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Abstract 

In this article we consider alternative definitions-descriptions of a set being Infinite within the 

primitive Axiomatic System of Zermelo, Z . We prove that in this system the definitions of 

sets being Dedekind Infinite, Cantor Infinite and Cardinal infinite are equivalent each other. 

Additionally, we show that assuming the Axiom of Countable Choice, 
0

AC , these 

definitions are also equivalent  to the definition of a set being Standard Infinite, that is, of not 

being finite. Furthermore, we consider the relation of
0

AC (and some of its special cases) 

with the statement SD  “A set is Standard Infinite if and only if it is Dedekind Infinite”. 

Among other results we show that the system  Z SD  is ‘strictly weaker’ than 
0

Z AC .  

 

 

1. Introduction 

In this section we briefly present the aims of this article and we provide an overview of its 

main results. Furthermore, we provide the necessary definitions and statements that appear in 

the development of our arguments.  

 

The concept of finiteness, defined as done via natural numbers, is categorical, thus not 

problematic. If, however, the concept of being finite is considered to be more fundamental 

than that of a number, as strongly advocated, e.g., by Frege and Dedekind (where natural 
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numbers are defined as the cardinals of finite sets) problems arise. First of all the concept of 

being finite loses its absoluteness. Secondly, how should finiteness be defined?  Dual 

problems arise in relation to the concept of being infinite. There are several alternative 

different definitions-descriptions of a set being infinite; the oldest one is due to Dedekind (see 

[3]). In our presentation we consider Dedekind Infinite ( DInf ), Cantor Infinite (CInf ) and 

Cardinal infinite (
0

W ) alternative definitions of a set being infinite.  These definitions and 

the Standard one of being Infinite ( SInf ) are all equivalent to each other within the 

axiomatic system ZFC which includes the Axiom of Choice, AC , in full strength (for details 

we refer to the classical book in Set Theory by Jech [8]). In this paper we show that this is 

also true even in the weaker system 
0

Z AC that it does not include the Axiom of 

Replacement, the Axiom of Foundation and in which the Axiom of Choice (in full strength) is 

replaced by the Axiom of Countable Choice,
0

AC . Additionally we show that if we drop

0
AC , the alternative definitions DInf , CInf ,

0
W , are all equivalent each other in Zermelo 

system  Z 2
, but they are not equivalent to SInf .  Furthermore, we investigate how the 

“strength” of 
0

Z AC  is affected if we substitute 
0

AC with  the statement SD : “A set is 

Standard Infinite iff it is  Dedekind Infinite, that is, if  there is a ‘one to one’ correspondence 

‘onto’ one of its proper subsets”3.  In this line of thought, we show that assuming the 

consistency of Z  and using results from Set Theory and Model Theory, the system Z SD is 

‘strictly weaker’ than
0

Z AC .  Thus, in mathematical areas that avoid any version of the 

Axiom of Choice we could consider Z SD  instead of 
0

Z AC . 

 

Here it is worth mentioning that K. Gödel [4] and P. Cohen [1] showed the independence of 

the Axiom of Choice from the system ZF  and hence from Z 4
. Particularly, assuming ZF  is 

consistent,  K. Gödel showed that the negation of the Axiom of Choice is not a theorem of 

ZF  by constructing an inner model (the constructible universe) which satisfies 

ZFC ZF AC  ; thus, showing that ZFC  is consistent. Assuming ZF  is consistent, P. 

Cohen employed the technique of forcing, developed for this purpose, to show that the Axiom 

of Choice ( AC ) itself is not a theorem of ZF by constructing a much more complex model 

which satisfies ZF AC  ( ZF  with the negation of Axiom of Choice added as axiom) and 

                                                             
2
 See Section 2 for the Axioms of the original Zermelo system Z  . 

3 See Chailos [2] where a logical paradox is resolved within Z SD  . 
4
 The Axiom of Choice is not the only significant statement which is independent of ZF . For example, 

the Generalized Continuum Hypothesis ( GCH ) is not only independent of ZF , but also independent 

of ZFC . However, ZF  plus GCH  implies AC , making GCH  a strictly stronger claim than AC , 

even though they are both independent of ZF (for details see Jech[8]). 

https://en.wikipedia.org/wiki/Kurt_G%C3%B6del
https://en.wikipedia.org/wiki/Inner_model
https://en.wikipedia.org/wiki/Constructible_universe
https://en.wikipedia.org/wiki/Paul_Cohen_%28mathematician%29
https://en.wikipedia.org/wiki/Paul_Cohen_%28mathematician%29
https://en.wikipedia.org/wiki/Forcing_%28mathematics%29
https://en.wikipedia.org/wiki/Continuum_hypothesis#The_generalized_continuum_hypothesis
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thus showing that ZF AC is consistent. Together these results establish that the Axiom of 

Choice is logically independent from ZF .  It is worth noting that the assumption that ZF  is 

consistent is harmless because adding another axiom to an already inconsistent system cannot 

make the situation worse. Because of independence, the decision whether to use (any version 

of) the Axiom of Choice (or its negation) in a proof cannot be made by appeal to other axioms 

of set theory. The decision must be made on other grounds, some of which are discussed in the 

sequel. 

