
Two dimensional hyperbolic geometry

R. K. Boadi
∗ ; Y. E.Ayekple ; S. B. Frimpong and I. Agyei

Department of Mathematics, KNUST, Kumasi, Ghana
rkboadi.cos@knust.edu.gh

September, 2015

Abstract

The geodesics in 2-dimensional hyperbolic geometry should be the same as non-Euclidean geometry since
hyperbolic geometry is a non-Euclidean geometry which discards one of the Euclid’s axioms, that is, the
fifth axiom which is the parallel postulate. Also, our determination is how to replace the fifth axiom of
Euclid to obtain hyperbolic geometry. We go ahead and find an axiom called Playfairs axiom which can
replace the fifth axiom of Euclid by negating the Playfairs axiom. We talk about Euclidean and hyperbolic
geometry structures and how they differ in terms of their distances. We learn that hyperbolic geometry
contains only two asymptotic lines called X and Y. We describe the 2-dimensional hyperbolic geometry in
a Riemann geometry and also describe its isometries. We discuss its discontinuous group also. We are
also going to look at how Riemannian geometry and hyperbolic geometry violate the fifth postulate of the
Euclidean geometry.

Keywords: Riemann geometry, Euclidean geometry, Hyperbolic geometry, Metric space, Isometry,
Groups, Manifold, Differential manifold, Riemannian manifold.

I. Introduction

Riemann Geometry which is also called elliptic
geometry or spherical geometry is the study of
curved surfaces.
The study of Riemannian Geometry has a di-
rect connection to our daily existence since we
live on a curved surface called Planet Earth.
What effects does working on a sphere, or a
curved space, have on what we think of as
geometrical truths?
• In curved space, the sum of the angles of any
triangle is always greater than 1800.
• On a sphere, there are no straight lines. As
soon as you start to draw a straight line, it
curves on the sphere.
• In curved space, the shortest distance be-
tween any two points called geodesic is not
unique.
For example, there are many geodesics be-

tween the north and the south poles of the
Earth (lines of longitude) that are not parallel
since they intersect at the poles.

Riemannian Geometers also study higher di-
mensional spaces. The universe can be de-
scribed as a three dimensional space. Near
the earth, the universe looks roughly like three
dimensional Euclidean space. However, near
very heavy stars and black holes, the space
is curved and bent. There are pairs of points
in the universe which have more than one
minimal geodesic between them.
The Hubble Telescope has discovered points
which have more than one minimal geodesic
between them and the point where the tele-
scope is located.
This is called gravitational lensing. The
amount that space is curved can be estimated
by using theorems from Riemannian Geometry
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and measurements taken by astronomers.

Physicists believe that the curvature of space
is related to the gravitational field of a star ac-
cording to a partial differential equation called
Einstein’s equation. So using the results from
the theorems in Riemannian Geometry they
can estimate the mass of the star or black hole
which causes the gravitational lensing.

One kind of theorem Riemannian Geometers
are looking for today is a relationship between
the curvature of a space and its shape.

Examples
There are many different shapes that surfaces
can take.
They can be:

1. Cylinder.

2. Sphere.

3. Paraboloids or tori, to name a few.

A torus is the surface of a bagel(bread) and it
has a hole in it.
You could also stick together two bagels and
get a surface with two holes. How many holes
can you get?
Certainly,as many as you want. If you string
together infinitely many bagels then you will
get a surface with infinitely many holes in it.
Now suppose you make a rule about how the
surface is allowed to bend. If a surface must
always bend in a rounded way (like a sphere)
at every point, then we say it has positive cur-
vature.
A paraboloid has positive curvature and so
does a sphere. A cylinder doesn’t and neither
does a torus.
Geodesic which is a shortest line between two
points on a curved or flat surfaces can also be
identify and noted.
Our research on this paper suggested that:

• Two dimensional hyperbolic geometry
which is the Non-Euclidean geometry vi-
olate the fifth postulate(parallel postu-
late) of the Euclidean geometry.

• To obtain hyperbolic geometry, the fifth
postulate(parallel postulate) must be re-
placed by its negation, that is, the Play-
fair’s axiom.

Our research on this paper is to establish the
following basic objectives:

• The description of two dimensional hy-
perbolic geometry in a Riemann geome-
try and its isometries.

II. Euclidean geometry

Euclidean geometry is an axiomatic system
in which all theorems ("the statements") are
derived from a small number of axioms. Eu-
clid gives five postulates or axioms for plane
geometry, stated in terms of constructions.(as
translated by Thomas Heath). It is also the
study of flat spaces or surfaces.

Axioms The five axioms mentioned above are:

1. Draw a straight line from any point to any
point.

2. Produce a finite straight line continuously
in a straight line.

3. Describe a circle with any center and dis-
tance [radius].

4. That all right angles are equal to one an-
other.

5. The parallel postulate.

"It states that, if a line segments intersects
two straight lines forming two interior
angles on the same side that sum to less
than two right angles, then the two lines
if extend indefinitely meet on that side
on which the angles sum to less than two
right angles." [1]
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Figure 1: Euclidean Geometry

Base on the above axioms given, one of the
axioms was violated which made us obtain
another form of geometry called hyperbolic
geometry.

