there is a point Xx such that for every open neighborhood xU  of Xx , x n n
U x X


   

contains infinitely many points.  

 

Proof: For each x  that is not a cluster point, there is a neighborhood xU  of Xx ,  that contains 

only finitely many point from the sequence  n n
x


. Clearly no finite subcollection of such 

neighborhoods of x  could cover X  . (Any finite union of such neighborhoods of x  contains only 

finitely many points from n n
x X


 and hence cannot cover n n

x


 and thus X  ). Hence, the 

family  x x X
U


does not cover X

6
. Since x

x X

U



contains all the points of X  that are not cluster 

points, and since x

x X

U



 does not cover X , then X must contain at least one cluster point of 

n n
x


. Thus, n n

x


 has a cluster point in X .   

 

                                                             
6
 Recall the definition of Compactness. 

https://www.google.com/search?q=Weierstrass&spell=1&sa=X&ved=0ahUKEwiklraKiPXJAhUFfRoKHc-JCNUQvwUIGigA&biw=1920&bih=920