For the following recall that two sets ,X Y  are called equipotent if and only if there exists a 

bijection from X  toY and we also write card cardY  . 

We give the formal ‘standard’ definition of a set to be finite. 

Definition 1.1 (Finite Set) 

A set X  is finite if (and only if) there is a natural number n   such that there is a one to 

one correspondence between X  and n . Thus, X  is finite iff it is equipotent to somen . 

 

Definitions 1.2 

      (a) We set   the least inductive set guaranteed by the Axiom of Infinity (see section 2). 

      (b) A set X  is countable if and only if there is a bijection from X  to  , thus if X  is  

          equipotent to  .  

 

Observe that according to the above definition   is the least countable ordinal. The 

cardinality of   and hence by 1.2 (b) of any countable set X  is denoted by 0 . Thus, 

0( )card X  . 

Definitions 1.3 (Various definitions of Infinite Sets) 

1. SInf :  A set X is Standard Infinite iff it is not Finite (as in Definition 1.1).  

2. 
0

W : A set X  is Cardinal Infinite iff it has cardinality at least 0 , 0( )card X  . 

3. CInf : A set X  is Cantor Infinite iff it contains a countable subset. 

4. DInf : A set X  is Dedekind Infinite iff it contains a proper subset B X  

equipotent to it. Hence, ( ) ( )card B card X .  

 

 

The following statements shall be used extensively in the development of our main 

arguments.   

https://en.wikipedia.org/wiki/Independence_%28mathematical_logic%29
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Statements 1.4 

1. SD :   If a set is Standard Infinite, then it is also Dedekind Infinite.  

2. SC :  If a set is Standard Infinite then it is also Cantor Infinite.  

3. 
0

SW : If a set is Standard Infinite then it is also Cardinal Infinit . 

 

Here we summarize our main results 

(a) In Theorem 3.1 we show that in 
0

Z AC  the different definitions of Infinite sets, SInf , 

0
, ,DInf CInf W are equivalent each other. 

(b) In Theorem 3.5 , which its proof is a variation of the proof of Theorem 3.1, we show that 

in Zermelo system Z  (without any version of the Axiom of Choice) the different definitions 

of Infinite sets
0

, ,DInf CInf W are equivalent each other. Henceforth, the Axiomatic 

Systems Z SD ,  Z SC and 
0

Z SW are equivalent each other. It is worth to note that in

Z  the definitions 
0

, ,DInf CInf W  are not equivalent to SInf , since there is a model of Z  

such that there exists a Standard Infinite set that is not Dedekind Infinite. Such a model is the 

Cohen’s First Model A4 (see [6]).  

 

(c) Lastly, we examine the relation of Z SD  with 
0

Z AC . At first we show that the 

Axiom of Countable Choice on Finite Sets, 
0

finAC , is a theorem of Z SD . In our main 

result (Theorem 3.8) we show that Z SD  (and hence, according to Theorem 3.5, any of its 

equivalent systems Z SC , 
0

Z SW ) is “strictly weaker” than 
0

Z AC .  Specifically, 

assuming consistency of Z , we show that there is a model of Z in which all 
0

, ,SD SC SW  

hold, but 
0

AC fails.  

From (b), (c), as above, we conclude that since the equivalent definitions of Infinite sets 

0
, ,DInf CInf W  in Z  are more intuitively obvious than

0
AC , any proof that adopts any of 

these statements and avoids the use of 
0

AC  is preferable. This is important in many areas of 

Mathematics, such as Foundation of Mathematics, Philosophy of Mathematics, as well as in 

Set Theory that avoids the Axiom of Choice. We note that the system Z  consists of 
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constructive axioms
5
 and it is indispensable from any set theoretical development that does 

not involve atoms. This is another reason that any of the systems Z SD , Z SC ,

0
Z SW is preferable compared to 

0
Z AC .  This is of special interest in discrete 

structures since in Z without assuming any version of the Axiom of Choice the following is 

true. 

Lemma 1.5:  Countable sets have the property of being Dedekind Infinite (no use of
0

AC ) 

Proof: If X  is a countable set, by definition 1.2(b),  
0i i

X a



  . Take now the set

0\{ }Y X a  which is a proper subset of X  with cardinality 0 . To see that X  is Dedekind 

Infinite consider the function :h X Y X  , where 1( )i ih a a   for every i   . Clearly,

h  is ‘one to one’, since if i ja a , 
1 1

( ) ( )
i i j j

h a a a h a
 

   . In addition, h  is also ‘onto’, 

since ( )Range h Y  . Thus, :h X Y X  is a bijection from X  onto a proper subset of 

it, and thus X is a Dedekind Infinite set.  

 

2. The Set Theoretical Framework  

Here we present and develop the necessary set theoretical framework required for proving the 

main theorems of the paper that are presented in section 3.  

 The Axioms of  
0

Z AC  

Suppose that 1 2( , , )nx x x  is a n place well-formed formula (wff) in the formal language 

of set theory L , which is a first order language that in addition to the usual symbol of 

equality it involves a symbol   for a binary predicate called membership.  

1. Axiom of Extensionality: If two sets have the same number of elements, then they are 

identical.  

