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Abstract.

The extension of some immunization results to taemméwork of generalized-convex orders

is considered. A detailed study of the special cas8 is undertaken. A portfolio strategy,

which achieves immunization against 3-convex dslaiftors, necessarily matches durations
and convexities. For some more general shift factare derive bounds on the change in
portfolio value, which depend on the skewness mmeebetween the liability and asset risks.
A linear control of these immunization bounds iamined. For a specific minimax strategy,
these bounds can be reduced to a constant indegigndithe time horizon.
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1. Immunization and the s-convex orders.

In Hurlimann (2002) it has been shown that the bsoavex order (=stop-loss order by equal
means) provides a natural framework for understapdnd unifying the main immunization
results by Fong and Vasicek (1983a/b), Shiu (1988/Mlontruchio and Peccati (1991), and
Uberti (1997). Also, it has been demonstrated tthet “Shiu measure”, which is an
appropriate measure of the immunization risk tlzest Ibeen introduced by Shiu (1986), can be
controlled in a linear way.

We look at similar immunization results in tframework of the generalizesiconvex
orders considered by Denuit et al. (1998). In thgipular cases=3, which corresponds to a
duration and convexity matching immunization stygteve show that the Shiu measure can
be reduced to a constant, independently of the twrzon, provided a specific minimax
strategy is applied (Theorem 4.1).

Recall the setting of immunization theory (é?gnjer et al. (1998), Section 3). Consider a
frictionless, competitivanddiscrete tradingeconomy with trading date{;O,lZ,...,T}, where
T is thetime horizon The traded securities in the economy are zerpaowonds of all
maturities {0,12,...,T} and a money market account. phee of a zero-coupon borat time
t that pays one unit at times>t is denoted P(t,s). Only the current timet=0 is of
interest, in which case we writd®(s) instead of P(0,s). As shown in Hurlimann (2002),
Section 2, it suffices to consider a portfolio witlon-negative asset ianows{A_l,...,An},
occurring at dates{l,...,m}, and non-negative liability outflows{L,,...,L,}, due at dates

{1,...n} with time t = 0 portfolio value



v=Ya,->, =0, (1.1)
k=1 j

where a, = AP(k) and /7, =L;P(j) are the current arbitrage-free prices of the tamse

liability flows. One is interested in the possiloleanges of the current arbitrage-free value of
a portfolio at a time immediately following the cemt time t =0, under a change of thierm

P

structure of interest ratefSIR) from P(s) to P'(s) such that f(s)= 5 is theshift
S

factor. Immediately following the initial time, the poskift change in value is then given by
AV =V'-V =zr=1akf(k)—2?=lzljf(j), (1.2)

The classical immunization probleroonsists to find conditions under which (1.2) @nn
negative, and give precise bounds on this changeakfe in case this change cannot be
guaranteed to be non-negative. To establish theextiom with the theory of ordering of
risks, one uses elementary probability theory.

Definitions 1.1. The random variable A with support {l...,m} and probabilities

{ql,...,qm}, where g, =a, [ﬁzi":‘lai )_1 is the normalized asset inflow at tinkeis calledasset
risk. Similarly, the random variablé. with support {1...,n} and probabilities{p,....,p,}

where p; =4, Eﬁzi":l/li )_1 is the normalized liability outflow at timg is calledliability risk.

With these definitions, the normalization assumptio

zrﬂak =ZT=1/]J' =1, (1.3)

which will be made throughout, does not lead taosslof generality. It follows that the
classical immunization measures difrations M-squared indicesand convexitiesof assets
and liabilities are just the means, variances asabrsd order moments of the asset and
liability risks, that is

D,=E[A, D =E[L], MZ=varfa, M2=Vvarl]

2 2 2 2 (1'4)
C,=M,+D,, C =M +D/.

