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random variables are proved.
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1. Introduction. The law of the iterated logarithm is one of the fundamental laws of the
classical probability theory. The reader will find various versions of the law of the iterated logarithm
reviewed in [1]. In the last decade, analogues of the law of the iterated logarithm were proved for
sequences of self-normalized sums of i.i.d. random variables. The results are available in articles [2]
and [3] as well as sources referenced in these articles. This paper presents stronger versions of some
of the known statements regarding the law of the iterated logarithm for sequences of self-normalized
sums of i.i.d. random variables.

Let i.i.d random variables Xn, n ∈ N = {1, 2, . . . }, be defined on a probability space (Ω,F ,P).
Denote Sn = X1 + · · ·+ Xn, V

2
n = X2

1 + · · ·+ X2
n, n ∈ N. A self-normalized sum Sn/Vn is correctly

defined on the set {Vn > 0}. For Sn/Vn to be defined on the entire set Ω, we put Sn/Vn = 0
on the set {Vn = 0}. Define a function λ(n), n ∈ N, by putting λ(n) = 1 for n = 1, . . . , 9 and
λ(n) = [n− n/ ln lnn] for n ∈ N, n ≥ 10. Square brackets stand for an integer part function of the
number in the brackets. The nonnegative integer function λ(n), n ∈ N, has the following properties:
λ(n) ≤ λ(n + 1) for all n ∈ N and λ(n) < n for n ∈ N, n ≥ 10,

lim
n→∞

λ(n)

n
= 1, lim

n→∞
(n− λ(n)) =∞. (1)

Theorem. (i) If a sequence {Sn/Vn}n≥1 is weakly compact, then

lim sup
n→∞

(2 log log n)−1/2 max
λ(n)≤k≤n

|Sk|
Vk

<∞ a.e. (2)
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(ii) If random variables Xn, n ∈ N, are symmetric, then

lim sup
n→∞

(2 log log n)−1/2 max
λ(n)≤k≤n

|Sk|
Vk
≤ 1 a.e. (3)

As an immediate consequence, we get statements from the article [2].
Corollary. (i) If a sequence {Sn/Vn}n≥1 is weakly compact, then

lim sup
n→∞

|Sn|
Vn
√

2 log log n
<∞ a.e.

(ii) If random variables Xn, n ∈ N, are symmetric, then

lim sup
n→∞

|Sn|
Vn
√

2 log log n
≤ 1 a.e.

2. Supporting lemmas. Virtually all of the following lemmas are known to specialists. Let
Fn = σ(Sk, V

2
k , k ≥ n) denote a σ-algebra generated by random variables Sk, Vk, k ≥ n.

Lemma 1. If E|X1| <∞, then for any n ∈ N and k = 1, . . . , n + 1 we have

E(Sk|Fn+1) =
k

n + 1
Sn+1 a.e. (4)

Proof. Equalities similar to (4) are offered as an exercise in some advanced textbooks on prob-
ability theory. It is also used in [2]. We were unable to find a source that has a proof of this
equality. At the same time, the proof of our theorem is based on equality (4). For this reason we
will give its proof here. It suffices to show the equality of conditional mathematical expectations
E(Xk|Fn+1) = E(X1|Fn+1) a.e. for any k = 1, . . . , n + 1. Then (4) follows from additivity of condi-
tional mathematical expectation. Let L denote a class of events A ∈ Fn+1, for which the following
holds ∫

A
XkdP =

∫
A
X1dP. (5)

Since X1 и Xk are i.i.d, equality (5) holds with A = Ω. If equality (5) holds for B,C ∈ Fn+1

and B ⊂ C, then it holds for A = C \ B due to integral’s property of linearity. If equality (5)
holds for events An, n ∈ N, and An ⊆ An+1 for all n ∈ N, then it holds for A = ∪∞n=1An by
the dominated convergence theorem. This implies that class L is a λ-class. Let C denote a class
of events such as A = {Sk1 < c1, , . . . , Skr < cr, V