 ( )x y z z x z y x y          

This axiom does not tell us how we construct sets, but it tells what sets are: A set is 

determined by its elements (and it is atomless). 

The Axioms 2-7 are all constructive axioms 

2. Null Set Axiom: There is an empty set, one which contains no element.  x y y x     . 

                                                             
5 Apart from the Axiom of Extensionality which tells us what sets are (see section 2).  
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Using the Axiom of Extensionality one can easily see that the empty set is unique. We write  

  for the empty set. 

 

3. Pair Set Axiom: If a  and b  are sets, then there is a set  a  whose only element is a and 

there is a set  ,a b  whose only elements are a  and b .

 x y z w w z w x w y           

4. Union Set Axiom: If a  is a set, then there is a set a , the union of all the elements of a  , 

whose elements are all the elements of elements of a  .  

 x y z z y w w x z w            

5. Axiom of Infinity: There is a set which has the empty set,  , as an element and which is 

such that if a  is an element of it, then   ,a a  (or  a a  ) is also an element of it. Such 

a set is called an inductive set: 

   x x y y x z z x w w z w y w y            
 

  

Consequently, this axiom guarantees the existence of a set of the following form:

           , , , , , , , ,          

 

6. Power Set Axiom:  For any set x  there exists a set ( )y P x , the set of all subsets of x  . 

That is,  x y u u y z z u z x          . 

7. Axiom Schema of (restrictive)Comprehension: If a  is a set and 1 2( , , , )nx u u u  is a 

wff in L , where the variable x  is free and 1 2, , nu u u  are parameters (in a model of set 

theory from the axioms stated up to now), then there exist a set b  whose elements are those 

elements of a  that satisfy  .  

 1 2( , , , )nx y z z y z x z u u u          

What this essentially means is that for any set a  and any wff  H x  with one free variable x   

and with parameters in a model of set theory (by the axioms defined as of now), there exist a 

set, unique by the Axiom of extensionality, whose elements are precisely those elements of a  

that satisfy H . We denote this set by  : [ ]b x a H x   .  Hence, this axiom yields to 
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subsets of a given set. Therefore, as a consequence of it, if :f a b  is a function with 

domain a , and codomain b , then ( )Range f  is a well-defined set that is a subset of b . 

The above seven axioms constitute the system Z  (Zermelo). 

8. Axiom of Countable Choice:
0

AC : Suppose b  is any set and P b   any binary 

relation between natural numbers and members of b , then: 

     ( , ) : ( , ( )b n y b P n y f b n P n f n              . 

Essentially, the above axiom states that every Countable Family of nonempty sets has a 

choice function.  That is, if   i i
A


F =  is a countable family of nonempty sets, then there is  

:f F F   such that ( )i if A A  for every iA F .  In contrast to the full Axiom of 

Choice ( AC ) that demands the existence of choice functions :f F F  for arbitrary 

families of nonempty sets, the Axiom of Countable Choice,
0

AC , justifies only a sequence 

of independent choices from arbitrary countable families of nonempty sets (see Ch.8 in [10]).  

This is equivalent to the statement “If i i
X


 is a countable indexed set of nonempty sets, 

then there exists a (choice) function : i

i

f X





  such that i    , ( ) if i X  . That is 

i

i

X


  . ” (See Ch.8, Theorem 1.3 of [7]). In light of the above, 
0

AC  is more 

intuitively natural and is in concord with the techniques and the general spirit of mathematics 

that are based on Discrete/Countable structures (see Lemma 1.5).  

 

Now we present and in some cases we prove necessary results from set theory.  

At first we introduce the Hartogs number of any set.  

Definition 2.1. The Hartogs number of any set A  is the least ordinal number ( )h A   

which is not equipotent to any subset of A . That is, there is no injection :f A   .  

For clarification and further details see Ch7.1. of [7]. There, it is shown that the Hartogs 

number exists for any set and it is an initial ordinal (and thus it is a cardinal).  

Remark 2.2:. Note that if ( )h A  6
 , then there is an injection :g A   . Hence, if A  is 

well-orderable set, ( )h A  is the least cardinal greater than ( )card A  and thus, ( )card A   

                                                             
6 where   is the standard ordering on ordinals. 
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(where here we consider ( )card A  as the ordinal with which the cardinality ( )card A is 

identified). 

An important concept for linearly (or totally) ordered sets, needed for the sequel, is that of 

cofinality.  

With  ,A we denote a linearly ordered set. 

Definiton 2.3: Let  ,A  be a linearly ordered set. The set    , ,B A is called a 

cofinal subset in  ,A , if it is well ordered 
7
 and such that a A b B     with a b  . 

The order type of a well ordered set  ,X , ( )type X , is the unique ordinal number  ,    

which is isomorphic to  ,X 8
. 

Definition 2.4: The cofinality of  ,A is the smallest possible order type of such cofinal set 

 ,B in  ,A . That is,  ( ) min ( ) :  and  cofinal in cf A type B B A B A  .  

The following theorem is central for the development of our results and shall be used 

extensively. 