Similarly, the change in portfolio value (1.2) idiéies with the mean difference between
transformed asset and liability risks

AV (f) = E[f (A)]-E[f(L)]. (1.5)

Now, the theory of integral stochastic orders, mddmong others by Whitt (1986), Marshall
(1991) and Miiller (1997), describes classes’ of real functions f:S -~ R (S some

domain of definition) such that (1.5) is non-negatfor all f JU® provided L is U*®-
smaller than A. For example, the clas&)S of convex functions withL <, A the usual
convex order corresponds to the setting discussetiiilimann (2002).



S
s—Cx

As natural generalizations, consider the elasld of all s-convex functionand the

classesU?,, of all s-increasing convex functionescribed in detail in Denuit et al. (1998).
By definition f:S - R iss-convex s=1,2,3,.., if, and only if, for all choices ofs+1

distinct points X, < X, <...<X, in S the determinant

1 1 1

B ) = (1.6)
Xg—l X:I_S_l Xss_l
F0) F(x) . f(x)

is non-negative. The 1-convex functions are the aeereasing functions and the 2-convex
functions are the usual convex functions. Similarly :S - R is s-increasing convex

s=1,2,3,.., if, and only if, for all choices ok+1 distinct points x, <x <...<x, in S one
has A, (X,,.--.%; f)= Q for all k=1,2,...,s The l-increasing convex functions are the non-

decreasing functions and the 2-increasing convektions are the usual increasing convex
functions. These classes of generalized convexifurglead to the following stochastic order
relations.

Definitions 1.2. Let X and Y be two random variables taking values in the ioomim
subset SO R. Then X is called smaller thary in the s-convexs-increasing conveporder,

written X <S_Y (X<S.Y), if E[f(X)|<E[f(Y)] foral fOUS (fOUS). Inthe

—s-cx —s-icx icx

often encountered cas8 = [0,oo) the super-scripS will be deleted by convention.

In applications, one needs characterizations of sfl@@nvex &-increasing convex) functions
and orders (see Denuit et al. (1998) for detailspr our purpose, the following
characterizations, valid for the case= [0,), will suffice:

X<, oY < EX4=gy, k=1..s-1 and (1.7)
() = E|(X - d)3Y < 7 (d) = E|(Y - d)5 forall dOS,

X< oY = E[X¥<E[Y*| k=1..s-1 and (1.8)
m(d)< 727(d) forall dOS.

Applied to immunization theory, the above defimigoimply through reinterpretation the
following straightforward results.

Theorem 1.1. Let A and L be random variables representing asset anditiabgks as in
Definitions 1.1. Then, a portfolio (A,L) is said to be immunized againstonvex &

increasing convex) shift factord (t , thatis E[f (A)]= E[f(L)] forall fOU, (fOU,),
if and only if one hasL <__, A (L<g, A).

—Ss—CX

In the present paper, we specialize to the secombritant special case after2, namely
s=3. In particular, by (1.7) and Theorem 1.1, a porfdtrategy achieving immunization



against 3-convex shift factors necessarily matcheations and convexities, that B, = D,
and C, =C_ (see e.g. Buhlmann and Berliner (1992), p.140-41)

It is also possible to derive bounds on thange in portfolio value for more general shift
factors, which generalize the bounds by Uberti 299 heorem 2.3 in Hiurlimann (2002)).
For example, assume that <, ., A, and suppose that there exist, >0 such that

3-cx

f(t)-ia@ is 3-convex on [lm] and {81~ f(t) is 3-convex on [1 n]. Since

L <, A one has the inequalities
E[f (L)]—%a E[12] < [ (A)]—%a rE[AY],
SAEL]-Elr Wl pElR]- el a],
hence

%a re[a?]- €[] < €[ £ ()] - [ (L)] < %ﬁ fef]- el (1.9)

These bounds depend on tleewness increadgetween the liability and asset risks because
by equal means and variances one has the identity

%(E[AB]— E[L3])=%(VA ~y)M?, (1.10)

where M?>=M:=M? and y,, ), describe the skewness of the asset and lialiiks.

The rest of the paper is devoted to lihear controlof the immunization bounds (1.9), which
generalizes the linear control of the Shiu measukélrlimann (2002).