2
m1

< b1, . . . , V
2
ml

< bl} for natural numbers
r, l, n + 1 ≤ k1 < · · · < kr, n + 1 ≤ m1 < · · · < ml and for real numbers c1, . . . , cr, b1, . . . , bl. It is
easy to verify, using the integration measure change theorem, that equality (5) holds for any A ∈ C.
Intersection of any two events from class C is in C. In other words, class C is a π-class. Clearly, π-
class C generates σ-algebra Fn+1. By Sierpinski’s theorem ([4], p. 5), sigma-algebra σ(C) generated
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by class C is in λ-class L. Since Fn+1 = σ(C) ⊆ L ⊆ Fn+1, it follows that L = Fn+1. Thus we proved
that equality (5) holds for any A ∈ Fn+1, which is equivalent to equality E(Xk|Fn+1) = E(X1|Fn+1)
a.e. This completes the proof of lemma 1.

The following lemma demonstrates an important property of random variables

Yk =
( n

n + m− k

Sn+m−k
Vn+m−k

)2
, n,m ∈ N, k = 1, . . . ,m.

Lemma 2. Random variables Yk, k = 1, . . . ,m, form a submartingale relative to filtration
Fn+m−k, k = 1, . . . ,m.

Proof. In essence, a proof of this lemma is provided in [2]. We include it here for the reader’s
convenience. It is easily seen that for any k = 1, . . . ,m the random variable Yk is measurable with
respect to sigma-algebra Fn+m−k, and EYk < ∞. To complete the proof of the lemma, we have to
verify that the submartingale condition Yk ≤ E(Yk+1|Fn+m−k) holds a.e. for any 1 ≤ k < m. We
will make an additional assumption EX2

1 <∞. By equality (4), an obvious inequality Vn+m−k−1 ≤
Vn+m−k as well as Jensen’s inequality for conditional mathematical expectations

(E(Sn+m−k−1|Fn+m−k))2 ≤ E(S2
n+m−k−1|Fn+m−k) a.e.,

we have

E(Yk+1|Fn+m−k) = E

(( n

n + m− k − 1

Sn+m−k−1
Vn+m−k−1

)2
|Fn+m−k

)
≥
( n

n + m− k − 1

1

Vn+m−k

)2
E(S2

n+m−k−1|Fn+m−k)

≥
( n

n + m− k − 1

1

Vn+m−k

)2
(E(Sn+m−k−1|Fn+m−k))2

=
( n

n + m− k − 1

1

Vn+m−k

)2(n + m− k − 1

n + m− k
Sn+m−k

)2
=
( n

n + m− k

Sn+m−k
Vn+m−k

)2
= Yk a.e.

We will now no longer assume that EX2
1 <∞. By 1A denote the indicator function of an event

A ∈ F and X
(r)
k = Xk1{|Xk|≤r} for k = 1, . . . , n and r ∈ N. Define random variables S

(r)
k =

X
(r)
1 + · · ·+ X

(r)
k and Y

(r)
k similarly to Sk and Yk. It is not difficult to see that

lim
r→∞

Y
(r)
k = Yk a.e., lim

r→∞
E|Y (r)

k − Yk| = 0. (6)

Applying the arguments shown above, we have Y
(r)
k ≤ E(Y

(r)
k+1|Fn+m−k) a.e. Letting r → ∞, we

obtain inequality Yk ≤ E(Yk+1|Fn+m−k) a.e. It is well known that conditions (6) are sufficient to
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justify the limit operation on conditional mathematical expectations. This completes the proof of
lemma 2.

3. Proof of the theorem. (i). Denote nr = [exp{r/(log r)2] for any r ∈ N, r ≥ 2 and n1 = 1.
By lemma 2 for n = λ(nr) and m = nr+1 − λ(nr), nr > 10, random variables Yk, k = 1, . . . ,m,
form a submartingale relative to filtration Fn+m−k, k = 1, . . . ,m. For any t > 0 a convex function
exp{tx), x ≥ 0, is increasing. Therefore, a sequence exp{tYk}, k = 1, . . . ,m, forms a submartingale
relative to filtration Fn+m−k, k = 1, . . . ,m. Denote

Ar =
{

max
λ(nr)≤k<nr+1

λ(nr)

λ(nr) + k

|Sk|
Vk

> x(2 log r)1/2
}
, r ∈ N, nr > 10, x > 0.