Theorem 2.5: (Central theorem for existence of cofinal sets ): In ZFC , for every linearly 

ordered set  ,A there exists a transfinite increasing sequence B̂ , where its range   ,B  

is cofinal in  ,A . Furthermore, ( ) ( )type B card A .  (Where here we consider ( )card A  

as the ordinal with which the cardinality ( )card A is identified). 

Proof of Theorem 2.5: We construct a transfinite increasing sequence ˆ :B a     for 

some ( )h A  , where ( ) ( )type B card A .  

Fix b A  (such an element exists, since A  is a set). By the Axiom of Choice there exists a 

choice function g  for the power set of A , ( )P A . 

We define the sequence : ( )a h A   by transfinite recursion (see Ch. 6, Theorem 4.4 in 

[7]) as follows: Given :a   , we consider two cases: 

                                                             
7 And hence it can be viewed as an increasing sequence. 
8 For a proof, using the Axiom of Replacement, that such an ordinal exists see Theorem 6.3.1 in [7]. 
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Case1:  If b a  , for all    and  :  holds for all A a A a a       , we let 

( )a g A   . 

Case 2: Otherwise we let b a . 

Observe that from the recursive construction of :a    this sequence is increasing.  

Claim: There exists ( )h A   such that a b  .  

Proof of Claim: If for all ( )h A   the terms a of the increasing sequence, as constructed 

above, are such as a b  , then a A  .   Hence : ( )h A A   will be an injection. This 

contradicts the definition of Hartogs number (see definition 2.1). Thus, there exists ( )h A   

such that a b  . This proves the claim.         

Now let  ( ) :S h A a b   . By claim, S   and since S  is a well-ordered set, it has 

a least element min S  . From this and the recursive construction of the sequence 

ˆ :B a     we get that A   and thus, ˆB Range B A  . Hence,  

   , ,B A  is a well-ordered set with ( ) ( )type B card A   . (** )  (See remark 2.2.)

  

Moreover, since ( )h A  with A  , there is no a A  such that for all    , a a . 

Since  ,A is linearly ordered, a A        with a B   such that a a  . Thus, 

ˆ :B a    is an increasing sequence such that ˆB Range B A   is cofinal in  ,A  

with ( ) ( )type B card A   . This concludes the proof of the theorem     

 

It is worth to restate the upshot of the above proof:   

Corollary 2.6: For every linearly ordered set  ,A there exists a transfinite increasing 

sequence ˆ :B a      cofinal in  ,A , such that ( )h A  .  

Note that ˆ :B a    , which is cofinal in  ,A can be viewed as an increasing 

function    : , ,f A    such that ( )f a   for   . In such a case we say that 

   : , ,f A    is a cofinal map from  ,   to  ,A . In particular, for ordinals 
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,   (and in general for well-ordered sets) the above analysis justifies the following 

definition. 

Definition 2.7: (cofinal maps): Let ,  ordinals with   . A map :f    is cofinal 

in   if it is increasing and is such that        such that ( )f  . 

According to all of the above (see 2.4, 2.5, 2.6, 2.7) we have the following well defined 

equivalent definition of cofinality of ordinals.   

Definition 2.8 (cofinality of ordinals): The cofinality of an ordinal  is defined to be the  

minimal ordinal   such that  there exists a cofinal map :g   . That is: 

 ( ) min : :  which is cofinal in cf g        . 

Having these equivalent definitions of cofinality
9
 in our disposal, we can easily obtain results 

for the cofinality on ordinals that are required in the sequel.  

Facts about the notion of cofinality 

(a) (0) 0cf   (Immediate from definition 2.4). 

(b) Since for any ordinal  , :id    is a cofinal map in , we get that  cf   . 

(c) An ordinal   is a successor if and only if        and hence if and only if

( ) 1cf    . To see this consider the cofinal map :1f   such that (0)f  .  

(d) If   is a successor ordinal, then ( )cf    . The proof is a consequence of the 

fundamental theorem of cardinal arithmetic. For details see Thm 9.2.4 in [7]. 

Lemma 2.9: Let   be a countable limit ordinal. Then ( )cf     

Proof:  Since  is countable limit ordinal, there is an enumeration of  . That is, 

 n n 
 


  . Recursively define a map :f    as:  (0) min n n

f





  and 

 ( ) max ( 1), nf n f n    . Then, by definition 2.7, it is easy to conclude that :f   is 

a cofinal map in . Since   is the least countable limit ordinal, by definition 2.8

( ) ( )cf cf    .           

According to the above lemma we have, ( ) ( ) ( ) ( )cf cf cf cf            . 

                                                             
9 For an alternative, but according to our above analysis, an equivalent approach to cofinality of 

ordinals we refer to Ch 9, Sec 2 in  [7].  
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Lemma 2.10: If , ,    ordinals and :f   , :g   are cofinal maps in   and  

respectively, then :f g    is a cofinal map in  . 

Proof: Observe that since ,f g  are increasing, f g  is increasing. Now, since :f   is 

cofinal, for every    there exists   such that ( )f  .  Since :g   is cofinal, 

there exists    such that ( )g  .  Because f  is an increasing map, ( ) ( ( ))f f g  . 

Putting everything together,  ( ) ( )f f g    and thus, for every   , there exists 

  , such that  ( )f g  . Therefore,  :f g    is a cofinal map in   .  

