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Abstract. In this paper, we study the induced almost-additive Gure-
vich pressure for countable state Markov shifts and obtain its variational

principle.
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1 Introduction and main result

Let (3, 0) be a one-sided topological Markov shift (TMS) over a countable set of
states S. This means that there exists a matrix A = (¢;;)sxs of zeros and ones(with

no row and no column made entirely of zeros ) such that
Y= {w = (wo,wi,...) € SN 1ty -1 for every i € N}

The shift map o : % — ¥ is defined by (wg,wi,ws ...) — (wi,ws,...). We denote the
set of A-admissible words of n € N by

Y= {w = (wo, w1, .. wno1) € 8"ty =1 forevery i € {0,1,...,n —2}}.

and the set of A-admissible words of arbitrary length by >=* := (J, .y X" For w € ¥*,
we let |w| denote the length of w, which is the unique n € N such that w € ¥". For
w e X" we call [w] :={y € ¥ : 9], = w} the cylindrical set of w. We equip ¥ with
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the topology generated by the cylindrical sets. The topology of the TMS is metrizable,

o’ oy > 0, where w A ' denote the

it may be given by the metric d,(w,w’) == e~
longest common initial block of w,w’ € 3. The shift map o is continuous with respect
to this metric. If S is a finite set of states , (X, 0) is called a subshift of finite type. We
call a function f : ¥ — R is a-Hélder continuous, if there exists a > 0 and a constant
Va(f) such that for all w,w’ € &, |f(w) — f(w)] € Va(f)da(w,w'). We say f is Holder
continuous, if there exists o > 0 such that f is a-Holder continuous. Let H(X,R) be

the space of all real-valued Hélder continuous functions of ¥. For f € H(X,R) and
n—1

n > 1, let S,f(w) := > f(c'w). We denote by M the set of all o-invariant Borel
i=0

probability measures on ¥. We will always assume (X, 0) to be topologically mixing,
that is, for every a,b € S there exists N, € N such that for every n > N,, we have
[a] M o=™[b] # 0.

Definition 1.1. Let (X,0) be a one-sided countable states Markov shift. For each
n €N, let f, : ¥ — R be a continuous function. A sequence F := {log f,}>°,
on X is called almost-additive if there exists a constant C > 0 such that for every

n,m € N,w € X, we have

Fa(W) fin(0"w)e™ < frpm(w). (1.1)

and
Frpm(@) < falw) fm(0"w)eC. (1.2)

Definition 1.2. Let (X,0) be a one-sided countable states Markov shift. For each
n €N, let f, : ¥ — RT be a continuous function. A sequence F =: {log f,}5°, on X
is called a Bowen sequence if there exists a constant M € R such that

sup{4, :ne N} <M (1.3)
where
L fn(w> ) ’ o .,
A, = sup{ ~iw,w € XN w; =w; foreveryi € {0,1,...,n—1}}.
falw)
For w = (wo, w1, ..., wp_1) € X%, let
W= (W0, Wy -+« y Wi 1, WOy W1y -« oy Wiy - - -)

denote the periodic word with period n € N and initial block w. Let

YPri={we ¥ :we XN} = {w e Pt wy = a}.



Definition 1.3. Let (X,0) be a one-sided countable states Markov shift, 1 € H(X,R)
with ¥ > 0, and F := {log f,}5°, on ¥ is an almost-additive Bowen sequence. We
define for n > 0 the -induced almost-additive Gurevich pressure of F with respect to
Eg@?" by
1
P¢(JT, Eger) = 111’11 sup T IOg Z f\w\ (w),

T—o00
wesber

T—n<S|,| Y @) <T
which takes values in R := R U {Foo}.

In particular, for v» = 1 our definition coincides with the almost-additive Gurevich
pressure|2].