Event Ar can be written as

Ar =
{

max
1≤k≤m

n

n + m− k

|Sn+m−k|
Vn+m−k

> x(2 log r)1/2
}

= { max
1≤k≤m

exp{tYk} > exp{2x2t log r}}

By the maximum inequality for submartingales ([4], p. 93) we have

P{Ar} ≤ exp{−2x2t log r}EetYm = exp{−2x2t log r}E exp{tS2
λ(nr)

/V 2
λ(nr)
}. (7)

In [5] inequality supn≥1 E exp{cS2
n/V

2
n } ≤ 2 is proven for some constant c > 0. Putting t = c and

x =
√

2/c in (7), we obtain P{Ar} ≤ 2/r2, nr > 10, and

∞∑
r=1

P{Ar} ≤
∑

r:nr≤10
+

∑
r:nr>10

2

r2
<∞.

By the Borel-Cantelli lemma, we have

lim sup
r→∞

(2 log r)−1/2 max
λ(nr)≤k<nr+1

λ(nr)

λ(nr) + k

|Sk|
Vk
≤ x = 2

√
2/c a.e.

It is not difficult to verify that limr→∞ nr+1/nr = 1 and limr→∞ log lognr/ log r = 1. This along
with the first statement in (1) implies that limr→∞ λ(nr)/nr+1 = 1. From this, in turn, it follows
that

lim sup
r→∞

(2 log log nr)
−1/2 max

λ(nr)≤k<nr+1

|Sk|
Vk
≤ 2
√

2/c a.e. (8)

For any n ∈ N there exists r ∈ N such that nr ≤ n < nr+1 and, consequently, the following
inequality holds

max
λ(n)≤k≤n

|Sk|
Vk
≤ max
λ(nr)≤k<nr+1

|Sk|
Vk

.

This together with (8) proves (2).
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(ii). If random variables Xn, n ∈ N, are symmetric, then E exp{tS2
n/V

2
n } ≤ 2/(1 − 2t) for any

t < 1/2. This statement is proven in the article [2]. Now inequality (7) can be restated as follows

P{Ar} ≤ exp{−2x2t log r}EetYm = exp{−2x2t log r} 2

1− 2t
, t <

1

2
, nr > 10.

Put x = 1+ε, where ε is any positive number. There exists t, 0 < t < 1/2, such that 2(1+ε)2t > 1.
For such x and t the previous inequality implies that

∞∑
r=1

P{Ar} ≤
∑

r:nr≤10
PAr}+

2

1− 2t

∑
r:nr>10

1

r2x2t
<∞.

By the Borel-Cantelli lemma we have

lim sup
r→∞

(2 log r)−1/2 max
λ(nr)≤k<nr+1

λ(nr)

λ(nr) + k

|Sk|
Vk
≤ 1 + ε a.e.

Properties of numbers nr, r ∈ N, as well as the function λ(n), n ∈ N, referred to in the proof of the
first statement, imply that

lim sup
r→∞

(2 log log nr)
−1/2 max

λ(nr)≤k<nr+1

|Sk|
Vk
≤ 1 + ε a.s.

Using concluding arguments from the proof of the first statement, we can again verify that

lim sup
n→∞

(2 log log n)−1/2 max
λ(n)≤k<n

|Sk|
Vk
≤ 1 + ε a.e. (9)

This inequality holds on an event Ωε of probability one. Inequality (9) holds on the event Ω′ =
∩∞l=1Ω1/l of probability one for any ε = 1/l, l ∈ N. Letting ε = 1/l → 0 in (9), we get (3). This
completes the proof of the theorem.
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