Corollary 2.11: If :f   is a cofinal map in  , then ( ) ( )cf cf   . 

(To see this, set ( )cf   in the above lemma 2.10 ). 

Corollary 2.12: For every ordinal   ,  ( ) ( )cf cf cf   . 

Proof: In corollary 2.11 set ( )cf  . Then  ( ) ( )cf cf cf  .  

For the reverse inequality, set ( )cf  in   cf   to get  ( ) ( )cf cf cf  .   

 

Lemma 2.13: If   is a limit ordinal, then ( ) ( )cf cf     

Proof: Since   is a limit ordinal, by definition   sup :       and hence 

 

 

   . The increasing map :f    such that ( )f   10
 , is cofinal in  . 

Now by corollary 2.11, ( ) ( )cf cf   .           (1) 

From (1) and fact (b), ( )cf    . Now let :f    with    be any cofinal map of 

   in  .  Consider :g    such that  ( ) max : ( )g f     . 

Claim:  :g    is cofinal in  .  

Proof of Claim: We first show that :g   is increasing. Indeed, let     , and let 

   such that ( )f   . Since :f   is increasing, ( ) ( )f f     , and 

since   

 

   , by definition of g  we conclude that ( ) ( )g g  . Thus, :g    is 

increasing.  Furthermore, if   , then    and since :f   is cofinal in  ,  

there is a    such that ( )f   . Hence, by the maximality in the definition of 

                                                             
10

 Note that for every    we have    .  
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:g    we conclude that ( )g  . Therefore, for every  , there is   such that

( )g  . Hence, :g   is cofinal in  . This proves the claim.     

Note that by (1) we get that ( ) ( )cf cf     . Since :f    with   is any 

cofinal map of    in  , by setting  ( )cf    in :g    we conclude by corollaries 

2.11 and 2.12 that   ( ) ( ) ( )cf cf cf cf      .       (2) 

From  (1), (2), ( ) ( )cf cf   and the proof is now complete.       

The last definition of this section shall be used in the proof of Theorem 3.8. 

Definition 2.14: An ordinal  is called singular iff ( )cf   , otherwise it is called regular.  

 

3. The Main Results  

In this section we prove in detail the main results of this paper and we discuss their 

consequences.   

In Theorem 3.1 we show that in 
0

Z AC  the different definitions of Infinite sets, SInf , 

0
, ,DInf CInf W are all equivalent each other. 

 In Theorem 3.5, which its proof is a variation of the proof of Theorem 3.1, we show that in 

Z  (without any version of the Axiom of Choice) a set is Dedekind Infinite iff it is Cantor 

Infinite iff it is Cardinal Infinite. Henceforth, the Axiomatic Systems Z SD , Z SC and 

0
Z SW are equivalent. It is worth to note that in ZF  (and hence in Z ) the definitions 

0
, ,DInf CInf W  are not equivalent to SInf , since there is a model of ZF  such that there 

exists a Standard Infinite set that is not Dedekind Infinite. Thus, SD  (and hence SC ,
0

SW ) 

does not hold. Such a model is the Cohen’s First Model A4 (see [6]).  

 

We further study how SD  is related to
0

AC  and we show that
0

Z AC SD |— 11
.  That is, 

the statement SD is a theorem of the system 
0

Z AC . Furthermore we show that 

0

finZ SD AC |— , where 
0

finAC  is the Axiom of Countable Choice on Finite Sets. 

                                                             
11

 X Y|— denotes that the statement Y  is a logical consequence of X . That is, there is a proof of Y

from X , and hence Y  is a theorem of X .  



13 
 

Lastly, we show in Theorem 3.8, using results from section 2 and model theory, that the 

system Z SD  (and hence any of its equivalent-according to Theorem 3.5- systems, 

Z SC , 
0

Z SW ) is strictly weaker than 
0

Z AC . 

In the following theorem we show that in 
0

Z AC  the different definitions of Infinite sets, 

SInf , 
0

, ,DInf CInf W are all equivalent each other. In particular 
0

Z AC SD |— .  

Theorem 3.1:  In 
0

Z AC  a set is Standard Infinite if and only if 
0( )card X   , if and 

only if it is Cantor Infinite,  if and only if it is Dedekind Infinite. Thus, SInf , 

0
, ,DInf CInf W are all equivalent each other.  

 Proof: For this, we show in (a)-(c) that SInf CInf DInf SInf   and in (d) that 

0
CInf W . 

(a): We show, SInf CInf :  (That is, every standard infinite set contains a countable 

subset). The proof is rather simple if we assume the Axiom of Replacement and the Axiom of 

Choice in its full strength (see Appendix Lemma A1). Here we prove it only from 
0

Z AC . 

Let X be a Standard Infinite set.  For every n , let nA be the set of all subsets of  X  with 

cardinality 2n
. Thus, the members of nA  are sets of cardinality 2n

.  Since X  is a standard 

infinite set, by definitions 1.1 and 1.3, , nn A   .  Apply  
0

AC  to the family 

 i i
A


F =  in order to obtain a choice function : F F ,  and via it a subsequence

   n n
B 


 F ,  where each nB  is a subset of X  of cardinality 2n

. (It is worth to note 

that the Axiom of Replacement is not required since    n n
B 


 F  is the image in a 

predefined set of a well-defined function on a set
12

.) 