2. Maximum skewness increase under the 3-convex orders.

Let X and Y be random variables with the common finite arigfimsupport {On} and
probabilities p, =Pr(X=1j),q,=Pr(v=j), j=0,..,n. The means, variances and
skewnesses are denoted by, i, 0%, 0%, yy, V- We are interested in the maximum

difference E[Y3]-E[X®] under the restriction thaX and Y are 3-convex or 3-increasing

convex ordered. This optimization problem transferinto a simple linear programming
problem as will be shown below. The following reaship is needed.

Lemma2.1. The difference in third moment of two finite &mtetic random variableX and
Y with support{0,...,n} is given by

%(E[Y?’] ~g[x?] = %(E[Yz] - g[x?) +%(E[Y] ~EX)+Y" e, (21

where ¢, =m(j+)-m(j+D, j=0..n-2 is the finite sequence of difference in
degree two stop-loss values evaluated at integatso



Proof. Recall the recursive relationships between higlegree stop-loss transforms (e.g.
Hurlimann (2000)) :

7(x) =n [j“’ A7 d, n=12,....

Through partial integration (e.g. Kaas et al. (1994110) or analytically applying the method
of generating functions, one obtains in particular

%E[Xa] = ["72 (.,

To express this as a function of the degree twop-ktss transform values
T (j+1), j=0,...,n-2, consider the integral summation

é E[x?]= 30 [ 72 .

Since the usual (degree one) stop-loss transfopiecewise linear, more precisely one has
7, () = 71, (K) + (t k) [O7, (k+1), tO[k,k+1],

the integrand can be rewritten for[] [k,k +1] as

75 (1) =20 71y (u)du =75 (k +2) + 2[j:nx (u)du
72 (K +1) + 2(t - K) 7z, (K) + (t = K)20 77, (K +1).

An elementary integration shows that
k+1 1 2
R ACL SR A R AR ACE

It follows that
1E[X?’]— 22 (k4 D)+ S (k+1) + 2 77, O
3 =) H (kD) + > (k+1) gﬂx( )

= S0 (ke e[ ZElX]

where use has been made of Lemma A2.1 in Hlrlinf2002). ¢
A further auxiliary result is required.

Lemma 2.2. The degree two stop-loss transform of a finitéharetic random variableX
with support{0,...,n} satisfies the recursive relationship

()=t +o% —2u, G +j° j=0-1-2..,

2.2
P2 (i +) =~(p, +p,.) =012, (2:2)



where 0%k ., =x.,, —3x, +3x,_, — X _, is the third order backward difference operatting
on sequences of real numbers, apd=0 for j 0{0,....,n}.

Proof. Recall that 77 (0)=% +0: (e.g. Kaas et al. (1994), Exercise lll.1). Since
n, (t) =, —t for t<0, one obtains the first formula in (2.2) througtegration from

72 () =20 m Odt+ 4 + 0%, [ =-12,...
Similarly, using that 7, (t) is linear in each interva[j,j +1], j =012,..., one obtains
075 () +) = =20 " 0dt= {7 () + 75 ( +),
where 0Ox.,, = X.,; — X, . Applying the well-known relationships
m () =p =i, 1=0-1-2.., O°m(j+D=p;, ]j=012..,

one obtains without difficulty the second formuta(2.2). ¢

Given uy, 4, 0'>2<, 03 , it follows from Lemma 2.1 and 2.2 that the maximdifierence in
third order moment under the restrictioX <, Y is given by the linear programming
problem

SEN]-ElxD =202 -0 + 2 — ol + i)+ e = max (2.3

under the linear constraints

CJ-ZO, quj :_qj—l+ pj+pj_1—|:|3CjS:L j:O,...,n,
ZEJ (%, = 20Uy = Hy), (2.4)
DI W, = 2(0% = 09) + (i ~ )2k + p4) +1,

where use has been made of the following “dummyiaides

C_3:7T$(_2)_”>2<(_2):(IUY =ty ) (Hhy + Uy +4)+0-$_U>2<’
C, :77$(_1)_77>2<(_1) = (L = )Ly + Ly +2)+0-$ _J>2<!
c, =75 (0) = 775 (0) = (14 — K )14, + Hy) + 0% = 0%,
C,,=¢,=¢c,,=0.