III. Hyperbolic Geometry

Hyperbolic geometry is a non-Euclidean geom-
etry, that is, a geometry that discards one of
Euclids axioms, that is, parallel postulate of
Euclidean geometry. You can see that, the main
difference between Euclidean and the hyper-
bolic geometry is the nature of their parallel
lines.

In Euclidean geometry, parallel lines are de-
fined as lines that remains at a constant dis-
tance from each other even if extend to infinity.
But the hyperbolic geometry violates the par-
allel axiom and replace with their own paral-
lel axiom. So hyperbolic geometry has a spe-
cial kind of parallel lines called Ultraparallel
which curves away from each other gradually
increasing in distance as they move further
away from the points of intersection with com-
mon perpendicular.[2]

Figure 2: Hyperbolic

Theorem 1. The ultra-parallel theorem states that,
every pair of ultraparallel lines in the hyperbolic
plane has a unique common perpendicular hyper-
bolic line.

The fifth postulate can be replaced by the Play-
fair’s axiom which state that, in a plane, given
a line and a point not on the line, at most one line
parallel to the given line can be drawn through the
point.

Figure 3: Playfair’s diagram

In this studies ,To obtain the hyperbolic geom-
etry, the parallel postulate (or its equivalent
) must be replaced by its negation. That is
negating, the Playfair’s axiom form, since it is
a compound statement. This can be done in
two ways.
• Either there will exist more than one line
through the point parallel to the given line.
Or • There will exist no lines through the
point parallel to the given line.[3] In the first
case,replacing the Fifth postulate (parallel pos-
tulate) with a different axiom or its equivalent
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with the statement: "through any point P not on
line R, there exists at least two lines that do not
intersect R" and keeping the first four axioms
of Euclid, yield hyperbolic geometry.

Figure 4: Hyperbolic geometry

The only two lines asymptotic to R through
P is x and y. There are many lines that can
be drawn to pass through P but will never in-
tersect R. In Fig. 2.4, lines x and y intersect
perpendicular through P at angle θ, but do not
intersect R itself (the lines actually curve in hy-
perbolic space). If θ is the minimum such angle,
then the lines x and y are said to be asymptotic
to R, meaning that they intersect at infinity. At
any larger angle, the lines are called ultraparal-
lel, and never intersect R, even at infinity. We
realized that, there are an infinite number of
ultraparallel lines, but only two asymptotic
lines to a given line through a point not on it.

Figure 5: Describing angel of parallelism, non-
intersecting lines and parallel lines

I. Examples

Examples of hyperbolic geometry specifically,
2-dimensional.
• Poincaré half-plane model.
• Poincaré disc model

Definition 2. Poincaré half-plane model is the
upper half-plane, denoted as H together with
a metric, the poincaré metric, that makes it a
model of two-dimensional hyperbolic geome-
try.

II. History

It is named after Henri Poincaré, but originated
with Eugenio Beltrami, who used it along with
the Klein model and the Poincaré disk model
(due to Riemann), to show that hyperbolic ge-
ometry was equiconsistent with Euclidean ge-
ometry. The disk model and the half-plane
model are isomorphic under a conformal map-
ping.

III. Upper Half-plane

The hyperbolic geometry can be modeled in
the upper half-plane H of all complex numbers
with positive imaginary part.
The upper half-plane model in two-dimension
is possibly the most popular model for working
with two-dimensional hyperbolic geometry.
It is define as follows:
H2={ f = x + iy ∈ R : Im( f ) = y > 0} and its
associated given metric is

h = dx2+dy2

y2 .

IV. What is Upper half-plane?

Upper half-plane H is a set of complex num-
bers with positive imaginary part.
H={x + iy|y > 0; x, y ∈ R}.
It also play an important role in hyperbolic ge-
ometry, where the Poincaré half-plane model
provides a way at examine hyperbolic motions.
The Poincaré metric provide a hyperbolic met-
ric on the space.
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Figure 6: Upper half-plane

The upper half-plane is the portion of the com-
plex plane {x + iy : x, y ∈ (−∞, ∞)} satisfying
y = I[Z] > 0 i.e.
{x + iy : x ∈ (−∞, ∞), y ∈ (0, ∞)}.

V. Example 1

Consider the straight line graph with equa-
tion y = x. When x = 1,y = 1 and when
x = 2,y = 2 and so on. The line is a set of an
infinite number of points. The point A(2, 2)
is a particular element of this set. The line di-
vides the cartesian plane into two half-planes.

Figure 7: Example of upper half-plane graph

The set of points in the cartesian plane which
lie above the line (y = x) form the Upper half-
plane,and the set of points which lie below the
line form the lower half-plane.
B(2, 4) is the upper half-plane, and C(2, 1) is

the lower half-plane.
We can see from the graph (Figure 2.7) above
that the y− coordinate of B is greater than its
x− coordinate.
Therefore, the equation of the upper half-plane
is y > x.
Similarly, the y− coordinate of C is less than its
x − coordinate. Therefore,the equation of the
lower half-plane is y < x.
{(x, y) : y = x} is the set of points which

lie on the line.
{(x, y) : y > x} is the set of points which lie
above the line (upper half-plane) and
{(x, y) : y < x} is the set of points which lie
below the line (lower half-plane).