Observe that the sets  n n
B


are also distinct. We define recursively the sequence  n n

C


 

of mutually disjoint sets as follows (this is a standard technique in analysis):  

0 0C B  ,  1 1 0\C B C  ,  ,

1

1

\
n

n n i

i

C B C




  ,   

Obviously, 1 ( ) 2n

ncard C  , since
1

0

2 2 1
n

i n

i





   . Now it is trivial to observe that the 

family  n n
C


S  is a family of nonempty and mutually disjoint sets. 

                                                             
12 See also section 2 the discussion following the Axiom of Replacement 7. 
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A second application of 
0

AC  to the nonempty family   n n
C


S  guarantees the 

existence of a choice function : S S  , and through this we obtain a set

   n n
C c 


  S , such that i jc c  , i j    (since  n n

C


is a sequence of 

mutually disjoint sets). This set  n n
C c


  is the countable set that establishes X  to be 

Cantor Infinite. (As done earlier in the proof, the Axiom of Replacement is not required since

   n n
C c 


  S )           

          

(b): We show, CInf DInf (that is, if a set is Cantor Infinite then it is Dedekind Infinite). 

Since X  is Cantor Infinite it contains a countable subset B X . That is, there exists a 

bijection :f B .  Define the function  :h X X  as follows: 

( ) ( 1)h x f n    if ( )x f n , x B        and        ( ) ,h x x  if \x X B  .  

(Thus, the action of  h  on B  is identified with the action of f  on the successor of each 

element of  that leaves the remaining elements of X  invariant.)   

 

Claim 1: The function :h X X  is ‘one to one’. 

Proof of Claim 1: Let ,x y X with ( ) ( )h x h y  . In order for such a thing to hold we can 

easily see that either both ,x y B , or , \x y X B . 

In the first case, where ,x y B , we have  ( ), ( )x f n y f m   for some ,n m . From 

the definition of h , ( ) ( ) ( 1) ( 1)h x h y f n f m     , and since f is ‘one to one’, 

1 1n m     and hence n m  . Thus, x y .  

In the second case, where , \x y X B , we conclude that ( ) ( )h x h y x y   . 

This proves claim 1.            

 

Let ( )D h X X  . Then the function  :h X D  from claim 1 is ‘one to one’ and since 

D Range h , then :h X D  is also onto and hence a bijection. Thus, X  is equipotent to 

its subset ( )D h X .  To complete the proof it is enough to show the following.   

Claim 2:  The set ( )D h X  is a proper subset of X . 

Proof of Claim 2:  Let (0)x f  .  We claim that x D . Indeed, if we suppose that x D , 

then ( )x h z  for some z X , and we have the following two cases. 

 (i) If z B , then ( )z f n for some n . Hence by the definition of h , 

(0) ( ) ( 1)x f h z f n    . Thus, (0) ( 1)f f n  . Since f  is ‘one to one’, 0 1n   . 

This leads to a contradiction since 0  is not a successor. 
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 (ii) If \z X B  , then (0) ( )x f h z z    and thus (from the definition of :f B  ) 

z B .  This leads again to contradiction (since by hypothesis \z X B .) 

 

Putting everything together, we conclude that there exists \ ( )x X h X  and therefore 

( )D h X  it is a proper subset of X . This proves claim 2      

The proof of part (b) is now complete.         

 

Remark 3.2: Observe that in (b) of the above proof we have shown thatCInf DInf

without using the Axiom of Countable Choice.  

 

(c):  We show, DInf SInf (that is, if a set is Dedekind Infinite, then it is Standard Infinite-

equivalently not finite). Suppose, for contradiction, that X is a finite, yet a Dedekind infinite 

set. It is well known that in Z  (and hence in
0

Z AC  ) the Pigeonhole Principle holds: “If a 

set is finite, then it does not contain a proper subset equipotent to it.” (see Appendix Lemma 

A2). Hence, X  does not contain a proper subset equipotent to it. This contradicts the 

hypothesis of X being Dedekind Infinite (and thus containing a proper subset equipotent to 

it).  Therefore, DInf  implies SInf .          

Remark 3.3: Observe that in (c) we have shown that DInf SInf  without using the Axiom 

of Countable Choice.  

 

(d):  We show, 
0

CInf W  (that is, a set is Cantor Infinite iff it is Carinal Infinite). 

        (i) 
0

CInf W . Suppose that X is a Cantor Infinite set. Then X  contains a countable 

subset A with 0( )card A  ,   and hence there is a bijection : A X   . Thus, 

0 ( ) ( )card A card X    (see also section 1 ).         

       (ii) 
0

W CInf  . Suppose that X  is a set such that 0( )card X  .  Hence, there is an 

injection :g X .  Thus, [ ]g X  is a countable set and hence X  is Cantor Infinite.  

Remark 3.4: Observe that in (d) we have shown 
0

CInf W without using the Axiom of 

Countable Choice.  

