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Hydromagnetic Flow of a Non-Newtonian Fluid
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in Presence of Inclined Magnetic Field
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Abstract
In this study, the hydromagnetic flow of incompressible non-Newtonian fluid

in a porous medium induced by a moving plate in the presence of inclined

magnetic field was analyzed. The study is aimed to determine the temperature

and velocity profiles of the fluid flow. Also, the effect of the permeability

parameter, X, Reynolds number, Re, Prandtl number, Pr, Eckert number, Ec,

and magnetic field parameter, M, on the flow variables. Moreover, the effect

of varying the inclination angle on the flow variables is discussed.

Mathematics Subject Classification : xxxxx

Keywords: Hydromagnetic, Non-Newtonian Fluid, Porous Medium, Mag-
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1. Introduction
Flow behavior of non-Newtonian fluids are different from those of Newtonian

fluids and when seen for the first time they appear abnormal or even paradox-

ical [4]. The flows of non-Newtonian fluids in a porous medium have gained a

lot of importance in recent years. The flow in a porous medium has got more

applications in engineering and science such as groundwater hydrology, reser-

voir engineering, petroleum engineering, agricultural irrigation and drainage,
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chemical reactors, and recovery of crude oil from the pores of reservoir rocks.

Studies related to hydromagnetic flow of a non-Newtonian in a porous plate

induced by a plate in presence of inclined magnetic field has been conducted

by other scientist and mathematicians previously as follows below.

[8] studied Hydromagnetic turbulent flow of a rotating system past a semi-

infinite vertical plate with Hall current. In this study it was found that Grashof

number enhances both secondary and primary velocities profiles but has a small

effect on the temperature profiles. Also it was revealed that the rotational pa-

rameter accelerates the secondary velocity profiles while the primary velocity

is being diminished. And due to the presence of Hall current magnetic field

is strongly affected. Similarly, [5] analyzed Unsteady Hydromagnetic convec-

tive flow past an infinite vertical porous flat plate in a porous medium. In

this study it was concluded that a growing magnetic parameter or permeabil-

ity parameter retards the transient velocity of the flow field at all points, the

Grashof number for heat transfer enhances the transient velocity of the flow

field at all points, the permeability parameter enhances the skin friction and

the rate of heat transfer at the wall, the effect of increasing magnetic param-

eter is to decrease the skin friction and the rate of heat transfer at the wall

in the flow field and he effect of growing Prandtl number is to decrease the

transient temperature of the flow field at all points in the flow field while a

growing permeability parameter reverses the effect. In the same vein, [3] an-

alyzed Hydromagnetic oscillatory flow through a porous medium bounded by

two vertical porous plates with heat source and soret effect. It was concluded

that the rate of heat transfer decreases with increase in the heat generation

parameter and the rate of mass transfer is less for the fluid with large viscosity.

Subsequently, [11] discussed the solution of MHD flow past a vertical porous

plate through a porous medium under oscillatory suction. It was revealed that

the magnetic field parameter slows down the velocity of the flow field at all

points due to the magnetic pull of the Lorentz force acting on the flow field. It

was also found that the concentration distribution decreases at all points of the

flow field with the increase of the Schmidt number. Thereafter, [6] discussed

MHD flow in porous media over a stretching surface in a rotating system with

heat and mass transfer. It was concluded that the rates of heat transfer and

mass transfer on the stretching sheet embedded in a porous medium in a ro-

tating system is influenced by the Magnetic field parameter, Soret number,
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mass Grashof number, thermal Grashof number, Injection parameter, Rota-

tional parameter, Permeability parameter, Dufour number, Reynolds number,

Radiation parameter, the Eckert number, Schmidt number and time.

[9] discussed some exact solutions of non-Newtonian fluid in porous medium

with hall effect having prescribed vorticity distribution function. In this study

it was concluded that the exact solutions of the governing equations of in-

compressible second grade fluid in a porous medium with the Hall currents

under the assumption that vorticity distribution is proportional to the stream

function perturbed by a quadratic term. In the same vein, [2] studied MHD

fluctuating flow of non-Newtonian fluid through a porous medium bounded by

an infinite porous plate. It was concluded that the magnetic field parameter

slows down the velocity of the flow field at all points due to the magnetic pull

of the Lorentz force acting on the flow field, the Schmidt number has a delaying

effect on velocity and concentration distribution of the flow field, the Grashof

number for mass transfer accelerates the velocity of the flow field at all points