(2.5)

As explained in Section 1, one is especially irgtre in the case of equal means and
variances, for which the above linear program sifiiegl considerably and can be solved

analytically. Under the assumptionu, =4, =y, 0z =02 =0° and p,=q,= Q that is



¢, =0 (which is no essential loss of generality), oheves that the maximum skewness
increase whenX <, _ Y is given by the linear program

—3-cx
LP 1 _ 2 _ n-2 _
(LP) §(VY Yy )O —ijocj = max.

under the linear constraints

L0) ¢, 20, 0sq,=-q;,+p, +p,-C%; <1 j=1..n
ZT:(—l)j‘lcj =0, ¢,=C,=C,=C,,=C, =0,

where the vanishing of the alternating sum folldwsn the equality of the mean and variance
of X and Y. Since the special case=3 has the trivial solutionc, = Ohence Y =, X

(equality in distribution), one assumeas=4 from now on. To solve analytically this linear
program, one requires the following auxiliary resul

Lemma 2.3. The linear constraints (LC) imply the formulas

qn = pn - Zin:_ls(_l)i C'n—2—i7

n-4 i
Ohq = Poy — 30y 4 [Zizl (-D'cy-s-is
n-5 i
O =Pnot 3Cn—3 - 6Cn—4 -7 @izl (_1) Ci-a-i (26)
n-j-3 i
qn—j = pn—j _Cn—j + 4'Cn—j—l - 7Cn—j—2 _8§i:l] (_1) Cn—j—i+1’

j=34,.n-1

Proof. Use induction om. ¢

°c. wherec=(c,,....C,_,) -

To describe our main result, we sB(c) = Z';:l P

Theorem 2.1. The maximum skewness increase for finite aritiongindom variables with
support {Ln} n=5, under the restrictionX <, _ Y is given and attained at 3-atomic

3-cx

random variablesy, as follows :

* *

Case 1 4 =0=..=0,,=0

The maximum equals R(c)= % Dz:j(n -K)(n-k-D)(n-k-2)p,, where one has

* j . . * 1 n- .
cj:zlizl(]—k+1)2pk, j=1...n-3, cn_z:EDZk:f(n—k—l)(n—k—Z)pk, and is

attained atY, under the following precise conditions ot



o =5 (-0 -2 Py
s = Poa ~ Zir]=4(i D -3 Py 20,
=520~ 2( =P

Case 2 q¢=q9=..=0.,=0 q,=0

The maximum equalsR(c) = é Py +% DZE:(n -k)(n-k-2)(n-k -3)p, , where one has
¢ =>! (j-k+D?p, j=1..n-4, 3, ;=P +20) (n-k-2)(n-k-3)p,,

3, 2= Py +% DZE_f(n -k-2)(n-k-3)p, and is attained atY, under the following

precise conditions orX :

* 1 n . .

Q-5 = é Hzi:4(l _1)(| _3) Pr-i+1 ~ pn—l) 20,
. 1 on ) :

qn—2 = pn—l + pn—2 _E Iii:S(l _1)(| - 4) pn—i+1 2 0’
. 1 1 o . :

a, = P, +§ Pr-1 +€ Ei:s(l _3)(| _4) Pr-i+1-

Case 3 4 =q9=.=0.,.=0 q_,=0,,=0

The maximum equalsR(c) = % [{6p,, +4p, ., + zz;i’(n -k)(n-k-3)(n-k-4)p,), with
¢ =Y, (i-k+1?p, j=1..n-5,
. 3 n-
214 = P+ P+ 5 R (N-k=3(n-K-4)p,,
3¢, ,=3p,,+2p,,+ > (n-k=-3)(n-k-4)p,,
6C_, =3P+ Py +% DZE:(n -k=-3)(n-k-4)p,, and is attained atY, under the
following precise conditions oIX :
N B o b 130
Or-s = 5 QE EE‘“:SO )0 =4) Pyoiss = Poey — Poe2) 26,
* 1 n . .
qn—3 = é |13pn—1 + 4pn—2 + 3pn—?, - Zi=6(| _1)(| - 5) pn—i+1) 2 Ol

.1 Losn - gy
a, :E 6P, +3Pyt * Pr-z +E @izs(l ~ A =) Pyin).