 

Putting (a), (b), (c), (d) together we conclude that in 
0

Z AC , 

0
SInf W CInf DInf   . The proof of the theorem is now complete.     
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Theorem 3.5:  In the axiomatic system Zermelo, Z , a set is Cardinal Infinite if and only if it 

is Cantor Infinite, if and only if it is Dedekind Infinite. Hence, 
0
, ,W CInf DInf are all 

equivalent each other in Z .   

Proof: From remark 3.4, 
0

CInf W in Z , and from remark 3.2, CInf DInf in Z . It 

remains to show that in Z , DInf CInf . That is, if X  is Dedekind Infinite, then X  it is 

also Cantor Infinite. To this end, since X is Dedekind infinite, it contains a proper subset B  

equipotent to it. Thus, :f X B X   which is ‘one to one’ and ‘onto’ B X . Consider

\a X B . Then, ( )a Range f . To show that X  is Cantor Infinite we construct 

recursively a well-defined countable (infinite) subset Y  of X  as follows: 

Consider :f X X  as above. Then by (simple) recursion theorem (see 5.6 in [10]) there is 

a unique function :g X  , such that: 

(0)g a   and ( 1) (( ( ))g n f g n   for all n  . 

The set  ( ) ( )
n

Y Range g g n


   is a well-defined countable subset Y X . Indeed, by 

construction, for any n  , 
( )( ) ( )ng n f a where 

( )nf  denotes the 
thn  recursive iteration 

of the action of f  on a  . If (w.l.o.g) i j   such that ( ) ( )g i g j ,  then 
( ) ( )( ) ( )i jf a f a  

and hence 
( ) ( )j if a a   where 0j i   . Thus, ( )a Range f , and this contradicts the 

choice of a  . Hence, g  is a ‘one to one’ well-defined function.  This set Y  is the Infinite 

Countable set we are looking for.        

          

In the next theorem we prove that in Z SD  the Axiom of Countable Choice on Finite Sets,  

0

finAC , holds. Thus,  
0

finAC  is a logical consequence (theorem) of Z SD . 

The main idea for the proof of the next theorem is from Theorem 2.12 in [5]. 

Theorem 3.6  
0

finZ SD AC |— . 
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Proof: Let  n n
X


F =  be a countable family of nonempty finite sets. We show that  

n

n

X


  and hence 
0

finAC
 holds

13
.  For this, define   n

n

X X n


  . Then X  is not a 

finite set, equivalently it is Standard Infinite and thus by SD it is Dedekind Infinite. By 

Theorem 3.5 it is also Cantor Infinite and hence there is an injection :f X . Since

, nn X   is a finite set, using proof by contradiction, we can easily show that 

     : nM n f X n     is a standard infinite set.  

Claim 1: n

n M

X


  

Proof of Claim 1: Since     mf X m  , for every m M  define 

  ( ) min : ( ) mn m n f n X m    . Thus, for every m M there exists a unique

m mx X  such that    ( ) ,mf n m x m . Henceforth, there exists an element

 m mm M
m M

x X




  . Thus,  n

n M

X


 .        

According to the above, in order to complete the proof it is enough to show the following: 

Claim 2:  If  n n
X


F =  is a countable collection of nonempty finite sets such that it exists a 

standard infinite set M   with the property m

m M

X


  , then n

n

X


 .  (Hence, 

the Axiom of Countable Choice for Finite Sets holds.)   

Proof of Claim 2: Consider the sequence of nonempty finite sets n n
X


 and define

k n

n k

Y X


  . Inductively observe that for every k   the sets kY  are nonempty and are 

finite. Now consider the sequence of nonempty finite sets k k
Y


. By hypothesis there exists 

a finite set M   with the property m

m M

Y


 , and hence, there exists an element 

 m mm M
m M

y Y




 with  1 2, , ,m m m

m m n

n m

y x x x X


  . Equivalently,

1 , m

i ii m M x X      .  (*) 

                                                             
13

 See the discussion in section 2 that follows Axiom 8, Axiom of Countable Choice. There we refer 

explicitly to equivalent to 
0

AC statements.  
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Let n  and consider the set  :nZ m M n m    . Since M   is a Standard Infinite 

set, by definition 1.1 we have that  n    :m M n m   . Thus, n    the set 
nZ  is 

a nonempty subset of  and hence it has a minimum element.  Now define

( ) min min{ : }nm n Z m M n m    . Since,  ( ) ( ) ( )

( ) 1 2 ( )

( )

, , ,m n m n m n

m n m n n

n m n

y x x x X


    

and ( )n m n ,  according to  (*),  
( )m n

n nx X .  The sequence : i

i

f X






, where 

( )( ) m n

n nf n x X   ,   is a choice function for the family  n n
X


F = , with 

 ( )m n

n nn
n

x X







  (see footnote 13). Therefore n

n

X


 , and since
0X  ,  then 

n

n

X


  . This finishes the proof of claim 2  

The proof of theorem is now complete.         