VI. Poincaré Metric

The metric of the model on the half-plane
{〈x, y〉|y > 0} is given by

(ds)2 = (dx)2+(dy)2

y2

where S measures length along a possibly
curved line. The straight lines in the hyper-
bolic plane(geodesics for this metric tensor,
i.e. curves which minimize the distance) are
represented in this model by circular arcs per-
pendicular to the X-axis and straight vertical
lines ending on the X-axis.
The distance between two points measured in
this metric along such a geodesic is

dist(〈x1, y1〉, 〈x2, y2〉)=arccosh(1+ (x2−x1)
2+(y2−y1)

2

2y1y2
).

This model is conformal which means that the
angles measured at a point are the same in
the model as they are in the actual hyperbolic
plane.[4] [5]

IV. Metric Space

Metric space is a space with a defined distance.
A metric space is given by a set X and a metric
or distance function
d : X× X −→ R such that the following prop-
erties holds.
Properties of a metric space

(i) (Positivity)
d(x, y) ≥ 0, ∀x, y ∈ X,
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equality holds ⇐⇒ x = y.

(ii) (Non-degenerated)
d(x, y) = 0, ⇐⇒ x = y, ∀x, y ∈ X.

(iii) (Symmetry)
d(x, y) = d(y, x) ∀x, y ∈ X.

(iv) (Triangle inequality)
d(x, y) ≤ d(x, z) + d(z, y) ∀x, y, z ∈ X.

The distance between x and y is d(x, y). The
pair (X, d) consisting of the set X and the met-
ric d is a metric space.
Examples 1

(i) X = R, d(x, y) = |x− y|.

(ii) X = R2 = R× R,

x = (x1, x2), y = (y1, y2)

d1(x, y) = |x1 − y1|+ |x2 − y2|.

(iii) X −→ R2

x = (x1, x2), y = (y1, y2)

d2(x, y) = (|x1 − y1|2 + |x2 − y2|2)
1
2

Example 2
Consider R, define d(x, y) = |x − y|. This is
called the Euclidean metric or standard met-
ric or the usual metric. To show that the real
line is a metric space, we have to proof these
properties.

Proof. (i) |x| ≤ 0 and |x| = 0 ⇐⇒ x = 0.

(ii) | − x| = |x|.

(iii) |x + y| ≤ |x|+ |y|.
By (i) d(x, y) = |x − y| ⇐⇒ x − y =
0, ⇐⇒ x = y.

By (ii) d(x, y) = |x− y|
= | − (y− x)|
= |y− x|
= d(y, x).

By (iii) d(x, y) = |x− y|
= |(x− z) + (z− y)|

≤ |x− z|+ |z− y|
= d(x, z) + d(z, y)
[6]

Lemma 3. Hölder’s Inequality
Let x, y ∈ Rn, then

|∑n
i=1 xiyi| ≤ (∑n

i=1 |xi|p)
1
p (∑n

i=1 |yi|q)
1
q

where 1
p +

1
q = 1, and thus (p, q) is called the con-

jugate pair. If p = q = 2, the Hölder’s Inequality
becomes Cauchy-Schwartz Inequality.

Lemma 4. On Rn the metric
d2(x, y) = (∑n

i=1 |xi − yi|2)
1
2 satisfies the tri-

angle inequality.

Proof. Let x, y, z ∈ Rn. Then we deduce from
Lemma 3 ,

d(x, y)2 = ∑n
i=1 |xi − yi|2 = ∑n

i=1 |(xi −
zi)− (yi − zi)|2
= ∑n

i=1 |(xi − zi)|2 − 2 ∑n
i=1(xi − zi)(yi − zi) +

∑n
i=1 |(yi − zi)|2
≤ d(x, z)2 + 2d(x, z)d(y, z) + d(y, z)2

= (d(x, z) + d(y, z))2

Hence, d(x, y) ≤ d(x, z) + d(y, z) and the
assertion is proved.

=⇒ d(x, y) ≤ d(x, z) + d(z, y).

[7]

V. Isometry

Given a metric space, an isometry is a trans-
formation which maps elements to the same
or another metric space such that the distance
between the image elements in the new metric
space is equal to the distance between the ele-
ments in the original metric space.
In a two-dimensional Euclidean space, two
geometric figures are congruent if they are
related by an isometry.
Also, isometry is a transformation in which
the original figure and its image are
congruent.
Moreover, isometry is invariant with respect
to distance. That is, in an isometry, the dis-
tance between any two points in the original
figure is the same as the distance between
their corresponding image in the transformed
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figure(image).

I. Formal Definitions

Let X and Y be a metric space with metrics dx
and dy. A map f : X −→ Y is called an isome-
try or distance preserving if for any a, b ∈ X
It implies that,
dy( f (a), f (b)) = dx(a, b).
An isometry is automatically injective.
Clearly, every isometry between metric space
is a topological embedding(i.e. homeomor-
phism).
A global isomtry, isometric isomorphism or
congruence mapping is a bijective isometry.
Two metric spaces X and Y are called isometric
if there is a bijective isometry from X to Y. The
set of bijective isometries from a metric space
to itself forms a group with respect to function
composition called the isometry group.[8]

II. Linear Isometries

Given two normed linear or vector spaces
V and W, a linear isometry is a linear map
f : V −→ W that preserves the norms. Any
isometry of normed linear or vector spaces
over R is affine.