The thermodynamic formalism for countable states Markov shifts has been de-
veloped by Mauldin and Urbanski [5,6] and by Sarig [8,9,10,11]. Recently, Gurvich
pressure for countable state Markov shifts [8]and the pressure for almost-additive se-
quences on compact spaces [1,4] were extended to the almost-additive pressure for
countable states Markov shifts and a variational principle was set up [2]. In [3], the
authors defined the induced pressure for countable states Markov shifts. Inspired by
the articles [2] and [3], we define the induced almost-additive Gurevich pressure for
countable state Markov shifts and obtain its variational principle as follows:

Theorem 1.1. Let (X, 0) be a topologically mizing countable state Markov shift, F :=
{log fn}oo, on X is an almost-additive Bowen sequence on ¥ with sup fi < oo and
e HE,R), ¢ > ¢ >0 with supy < co. Then

o(0) [ felw)dv
WYdy + [ dv

where f,(w) := lim log f,(w).

Py (F, X0 = sup{}L v e M and /f*(w)dy # —o0}, (1.4)

2 Preliminaries

In this section, we study the relation between the v-induced Gurevich pressure
and the almost-additive Gurevich pressure. Making a similar proof as in [3, Theorem
2.1], we can obtain the following statement:

Theorem 2.1. For ¢ € H(3,R) with ¢ > 0, F = {log fu}>2, on ¥ is a Bowen

sequence, we have

Py(F,XP) = inf{f € R : limsup Z Flo|(@)e 5@ < o0},

T—o00
weskber

T< 5| ¥ (@)

In particular, the definition of Py(F,X2) is independent of the choice of n > 0.
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Lemma 2.1. Let (X,0) be a topologically mizing countable state Markov shift, F =
{log fn}o, is an almost-additive Bowen sequence on % with sup fi < oo and ¢ €
H(Z,R), ) > 0 with suptp < co. Then for every 8 € R, F? := {log f,(w)e #onv@ e
18 an almost-additive Bowen sequence on ¥ and

P (FP,¥PeT) i = lim — log Z flo|(@ e BSw¥@)

n—oo M
wesker
\w\:n

exists and it is not minus infinity and
Py (FP, sper
=sup{h, (o /]—“ﬁ Ydv:v e M and /}'B Ydv # —oo}

= sup{h, (o /f du—ﬁ/i/}dy ue/\/land/f )dv # —ocol.

where FP(w) == lim Llog f,(w)e @) f (w) := lim Llog f,(w).

Proof. Since F is a Bowen sequence on 3, the bounded distortion property (see [3])
shows for every ¢ € H(X,R) there exists a constant Cy > 0 such that [S),(v) —
S(Y)] < Oy for all w € X* and 7,7 € [w]. Let g,(w) == f,(w)e %), For each
n € N, € R, we have

By, = SUP{% w,w €Y w=w; fori € {0,1,...n—1}} <elfl%A,
gn\W

and
sup{B, : n € N} < MelPl%

So F¥ is a Bowen sequence on .
Since F is an almost-additive sequence on ¥ we have

fn(C(J)fm(O-HW)e_Ce_BSnw(w)e_ﬁsmd)(gnw) S fn_i_m(w)e_ﬁ's"“"md)(w)
and
fn_"_m( ) /GSnerd) <fn( )fm(O.’Vlw)ece—ﬂsnw(w)e_ﬁsmd)(o.nw)'

Then F7 is an almost-additive Bowen sequence on ¥ with sup f;(w)e ™) < oc.
By [2,Theorem 3.1] and Birkhoff Ergodic Theorem [7], we have P;(F”?, $P°") exists

and it is not minus infinity and
Py(FP, sper
=sup{h, (o /]-'5 Jdv v e Mand/]—"ﬂ Jdv # —oo}

— sup{hy (o /f du—ﬁ/w v € M and /f*(w)dy;a—oo}.