Proof. Using the constraintZT;lz(—l)J‘lcj =0, one gets the formula



n-2
2
20),%.C N even

R(C) = n-3
ZDZ]ZCZ]., n odd.

2.7)

Through backward analysis, this can be rewritterthiree different ways (proof through
induction).

Case 1

Insert successively the expressions fqr; obtained from the equations fog,_; in (2.6)
. . 1 -
into R(c) for j=34,..n-1 to get R(c) :5Dzk:(n—k)(n—k—l)(n—k—2)(pk - Q) -

Given X, that is the p,’s, this is maximal exactly whermy, =g, =...=q,_; =0, which yields
the probability conditions stated under Case 1 @bl w&s the maximum R(c" .) The
expressions forc’;, j =1...,n—-3 are obtained from the equations (2.6) settingassively

q,=0, j=1..n-3.The remainingc._, is obtained from the vanishing alternating sum in
(LC). Inserting the c] 's into the remaining equations of (2.6), the maixing probabilities

q._,. ., and g are obtained.
Case 2

Insert successivelg, ,, c,_;, j = 45,...,n=1, from the corrresponding equations fpr,, q,_;

, 2 1 son- .
into R(c) to get R(@) =2 (Pry = Gps) + 5 (N, (1= k) (N ~k =2)(n -k =3)(p, ~4), which
is maximal whengq, =q,=...=q,,=0,q,, = 0Setting successivelyy, =0, j =1...n-4,
g,.,=0 in (2.6), one determinesc}, j=1...n-3. The remaining c,_, as well as

q._,. 9., and g follow asin Case 1.
Case 3

First, insert c,_, from the equation forg,, into R(c). Second, add the equations for
0.1-0,., to get an expression forc,_,, which is inserted into R(c). Third, insert
successivelyc,_;, j =5,...,n=1, from the corrresponding equations fgr; into R(c) to

get  R(c)= % (6(Po-s = Oyes) + 4(Poz = Groo) + ) (N=K)(N =k =3)(n =k =4)(p, =),

which is maximal wheng, =q,=...=¢,=0,0¢,.,=0,., = OThe rest is shown similarly to
Case 2 and Case 3.

It remains to show that the above three cases skladlypossible random variables Let C
be the space of all probability vectorp=(p,,...,p,) such that p;=20, j=1..,n,

> p, =1, > jp,=p,and Y j’p, = 4’ +0?, which describes the set of all possibis.

Corresponding to the constraints imposed on theimiaxg probability vector q°, define
the subsets
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Case1C,={p0C: p,,2 Y (-1 -3)p, ..}
n . . 1 n . .
Case 2C, = { POC: Py €3 (=D = Py Pos * Prp 25 DL (=D - 4) pn—iﬂ}

pUC: P+ P, < Z:]:S(i ~D(i =4 Py
‘?’pn—l + 4'pn—z + 3pn—3 2 Z:‘:G (I _1)(| - 5) Pr-i+1

Case 3C, ={

But one hasC, 0 C, 0 C, =C. The complete solution has been fourd.

Examples 2.1.

For illustration and to better grasp the regulatgra of the solution, let us rewrite the lower
dimensional casesn= 456 explicitly. The special casen=4 is obtained immediately
applying the method of proof in Theorem 2.1.

n=4:

Case 1 p,=23p,
R(c)=2p, ¢ =(p,p). 9 =0, p,+3p,P; 3P, P+ P,)
Case 2 p,<3p,
o 2 . 1 1 .1 1
R(C)zépav c :(é pavéps)v q :(5(3p1_p3)1p2+pa’ové(p3+3p4))

=5:

>

Casel p,=3p,+8p,

R(C)=2(p,+4p). € =(p, P, +4p. P, +3p),
q* = (010’ Ps +3p2 +6p1’ P, _3p2 _8p113p1 tp,t ps)