KEYS IN ISOMETRIES

1. Metric space
Metric space is a set for which distances
between all members of the set are de-
fined.

2. Congruent
In geometry, two figures or objects are
congruent if they have the same shape
and size, or if one has the same shape
and size as the mirror image of the other.
More formally, two sets of points are
called congruent, if and only if one can
be transformed into the other by an isom-
etry i.e. a combination of rigid motions,
namely a translation, a rotation, and a
reflection.

(i) Two line segments are congruent if they
have the same length.

(ii) Two angles are congruent if they have the
same measure.

(iii) Two circles are congruent if they have the
same diameter.

3. Affine
It involves the transformations which pre-
serve collinearity, especially in classical
geometry , those of translation, rotation
and reflection in an axis.

III. Translation Operator

Tδ such that Tδ f (v) = f (v + δ).
If v is a fixed vector, then translation Tv will
work as Tv(p) = p + v.
In Euclidean geometry, a translation is a func-
tion that moves every point a constant distance
in a specified direction.
Translations,denoted by Tv, where v is a vector
in R2. This has the effect of shifting the plane
in the direction of v. That is, for any point p in
the plane.
Tv(p) = p+ v, or in terms of (x, y) coordinates,

Tv(P) =
[

Px + Vx
Py + Vy

]
. [9]

1. Example in Isometries
The figure below shows a translation, an
isometry.
An irregular polygon ABCDEF is trans-
lated to A1B1C1D1E1F1.
It is clearly seen that, the distance be-
tween A and B is the same as the dis-
tance between their image A1 and B1.

Let v= (4,-3) be the fixed vector.

(1) For A = (−4, 3),

Tv(A) =

[
Ax + Vx
Ay + Vy

]
=

[
−4 + 4

3 + (−3)

]
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=

[
0
0

]
= A1

.

(2) For B = (−1, 3),

Tv(B) =
[

Bx + Vx
By + Vy

]
=

[
−1 + 4

3 + (−3)

]

=

[
3
0

]
= B1

.

(3) For C = (−1, 1),

Tv(C) =
[

Cx + Vx
Cy + Vy

]
=

[
−1 + 4

1 + (−3)

]

=

[
3
−2

]
= C1

.

(4) For D = (−2, 1),

Tv(D) =

[
Dx + Vx
Dy + Vy

]
=

[
−2 + 4

1 + (−3)

]

=

[
2
−2

]
= D1

.

(5) For E = (−2,−1),

Tv(E) =
[

Ex + Vx
Ey + Vy

]
=

[
−2 + 4
−1 + (−3)

]

=

[
2
−4

]
= E1

.

(6) For F = (−4,−1),

Tv(F) =
[

Fx + Vx
Fy + Vy

]
=

[
−4 + 4
−1 + (−3)

]

=

[
0
−4

]
= F1

Figure 8: Example of isometry

VI. Groups

A group is a set combined with an operation.
Formal Definition of a Group.
A group is a set G, combined with an operation
∗, such that:

(i) The group contains an identity.

(ii) The group contains inverse.

(iii) The operation is associative.

(iv) The group is closed under the operation.

A group G consists of a set G together with
a binary operation,∗ for which the following
properties are satisfied. [?]
• (x ∗ y) ∗ z = x ∗ (y ∗ z) for all elements

x, y and z of G. (Associative Law).
• ∃ an element e of G (known as the identity

element of G) such that e ∗ x = x = x ∗ e,
for all element x of G (Identity).
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• For each element x of G, ∃ an element
x−1 of G (known as the inverse of x) such that

x ∗ x−1 = e = x−1 ∗ x (where e is the iden-
tity element of G) (Iverse).
• The order |G| of a finite group G is the

number of elements of G.
• A group G is Abelian(or commutative) if

x ∗ y = y ∗ x for all elements x and y of G.

I. Multiplication notation for Groups

The product x ∗ y of two elements x and y of
a group G is denoted by xy. The inverse of an
element x of G is then denoted by x−1.
The identity element is usually denoted by e.
Sometimes the identity element is denoted by
1.
Thus, when multiplication notation is adopted,
the group axioms are written as follows:
• (xy)z = x(yz) for all elements x, y and z

of G(Associative Law).
• ∃ an element e of G (the identity element

of G) such that ex = x = xe, for all elements x
of G.
• For each element x of G ∃ an element x−1

of G (the inverse of x) such that
xx−1 = e = x−1x (e is the identity element

of G).
The group G is said to be Abelian(or com-

mutative) if xy = yx ∀x, y of G.

II. Addition Notation For Groups

The group operation is denoted by +, the iden-
tity element of the group is denoted by 0, the
inverse of an element x of the group is denoted
by −x.
Note: Additive notation is only used for
Abelian groups.
Abelian Group
An Abelian group is a group satisfying the
commutative law.

III. Axioms for Abelian Group in Ad-
ditive notation

• x + y = y + x ∀x, y of G (Commutative
Law).
• (x + y) + z = x + (y + z) ∀x, y of G
(Associative Law).
• ∃ 0 of G (identity element or zero element
of G) such that 0 + x = x = x + 0, ∀x ∈
G.(Identity Law).
• For each element x ∈ G, ∃− x ∈ G (inverse of
x) such that x + (−x) = 0 = (−x) + x.(Inverse
Law)

VII. Discontinuous Group

A discontinuous group is one for which there
exists an ordinary point. Ordinary point is a
point of a plane which is not a limit point.