Corollary 2.1. For ¢ € H(X,R) with ¢ > ¢ > 0, F := {log f,}32, on ¥ is a Bowen
sequence, we always have

Py (F, 2P > inf{3 € R : Py (FP,2PT) < 0}. (2.5)
Proof. Let
B :={p € R : limsup Z fio|(@ e PV ®) < o0},
T—o0 wesPer
T<S|w‘w(w)

For each 3 € B, it is easy to see that

lim su —10 E e P9 @) <
wezge'f‘
T<S|w"¢1(w)

and we conclude that

hmsup—log Z flo(@)e P1¥@ < g,
n—oo wezper
|w|:n

Otherwise, we assume that

l1msup log Z flo)@)e P91¥®) = 24 > 0.

n—oo
wenber

\w\:n
There exists a sequence {n,} ey such that for each j € N

uEEper
|w‘:nj

For sufficiently large T' > 0, let {ny,} C {n;} with S,, (@) > T. We have

Z fM( e P51 (@) > Z f\ (@ oS )>e‘mki_

weshber wexber
T<S| ¥ (@) \w\:"k

Since i — oo when T — oo, we conclude that

lim sup Z flw (@ e POl¥(@) —

T—o0 wenPer
T<S‘w|w(w)

This shows that (2.5) holds.



Corollary 2.2. Let (X,0) be a topologically mizing countable state Markov shift and
F = {log f,}°2, is an almost-additive Bowen sequence on ¥ with sup fi < oo and
Y € H(E,R), ¢ > ¢ > 0 with supy < oo. We have the map 3 — Pi(FP XPer) is
strictly decreasing on int{3 € R : Py(FP,¥F) < oo} and

Py(F,57) = inf{3 € R: Py(F? 5P) < 0} =sup{B € R: Py(F?, ¥") > 0}. (2.6)

In particular , if (X, 0) is a subshift of finite type, then the map 3 — Py (FP, XPe") is
a strictly decreasing continuous map on R. Hence we conclude that Py(F,XE) is its

unIque 2ero , 1.e.
per
Py (FPeFEa) ypery — ),

Proof. By the Lemma 2.1 we have

P1(F8, ) = sup{h, (o /f )dv — B/z/z v E Mand/f*(w)dy # —00}.

For any 3,3, € int{8 € R : P (FP ¥P") < o0}, 3 < Bo and 0 < € < (52 , there
exists p € M such that

sup{h, (o /f )dv — ﬁ2/¢ ‘ve Mand/f*(w)du 4 —oo}

o)+ [ f@du= 5 [ o)t e
o)+ [ f@du=p [t e 3-8 [
+ / fo@dn =y [ o()du— (B2~ B)( [ v)dn - 5)

<sup{h,(o /f Ydv — (4 /¢ [V E Mand/f*(w)dy # —o0}
~( = ([ w(ldu— 5).
We thus obtain the map 3 — P;(FP, XFer) is strictly decreasing. Since

inf{8 € R: P, (F°,2) < 0}

>inf{f € R : limsup Z flo)@)e P ®) < 00}, (2.7)
T—oo er
T<SEET¢(U)

we have

inf{f € R: Py (FP,F") < 0} =inf{B € R : P, (F?, £") < 0}
= sup{B € R: P (F? £Fr) > 0}. (2.8)



Combining (2.7) and (2.8), we obtain (2.6).

If (X, 0) is a subshift of finite type, obviously, for each 8 € R, P;(F?, ¥P) < oo,
we easily obtain the conclusion.

We denote by Csx, := {K C ¥ : K is compact and ¢! (K) = K} the set of compact
o-invariant subsets on ¥. we say that the ezhaustion principle holds for Py (F, X)),

if there exists a sequence { K, }n,en C Cx, such that

lim Py, g, (Fl,, 55" 0 K;) = Py(F,X07)

n—oo

where

* : 1 oy
Py rc(Flr, 22" N K™) := limsup T log E : Jiw| (@)1 (W)
T—o00
wenPnK*,
T—n<S|y| ¥k @<T

and K* := {w € ¥* : [w] N K # (}. Obviously, the conclusions of Theorem 2.1 and
Corollary 2.1 are valid for Py g, (Flk,, 22" N KF).

Corollary 2.3. Let (X,0) be a topologically mizing countable state Markov shift and
F = {log fn}22, is an almost-additive Bowen sequence on Y with sup f; < oo, 1 €
H(X,R), v > ¢ > 0 with supy < oo. We have the exhaustion principle holds for
Py (F, Xrem).