 

In our last result we show, using results from section 2 and model theory, that the system 

Z SD  is strictly weaker than 
0

Z AC , as one could  naturally conjecture from the 

preceeding results (see Theorems 3.1, 3.5 and 3.6). For this we show that there exists a model 

M  of Z  where  SD  holds, but 
0

AC does not hold. Thus, the statement SD , “Every 

Standard Infinite set is Dedekind Infinite”, is even weaker than the Axiom of Countable 

Choice, 
0

AC . Therefore, it could be naturally added to the axioms Z  (instead of 
0

AC ) in 

order to address problems in a framework that does not assumes any version of the Axiom of 

Choice. Henceforth, in this sense, we could develop a rather powerful axiomatic system in 

areas that any version of Axiom of Choice is unnatural
14

 . This is of great interest in the area 

of constructive mathematics where the adoption of any version of Axiom of Choice is 

doubtful or unacceptable  (see Richman[11]).  

Recall, as stated earlier in the paper, that the statement SD   cannot be proved from Z  or 

ZF  alone, since there exists a model of ZF   (and hence of Z ) in which there exists a 

standard Infinite set that is not Dedekind Infinite. Such a model is the Cohen’s First Model 

A4 (see [6]).  

 

Statement Ŵ : For every set X  and a cardinal   , either ( )card X   or ( )card X   . 

                                                             
14

 See Chailos [2] for resolution of Zeno paradoxes where SD  is used without any use of 
0

AC .  
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Observe that 
0

Ŵ is the statement that every set is either Cardinal Finite or Cardinal Infinite 

(see section 1).  The following theorem is Theorem.8.6 of [9]. 

 

 

Theorem 3.7: Let   be a singular aleph. Then there exists a model of ZF  in which 

(i) For each    ,  Ŵ  holds. 

(ii) Ŵ


fails and ( )cfAC


 fails. 

 

Theorem 3.8: In Z  the statement SD  is strictly weaker than
0

AC . 

Proof:  From the proof of Theorem 3.1, 
0

Z AC SD |— . Thus, by soundness theorem any 

model of Z that satisfies 
0

AC  it also satisfies SD . Hence, in order to prove that the system 

Z SD  is weaker than 
0

Z AC it is enough to show that assuming the consistency of Z , 

there exists a model M of Z   that satisfies SD  in which 
0

AC fails. Since   is a limit 

ordinal, by lemma 2.13 ( ) ( )cf cf       and hence by definition 2.14  is 

singular. We set    and 0     in Theorem 3.7 to conclude that there is a model 

M of ZF  (and hence of the weaker Z ) in which  
0

Ŵ holds, but on the other hand

0( )cfAC AC AC     fails. Now, if a set X  is Standard Infinite then it is not finite and 

since 
0

Ŵ  holds, 0( )card X  . Thus, 
0

SW  holds in M .  From Theorem 3.5 the 

statements 
0

SW and SD are equivalent in Z , and thus in M the statement SD holds, but the 

statement 
0

AC fails. That is what we wanted to prove.       

 

Appendix 

In this Appendix we prove auxiliary results mentioned in the paper. At first we provide a 

sketch of another proof of the fundamental result SInf CInf  of Theorem 3.1. This proof 

is in ZFC and it uses explicitly the Axiom of Replacement and the full version of the Axiom of 

Choice (see Ch. 8, Theorem 1.4 of [7]).  
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Lemma A1: ( SInf CInf ):  If A is a standard infinite set, then A contains a countable 

subset. 

Sketch of proof ( ZFC ): Let A  be a standard infinite set.  From the Axiom of Choice ( AC  

AC), equivalently from the Well Ordering Theorem (see Ch.8 in [7]), A  is ‘well orderable 

set’ and hence using the Axiom of Replacement it is isomorphic with a unique infinite ordinal 

number  (see 6.3.1 in [7]).  Since   is the least infinite ordinal,  . Now using the 

principle of transfinite recursion and the Axiom of Replacement (once more) we conclude 

that the set A  can be well ordered in a transfinite sequence of length   , thus,  

:A a    .  From the defining properties of ordinals and well-ordered sets, 

:C a     is an initial segment of A  . Hence, the    :Range C a      is a 

countable subset of A  (see also definition 1.2).         

In the next lemma we sketch a proof of Pigeonhole Principle that is used in proving 

DInf SInf  in Theorem 3.1. 

 

Lemma A2:  Pigeonhole Principle.  If A   is a finite set, then there is no “one to one 

function”  :f A A    onto a proper subset B A .  (Equivalently, if A  is a finite set, then 

every ‘one to one’ function :f A A is also ‘onto’ A , and hence it is a bijection.) 

 

Sketch of Proof:  We claim that to prove Pigeonhole Principle it is enough to show the 

following claim:  

Claim: If m  and if    : 0, 0,g m m  is any ‘one to one’ function, then it is also an 

‘onto’ function. (From the constructive definition of ,  0, m  is a subset of that is 

identified with m ).            

 

Indeed, assuming the claim, consider any ‘one to one’ function :f A A . Let 

 : 0,A m  be the bijection that witnesses the finiteness of A  for some m (see 

definition 1.1). Then the function 1g f      : 0, 0,m m is well defined and it is 

‘one to one’. Hence, form the claim it is also onto  0, m . Thus, 1f g  is a bijection, 

as a composition of bijections, and hence it is onto A  .  Now the proof of the mentioned claim 

is a well-known and standard application of the Induction Principle, (see 5.27 of [10]). 
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