I. Limit point

Let A be a subset of a topological space X. A
point x ∈ X is a limit point of A if every neigh-
borhood of x intersects A in a point than that
in x itself.

Theorem 5. Let B be a group of linear fractional
transformation all of whose elements(except the
identity) possess isometric circle. If there exists an
open set of points that is exterior to all isometric
circle, then B is discontinuous.

VIII. Overview of Riemann

Geometry

Riemannian geometry is one way of looking at
distances on manifolds. This seems an easy
enough concept when you first think of it,
but after further though we realize it is not
so easy. Sure we know how to measure dis-
tances on a plane. The shortest distance be-
tween two points is a straight line. So just
draw the line and measure the distance (first
we set what unit measure is, for instance 1 me-
ter, and then compare the distance we want
to measure to our set standard unit distance,
say the meter stick). But on a sphere how do
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we measure distance? Or on a torus (the sur-
face of a doughnut)? A sphere we can think
of as living in Euclidean 3-space and then
just say that the distance between 2 points
on the sphere is just the distance between
those points (x1, y1) in 3-space, as described by
the Pythagorean theorem, which says that for
points (x2, y2) and the distance between them
is
√
(x1 − x2) + (y1 − y2) which is the fact that

the length of the hypotenuse (longest side) of
a right triangle is equal the square root of the
sum of the squares of the other two sides.

Figure 9: Pythagoras theorem

We are going to skirt these issues by taking
another approach to distances. Suppose we
could measure the length of curves. Then we
could simply define the distance between two
points to be the length of the shortest path,
if one exists. Even if one does not exist, we
could express the distance as the largest lower
bound for lengths of paths between the two
points (this is called the infimum). This isn’t
too important so let’s assume that we can find
a shortest path. So we could measure distances
if we could measure the lengths of paths. This
is where a Riemannian metric comes in.

I. Riemannian metric

Riemannian metric is a function defined at
every point that takes two vectors and gives
a number. Technically, a Riemannian metric
must be a symmetric bilinear form.
We express the Riemannian metric as g and we
express vectors at a point p in our manifold
as Vp, Wp, Up. then we can measure quanti-
ties like g(Vp, Wp) . The fact that is symmetric
means:

g(Vp, Wp)= g(Wp, Vp)
and bilinearity (when coupled with symmetry)
is the following condition:
g(Vp + Wp, Up)= (Vp, Up) + (Wp, Up).
The important thing is that the Riemannian
metric gives us a way to measure lengths of
vectors at each point in the manifold, and also
gives us a way of measuring lengths on the
manifold.[10]

II. Manifold

A manifold is a topological space that is locally
Euclidean.

IX. Topological Space

Let X be a set A topology. T on X is a collec-
tion of subsets of X each called an open set
such that

(a) φ and X are open sets.

(b) The intersection of finitely many open set
is an open set.

(c) The union of any arbitrary collection of
open set is an open set.

I. Example of topological space

Let X be a nonempty set.Define T = {φ, X}
.Check whether T is a topology.
sol.
Let T = {φ, X}, =⇒ φ ∩ X = φ, φ ∪ X =
{φ, X}
∴ T is a topology.

II. Locally Euclidean

A topological space X is called locally Eu-
clidean if there is a non-negative integer n
such that every point in X has a neighbor-
hood which is homeomorphic to the Euclidean
space Rn.

III. Properties of locally Euclidean

The property of being locally Euclidean is pre-
served by local homeomorphisms. That is ,
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if X is locally Euclidean of dimension n and
f : Y −→ X is a local homeomorphism, then Y
is a locally Euclidean of dimension n.

Theorem 6. A manifold is locally connected, lo-
cally compact and the union of countably many
compact subsets. A manifold is normal and metriz-
able.

Note: A manifold can be either compact or
non-compact, which we refer to as closed or
open manifold respectively.

IV. Connectedness

A topological space or manifold X is connected
if it cannot be broken down into distinct places
that form the union.

Definition 7. Let X be topological manifold.

(i) We call X connected if there does not
exists a pair of disjoint non-empty open
sets whose union is X.

(ii) We call X disconnected if X is not con-
nected .

(iii) If X is disconnected then a pair of dis-
joint open sets whose union is X is called
a separation of X.

V. Compactness

A topological space or manifold X is compact
if every open cover of X ha a finite subcover.

Definition 8. Let A be a subset of a topological
space X, and let O be a collection of subset of
X.

(i) The collection O is said to cover A or to
be a cover of A if A is contained in the
union of the sets in O.

(ii) If O covers A , and each set in O is open
, then we call O an open cover of A.

(iii) If O covers A and 0′ is a subcollection of
O that also cover A, then O′ is called a
subcover of O.

X. Topological Manifolds

A topological space M is called topological
manifold or m-dimensional manifolds if the
following conditions hold.

(i) M is a Hausdorff space.

(ii) For any P ∈ M, ∃ a neighborhood U of
P which is homeomorphic to an open
subsets V ⊂ Rm and

(iii) M has a countable basis of open sets.