Proof. Let § > 0, it follows from Corollary 2.2 that P, (FFP+(F=a")=¢ sper) > 0. By |2,
Proposition 3.1], we have the exhaustion principle holds for P;(F?, ¥P") with 3 € R.
There exists a subset K € Cy, , such that

7)17K(f'(73¢(.7:,2g”)—6) |K7 E;ger N K*)

1 per .
= lim —1 E n ~(Py(F2a)=0)Sndb(@)q > 0.
lim - og fo(@)e (Pul k(@)

wesh " nK*
|w|=n

By Corollary 2.1 we have
Py.x(Flg, 22" N K*) > inf{f € R: PI’K(]:BIK, PN KY) <0} > Py(F, EE) — 0.
Hence, for Py (F, X2¢") the exhaustion principle holds.

Proposition 2.1. Let (X,0) be a topologically mizing countable state Markov shift,
F = {log f.}2, is an almost-additive Bowen sequence on ¥, and ¢ € H(X,R), ¢ >
¢ > 0. Then Py(F,XE) is independent of the choice of a € S.

Proof. It is sufficient to prove that
Py (F, 207 < Py(F,Z57). (2.9)
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Let T' > 0 be large. For each a,b € S, and w € ¥ with T' < S),;%(@). Since (X, 0)
is topologically mixing, there exists

wh = (bywy, ..., wp1) ,w? = (a,w;,...,w;_l) e Xk

such that wlww? € 30", Let z := w!ww?. Making a similar calculation of [2], we find
a constant Cy > 0, such that fi,|(@) < Cf flu|1ox(). Since 9 is Holder continuous , the
bounded distortion property (see [3]) shows there exists a constant Cy, > 0 such that

S (@) = S (0¥z)| < Cy, |BSwp(@) — BS L (a*z)| < |8]Cy
for w,ofx € [w], B € R.

Let Cy = inf Spip(v),Cr = inf Spi(7), we have
YEw!] Y€ w?]

T + Cl + 02 - C’[[) < SQkHw\w(x)

and
e P51 ¥@)  LlBI(CL+C2+Cy) o —BSak 41w P(2)

Thus there exists a constant ¢’ > 0 such that

Z flo(@)e™PS1v® < ¢ Z fo)(@)e P51 @),

wexker wesy

T<S| ¥ (@) T+C1+Co— Cw<5|w\¢(m

per

Then we obtain (2.9).

3 Proof of Theorem 1.1

In this section, we will prove the variational principle of the induced almost-
additive Gurevich pressure for countable states Markov shifts. Our result is a gen-
eralization of the almost-additive Gurevich pressure.

Firstly, we show

Py (F, 557

e .
> sup {f@/)d f@bd LV E Mand/f*(w)dl/# }. (3.10)

By Corollary 2.1, for 3 > Py (F,XP), we have Py(F?, X)) < 0. By Lemma 2.1 we
have

0 >Py(F7, 2y
> sup{h, (o /f dv—ﬂ/wdu VE./\/land/f Ydv # —o0}

:sup{/z/}(w)d fl/Jd ffwdy —-0B):ve Mand/f*(w)dy # —o0},




and we obtain (3.10).
Nextly, we prove

wpf (@) | J S

J wd J wd
By Corollary 2.3, there exists a sequence { K, }nen C Cx o such that lim Py g, (Flk,, 22N
K}) = Py(F,3r). For each n € N, K, is the finite alphabet case. Combining Corol-
lary 2.2 and [2,Theorem 3.1], we have

P (]: yPery < NS ./\/land/f*(w)dV # —00}. (3.11)

0 =P, Kn(flp“’“‘" Flicn SETOKD gper 4 K

=sup{h, (o /f dl/—Pw\Kn(}"|Kn, YK /¢du VEMKnand/f* Ydv # —o0}

Ssup{/z/}(w)d f@bd ffwd w e/\/land/f*(w)dy;é oo}
—Pylr, (Fli,, 2o N Ky).
Then

Py (F, 2P = lim Pw Ko (Flr,s 227N K;:)

Su ff LV an w)arv —00
{Md fwd e M d/f*()d% !

Combining (3.10) and (3.11), we obtain (1.4).
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