Case2 p,<3p,+8p, p;+p,22p

. 2 . 1 1
R(c) =§(p4 +4p), ¢ = (plvé(p4 +4p1)’§(p4 +p)),
. 1 1
q = (0,5(3p2+8p1— p4)’ p, p3_2plvov§(3p5+ p, + pl))

Case 3 p,+p,<2p
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W 2 . 1 1 1
R(C):§(3p4+2p3)1 c :(E(p4+ p3)1§(3p4+2p3)16(3p4+ pa))a

. 1 1 1
q :(E (Zpl_ P; — p4),§(3p4 +4p3 +3pz)’0’016(6p5 +3p4 + ps))

=6:

>

Case 1 p,=3p, +8p, +15p,

R(C) =2(p; +4p, +10p,), € =(p, P, +4p, P +4p, +9p, P, +3p, +6)),
q* = (0,0,0, P, +3p3 +6p2 +10p1’ Ps _3p3 _8p2 _15p1’ Ps + Ps +3p2 +6p1)

Case 2 p,<3p,+8p,+15p, p,+ p;=2p,+5p,

oW 2 . 1 1
R(C):g(p5+4p2+15p1)’ c :(p11 p2+4p1’§(p5+4p2+12p1)’§(p5+ p2+3p1))1

. 1 1
q-= (0,0,5’(3|03+8|o2 +15p, — p;), P, + Ps — 2P, —5p1,0,§(3p6+ Ps + P, +3p,))
Case 3 p,+p;<2p,+5p,
2 . 1 1 1
R(C ) _g(sps +2p4 +5p1)1 c = (plvE(ps + p4 +3p1)1§(3p5 +2p4 +2p1),6(3p5 + p4 + p1))1

. 1 1 1
q = (OaE(sz +5p1 Y p5)1§(3p5 +4p4 +3p3 _5p1)101016(6p6 +3p5 tp,t p1))

3. The absolute maximum skewness incr ease.

The maximum skewness increaseR, ,..(P):=R(c)=R(c'(p)) (note that c =c'(p)
depends onp) has been determined in Theorem 2.1. First, wef@stheabsolute maximum
skewness increase wheiX <,_, Y and both X and Y may vary with the same support

{1,...n}, that is we determine the quantity
R o = MaXR, (D)} (3.1)

Theorem 3.1. The absolute maximum skewness increase for finiithmetic random
variables with support{l...,n}, n=4, under the restrictionX <,_, Y, but X and Y are

arbitrary, is given and attained at biatomic randariables X_,Y. as follows :

Case 1 n=4

&mwawm=§,6quj§,d=§a§m,d=@§a§
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Case2 n=5

R = REE () =220

pI=W2(n_3), Zf%, P, =0 j#in-1
c}(p*):Wz(r]_a, i=1..n-5

)= 2 ) = O g (=AY,
g =D g 20n-4) 4 =0, j#n-3n

“3n-3' " 3n-3)’

Proof. The special casen=4 is derived from the Examples 2.1. In Case 1 bas

R(c) s% p, and in Case 2 one haR(c ) <2p,. In both cases the upper bound is attained

when p, =3p,. Setting p, = p, =0 the absolute maximum is obtained. Let neve 5 and
consider Case 3. From the constragt, >0 one gets

R (D) < g [02p,, +20,_(n-kK)(n-k=3)p, + Y. (n-k)(n-k-3)(n-k-4)p,)

:§u2pn_l+8tpn_4 + 3" (n-K)(n-k-2)(n-k-3)p,).

This upper bound is attained wheng,_,= Oand is maximum in case one has
P, =pP;=...=p,_, =0, p, =0, hence 2p,_, =(n—-1)(n—-4)p,, which yields the maximizing
probability vector p . The corresponding upper bound equ&s,..(p) =§ n—(l)(r;)— 4) .