I. Hausdorff Space

A topological space M is called Hausdorff if
for any pair p, q ∈ M, ∃ open neighborhood
U 3 p, and U1 3 q such that U ∩U1 = φ.

II. Homeomorphism

Let N and M be manifolds and let f : N −→ M
be continuous mapping. A mapping f is called
a homeomorphism between N and M if f
is continuous and has a continuous inverse
f−1 : M −→ N. In this case,the manifold N
and M are said to be homeomorphic.
[11]

Using coordinate chart to show homeomor-
phism.

Figure 10: coordinate chart

Using charts (U, ϕ) and (V, ψ) for N and
M respectively,coordinate expression for f i.e.
f̃ = ψ ◦ f ◦ ϕ−1.

11



III. Basis

For a topological space M with topology τ
, a collection β ⊂ τ is a basis if and only if
each U ∈ τ can be written as union of sets in
β. A bsis is called a countable basis if β is a
countable set. [?]

IV. Locally Homeomorphic

If p ∈ M has an open neighborhood U 3 p
homeomorphic to the open disc Dm in Rm , we
say that M is locally homeomorphic to Rm.

Figure 11: (Coordinate charts(U, ϕ))

Figure 3.3 displays coordinate charts (U, ϕ),
where U is coordinate neighborhood or charts
and ϕ is (coordinate) homeomorphism.

Transition maps(ϕij)

Transition between different choices of coordi-
nates are called transition maps,
ϕij= ϕjoϕ−1

i which are again homeomorphism.
See Figure 3.4.

Figure 12: Transition maps(ϕij)

.
From Figure 3.4, we usually write,
x = ϕ(p)
ϕ : U −→ V ⊂ Rm as coordinate for U.
p = ϕ−1(x),
ϕ−1 : V −→ U ⊂ M as parametrization of

U.
=⇒ ϕ(p) −→ x——– coordinatization .

ϕ−1(x) −→ p——parametrization.

V. Topological Manifold with Bound-
ary

A topological space M is called an m-
dimensional or topological manifold with
boundary, ∂m ⊂ M,if the following conditions
hold:

i M is a Hausdorff space.

ii For any point p ∈ M, ∃ a neighborhood
U of p which is homeomorphic to an
open subset V ⊂ H and

iii M has a countable basis of open sets.

Manifolds with boundary are also either
compact or non-compact. In both cases
the boundary can be compact.

Open subsets of a topological manifold are
called open submanifold and can be given a
manifold structure again.

VI. Topological Embedding

A topological embedding is a continuous in-
jective mapping f : X −→ Y, which is a home-
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omorphism onto its image f (x) ⊂ Y with re-
spect to the subspace topology.
Let f : N −→ M be an embedding, then its
image f (N) ⊂ M is called a submanifold of
M.

XI. Differential Manifold

Given a topological manifold M which is such
that

ϕij = ϕjoϕ−1
i : ϕi(Ui ∩Uj) −→ ϕj(Ui ∩Uj)

are diffeomorphism is called a differentiable
or smooth manifold.
Diffeomorphism between open subsets of Rm

are C∞-maps, whose inverses are also C∞-
maps.
• Atlas is the union of all coordinate charts.

I. Diffeomorphism

A function f : X −→ Y is said to be diffeo-
morphic if f and f−1 or both functions are
differentiable.
Two atlas (C∞), A, A1 are said to be equivalent
if their C∞ coordinate maps are compatible.
In that case , A ∪ A1 is also an atlas.
• Maximal Atlas
Maximal atlas is the union of all equivalent
atlases and is denoted as AD.

Definition 9. Let M be a topological manifold,
and let D be a differentiable structure on M
with maximal atlas AD. Then the pair (M, AD)
is called a differentiable manifold.
Also a differentiable manifold is a manifold
which has a differentiable structure.

II. Theorem(Unique differentiable
structure)

Given a set M , a collection {Uα} of subsets,
and injective maps ϕα : Uα −→ Rm such that
the following are satisfied.

Properties

i . ϕα(ϕα ⊆ Rm) is open for all α.

ii . ϕα(Uα ∩Uβ) and ϕβ(Uα ∩Uβ) are open
in Rm.

iii . For Uα ∩Uβ 6= φ, the transition maps,
ϕαoϕ−1

β : ϕβ(Uα ∩ Uβ) −→ ϕα(Uα ∩ Uβ)

are diffeomorphism for every α, β.

iv . Countably many set Uα cover M.

v . For any pair p 6= q ∈ M, either
p, q ∈ Uα or ∃ disjoint sets Uα, Uβ such
that p ∈ Uα and q ∈ Uβ[This property is
Hausdorff].

Then M has a unique differentiable manifold
structure and (Uα, Uβ) are smooth charts. A
function f : N −→ M is said to be smooth
if for every p ∈ N, ∃ charts (U, ϕ) of p
and (V, ψ) of f (p) with f (U) ⊂ V such
that f̃ = ψo f oϕ−1 : ϕ(U) −→ ψ(V) is a C∞-
mapping (Rn to Rm).

Figure 13: Coordinate representation for f ,with f (U) ⊂
V

.

III. Differentiable Homeomorphism

A smooth map f : N −→ M is said to be dif-
feomorphic if f−1 is also smooth.
The associated differentiable structures on N
are also said to be diffeomorphic.

IV. Local Diffeomorphic

A function f is said to be a local diffeomor-
phism if for every p ∈ N, ∃ a neighborhood U,
with f (U) open in M such that f : U −→ f (V)
is a diffeomorphism.

Example 1
Let N = R with atlas (R, ϕ(p) = p) and
let M = R with atlas (R, ψ(q) = q3), then

13



f : N −→ M, p −→ f (p) = p
1
3 .

Solution
Take U = V = R, then
f : R −→ R

f̃ = ψo f oϕ−1 = ψo f (p) = ψ(p
1
3 ) =

(p
1
3 )3 = p

f̃−1 = (ψo f oϕ−1)−1

= ψ−1o f o(ϕ−1)−1

= ϕo f oψ−1

= ϕo f−1(q)
= ϕ(q3)

= (q3)
1
3

= q
If f is smooth and its inverses i.e. f−1 is also
smooth, it implies that f is a diffeomorphism.
It also implies that N and M are diffeomorphic
to each other and their differentiable structures
are diffeomorphic and equivalent.

V. Rank of Mapping

Rank of f ,denoted by rank( f ) is given by
rank(J( f )).
For f : N −→ M,
J( f ) =
(x1, ..., xn) −→ ( f1(x1, ..., xn), ..., fm(x1, ..., xm)).
=⇒ J( f ) is of order m× n.

J( f ) =


δ f1
δx1

· · · δ f1
δxn

...
. . .

...
δ fm
δx1

· · · δ fm
δxn


A largest square matrix which is non-zero is
called rank.

VI. Definition(Immersion)

A mapping f : N −→ M is called an immer-
sion if rank( f ) = n (domain).

VII. Definition(Submersion)

A mapping f : N −→ M is called a submer-
sion if rank( f ) = m(co-domain).

VIII. Definition(Smooth Embedding)

An immersion that is injective or 1− 1 and is a
homeomorphism onto (surjective mapping) its
image f (N) ⊂ M, with respect to the subspace
topology is called
a smooth embedding.
A smooth embedding is an (injective) immer-
sion that is a topological embedding.
A mapping f : N −→ M is injective if for all
p, p1 ∈ N for which f (p) = f (p1) it holds that
p = p1.
A mapping f : N −→ M is surjective if
f (N) = M or equivalently for every q ∈
M, ∃p ∈ N such that q = f (p).

Theorem 10. Let f : N −→ M be smooth
with constant rank, rk( f ) = k, then for each
p ∈ N, and f (p) ∈ M, ∃ coordinate (U, ϕ)
for p and (V, ψ) for f (p), with f (u) ⊂ V,
such that (ψo f oϕ−1)(x1, ..., xk, xk+1, ..., xn) =
(x1, ..., xk, 0, ..., 0).

Example 1
Let N = R, M = R2 and f : N −→ M defined
by f (t) =

(
t2, t3).

Solution

J f |t = 2× 1 =

(
2t
3t2

)
t 6= 0, none of the elements will varnish, there-
fore the largest square matrix is 1.
=⇒ t 6= 0, rank(J f ) = 1
∴ f is immersion and injective.
But for t = 0, f is not immersion.

Example 2
Let N = R2 and M = R with projection map-
ping f : N −→ M that is (x, y) −→ f (x, y) = x.
Solution

J f |(x,y) = 1× 2 =
(

1 0
)

Rank( f ) = 1.
∴ submersion.
This is because the rank of f is the same as the
dimension of the co-domain i.e. m = 1.

Example 3
Let N = M = R2 and consider the map-

ping f (x, y) = (x2, y)t
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Solution

J f |(x,y) = 2× 2 =

(
2x 0
0 1

)
.
Rank(J f ) = 2 for x 6= 0.
Rank(J f ) = 1 for x = 0.[19]

XII. Riemannian Manifold

To measure distances and angles on manifolds,
the manifold must be Riemannian. A Rieman-
nian manifold is a differentiable manifold in
which each tangent space is equipped with
an inner product < ., . > in a manner which
varies smoothly from point to point. All dif-
ferentiable manifold (of constant dimension)
can be given the structure of a Riemannian
manifold. The Euclidean space itself carries a
natural structure of Riemannian manifold(the
tangent spaces are naturally identified with the
Euclidean space itself and carry the standard
scalar product of the space).

I. Tangent Space

Let x be a point in an n-dimensional compact
manifold M, and attach at x a copy of Rn tan-
gential to M. The resulting structure is called
the tangent space of M of x and is denoted
Tx M.
If γ is a smooth curve passing through x,then
the derivative of γ at x is a vector in Tx M.
A manifold possessing a metric tensor.
For a complete Riemannian manifold, the
metric d(x, y) is defined as the length of the
shortest curve(geodesic) between x and y.