, n—

It is straightforward to see that the same maxingizipper bound holds in Case 2. In Case 1
one proceeds similarly to Case 3. An upper bounabtained from the constraing,, > 0

and attained when q_ =0 and P,=P;=...=pP,,=0,p,= Q hence
2p,, =(n-1)(n-3)p,, which yields the maximizing probability vector p". The

corresponding upper bound iR, . (p) :%. Since this is strictly less than the
: n—

upper bound in Case 2 and 3, the absolute maxinsuattained in Case 3. The remaining

guantities are obtained through calculation usihgofem 2.1.0

4. The minimax skewnessincrease.

From the Examples 2.1 and Theorem 2.1, it is rifitdit to see whenR . (p)= 0Owhich

implies in particular thatX =, Y (the distribution functions of two 3-convex ordém@ndom
variables are identical if both have equal meanamnae and skewness). It is interesting and
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useful to consider the minimum possible valueshef taximum skewness increase when
X<, Y and X and Y vary, given the maximum skewness increase istigtipositive. As
will be seen in the proof below, there are threstiooious sets of possible minimum values,
which correspond to the three cases distinguishd@dtheorem 2.1 (note that far=4 there are
only two such sets). The minimum of the infimum etigr of these sets is calledinimax

skewness increased is defined by

Rymin = izlyzr;hgg{&,max(p) > o}} n=5, (4.)
where C, is defined in the proof of Theorem 2.1. A simitifinition applies in the special
casen=4. It is remarkable that this quantity is a constavhich does not depend an

Theorem 4.1. The minimax skewness increase for finite arithmeandom variables with
support {Ln} n=4, under the restrictionX <, _ Y, but X and Y are arbitrary, equals

3-cx

R min =% and is attained at biatomic random variableX Y. with probabilities
1 . .3 . . .3 .1 .
Prs=y Pea=7, P =0 elseq, =, 6,=7, ¢ =0 else.

Proof. First, consider the special case=4. From the Examples 2.1, we distinguish
between two cases:

Casel p,+p,+p,=1-¢ O0O<p=€¢<1

The condition p, 23p, implies that €< % and thus R, ..(p) =2¢< % , Where equality is

. . 1 . 3
attained for p, ==, =—,
P, 2 Ps 2

Case2 p+p,+p,=1-¢ O<p,=¢<1

The condition p, <3p, implies that £ < g and thus R, ..(p) = %5 s% , Where equality is

. . 1 . 3
attained for p, ==, =—,
P, 2 Ps 2

Let now n> 5 One proceeds similarly according to the casdsdisished in Theorem 2.1:

Caii pn—2 + pn—l+ pn =1l-¢

It is straightforward to see thatrgicn{R1 max(p)}:2£ for p,;=&. The restriction on the
pUC, '

probabilities p,, =1-£-p,_, — P, 23p,_; =3¢ implies that £ < % The result follows.

Caiz pn—3 + pn—2 + pn :1_5
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One has rrgicn{Rn max(p)}:ég for p,,=¢&. The first restriction on the probabilities
pHC, '

Py =€<3p,_;=31-£-p,,—p,) implies that £< g and the second restriction is

always fulfilled. The result follows.

Cais pn—4 + pn—3 + pn =1l-¢

One has n%icn{R] maX(p)} :ge for p,,=&. The restriction on the probabilities
pLCs '
Py =ES2P,,=20-€- P53~ P,) implies that £< % . Since

W{Rn'max( p) > O} :g >% , this concludes the proof of Theorem 4¢1.

pOC

Remarks4.1.
The long term growth of the absolute maximum skessriecrease wherX <,_ Y is linear
in n with the following sample values :
n 4 5 6 10 20 30
R max e 05 2 133 20 222 36 514 @3:1192 @3:18.62
2 3 9 7 51 81
This is to be compared with the absolute maximurmanae increase wherX <,__, Y, which

is also linear inn, but with a higher slope (see Hurlimann (2002)aiEple 5.1). In contrast to
the constant minimax skewness increase wh¥rg, . Y, the minimax variance increase

when X<, Y is also linear inn. These observations are of significance applioatio

financial immunization for fixed income securiti€Byvo further related papers on this topic
are Hurlimann (2003/2013).
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