II. Riemannian space

Riemannian space (M, g) is a real smooth man-
ifold M equipped with an inner product gx on
the tangent space Tx M at each point that varies
smoothly from point to point in the sense that
if X and Y are vector field on M , then

x −→ gx(X(x), Y(x)) is a smooth function.
The family gx of inner products is called a Rie-
mannian metric(tensor)

III. Riemannian manifolds as metric
spaces

Riemannian manifold is defined as a smooth
manifold with a smooth section of the positive-
definite quadratic forms on the tangent bundle.
Then one has to work to show that it can be
turned to a metric space.
If γ : [a, b] −→ M is a continuously differen-
tiable curve in the Riemannian manifold M,
then we define its length L(γ) as:
L(γ) =

∫ b
a

√
g(γ′(t), γ′(t))dt =

∫ b
a ‖γ

′(t)‖dt.
With this definition of length, every connected
Riemannian manifold M becomes a metric
space in a natural fashion and the distance
d(x, y) between the points x and y of M is de-
fine as:
d(x, y) = in f {L(γ) : γ is a continuously differ-
entiable curve joining x and y}.
Even though Riemannian manifolds are usu-
ally "curved", there is still a notion of "straight
line " on them, that is geodesics.
Assuming the manifold is compact, any two
points x and y can be connected with a
geodesic whose length is d(x, y).

Properties
In Riemannian manifolds, the notions of
geodesic completeness, topological complete-
ness and metric completeness are the same.
• Diameter

The diameter of a Riemannian manifold M is
defined as
diam(M) : supx,y∈M d(x, y) ∈ R ≥ 0∪ {+∞}.
Riemannian manifold M is compact if and only
if it is complete and has finite diameter. M is
geodesically complete if and only if it is com-
plete as a metric space.

IV. Riemannian Metric(tensor)

A Riemannian metric on a manifold M is a
smoothly varying positive definite inner prod-
uct on the tangent spaces Tx.
A Riemannian metric g on a smooth manifold
is a smoothly chosen inner product
gx : Tx M× Tx M −→ R on each of the tangent
spaces Tx M of M. In other words, for each
x ∈ M, g = gx satisfies:
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(1) g(u, v) = g(v, u) ∀u, v ∈ Tx M.

(2) g(u, u) ≥ 0∀u ∈ Tx M.

(3) g(u, u) = 0 if and only if u = 0.

Furthermore, g is smooth in the sense that for
any smooth vector fields X and Y , the function
x −→ gx(Xx, Yx) is smooth.
Locally a metric can be described in terms
of its coefficients in a local chart, defined by
gij = g(∂i, ∂j).
The smoothness of g is equivalent to the
smoothness of all the coefficient functions gij
in some chart.
In a metric tensor, the tensor product is T∗x ⊗
T∗x .

Definition 11. A Riemannian metric on a man-
ifold M is a section g of T∗ ⊗ T∗ which at each
point is symmetric and positive definite.
In a local coordinate system we can write,
g = ∑ij gij(x)dxi⊗ dxj as a metric tensor where
gij(x) = gji(x) and is a smooth function, with
gij positive definite and gij are the component
of the metric tensor at each point x.
Frequently, the tensor product symbol is omit-
ted and we simply writes
g = ∑i,j gij(x)dxidxj. Then g is a Riemannian
metric

Example
Given a smooth map
F : M −→ N and a metric g on N ,we
can pull g to a section F∗g of T∗M ⊗
T∗M : (F∗g)x(X, Y) = gF(x)(DFx(X), DFx(Y).
If DFx is invertible , this will again be positive
definite if F is a diffeomorphism.

Definition(Isometry)
Isometry in manifolds is injective and isometry
between metric space is a topological embed-
ding(i.e. homeomorphism).
A diffeomorphism F : M −→ N between
two Riemannian manifolds is an isometry if
F∗gN = gN .[12]

Example
Let M = {(x, y) ∈ R2 : y > 0} and

g = dx2+dy2

y2 .

If z = x + iy and F(z) = az+b
cz+d

with a, b, c, d are complex numbers and
ad− bc > 0 , then

F∗dz = (ad− bc) dz
(cz+d)2 and

F∗y = yoF = 1
i (

az+b
cz+d −

az̄+b
cz̄+d )

F∗y = ad−bc
|cz+d|2 y

Then,

F∗g = (ad− bc)2 dx2+dy2

|(cz+d)2|2
|cz+d|4

(ad−bc)2y2

= dx2+dy2

y2

= g
So these Möbius transformations are isome-
tries of a Riemannian metric on the upper half-
plane.[13]

XIII. Conclusion

In this discussion,we find out that Non-
Euclidean which is the same as hyperbolic ge-
ometry was develop from Euclidean Geometry.
However, 2-dimensional hyperbolic geometry
is also known as Non-Euclidean geometry. The
2-dimensional hyperbolic which is also known
as Non-Euclidean geometry was obtain due to
the violation of the fifth postulate of the Eu-
clidean Geometry.
In describing the 2-dimensional hyperbolic ge-
ometry in a Reimannian geometry, was found
out that it is associated with a manifold which
is one way of measuring distance. The man-
ifold is in two forms, Riemannian manifolds
and differential manifolds.
However, these two manifolds are the same
in terms of their geodesics. The Riemannian
manifolds were also describe as metric spaces.
Which by this we worked to show that it can
be turned to a metric space.
Also, even though Riemannian manifolds are
usually "curved", there is still a notion of
straight line on them that is geodesics.
Therefore, geodesics was describe as shortest
line between two points in a curve or flat sur-
faces. With this, we say that both the Rieman-
nian geometry and hyperbolic geometry vio-
late the fifth postulate of the Euclidean geome-
try.
In a nutshell, diffeomorphism between two Rie-
mannian manifolds is an isometry.
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