and the effect of permeability parameter of the porous medium is enhanced the

velocity of the flow field at all points. Similarly, [7] discussed Hydromagnetic

flow and heat transfer over a porous oscillating stretching surface in a vis-

coelastic fluid with porous medium. It was revealed that an oscillatory sheet

embedded in a fluid-saturated porous medium generates oscillatory motion

in the fluid. It was observed that the behavior of temperature was mono-

tonic with time rather than oscillatory. It was also revealed that temperature

and thermal boundary layer thickness decreases with increasing viscoelastic

parameter and mass suction/injection parameter. It was also revealed that

the amplitude of velocity increases with increasing the viscoelastic parameter.

Subsequently, [1] analyzed MHD flow of water-based brinkman type nanofluid

over a vertical plate embedded in a porous medium with variable surface ve-

locity, temperature and concentration. In this study it was observed that an

increase of permeability parameter of the porous plate leads to a decrease of

the velocity field. Thereafter, [10] discussed heat transfer on MHD rotating

non-Newtonian fluid flow through parallel plate porous channel. In this paper

it was revealed that the resultant velocity increases with increase of Ekman

number or viscoelastic fluid parameter. It was observed that the fluid temper-

ature increases with the increase of magnetic field parameter, darcy parameter,

viscoelastic fluid parameter and Prandtl number. Furthermore, it was revealed
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that increase of the Grashof number leads to the increase both primary and

secondary velocity of the fluid flow. It was revealed that magnitudes of the rate

of heat transfer were enhanced by Ekman number, darcy parameter, Grashof

and Prandtl number.

To this end, this study considers hydromagnetic flow of a non-Newtonian in

a porous plate induced by a plate in presence of inclined magnetic field. The

temperature and velocity profiles of the fluid flow are determined. Also, the

effect of angle of inclination of the magnetic field and non-dimensional numbers

on the flow variables are discussed.

2. Mathematical Formulation
This study considers unsteady two-dimensional hydromagnetic flow of incom-

pressible non-Newtonian fluid in a porous medium induced by a moving plate

in the presence of inclined magnetic field. The porous medium is saturated

with non-Newtonian fluid and the plate moves along x−axis with a constant

velocity u0. The plate induces the flow of the fluid in the porous medium. A

uniform magnetic field B0 is applied in a direction of the flow which is inclined

at an angle α to the plate. The regime is illustrated in Figure 1 below.

Figure 1: Flow Configuration

The following assumption are considered in order to model the problem.

1. The fluid is incompressible and the flow is unsteady.

2. The plate is moving with a constant velocity u0 in the presence of inclined

magnetic field B0 at angle α to the direction of the flow.
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3. The measurements of the plate and the medium are of comparable lengths.

4. The force due to electric field is negligible compared to the Lorentz force.

5. The moving plate is a non-permeable magnetic material i.e. it allows

magnetic lines of force to pass through.

6. The porous medium is isotropic and non-magnetic.

Based on the above assumptions, the governing equations are as follows:

Continuity Equation:
∂u

∂x
+
∂v

∂y
= 0 (1)

Momentum Equations:

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)
= µ

(
∂2u

∂x2
+
∂2u

∂y2

)
+µ

u

Kp

+σB0
2 sinα(u sinα+v cosα)

(2)

Equation (2) is the momentum equation in the x−axis.

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)
= µ

(
∂2v

∂x2
+
∂2v

∂y2

)
+µ

v

Kp

+σB0
2 cosα(u sinα+v cosα)

(3)

Equation (3) is the momentum equation in the y−axis.

Energy Equation:

ρCp

(
∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y

)
= k

(
∂2T

∂x2
+
∂2T

∂y2

)
+µ

[
4

(
∂v

∂y

)2

+

(
∂u

∂y
+
∂v

∂x

)2
]

(4)

The viscosity µ of the non-Newtonian fluid in this case is considered as a

function of temperature i.e.

µ = µ0 [1 + γ∗ (T − Tp)] (5)

where µ0 is the ambient fluid’s viscosity, γ∗ is a constant expressed as

γ∗ =
1

µ

(
∂µ

∂T

)
Tf with Tf being the fluid’s film temperature.

Initial and boundary conditions of this problem are as follows:

t = 0 :


u = 0, v = 0, T = Tw at y = H, 0 ≤ x ≤ L

u = 0, v = 0, T = Tw at y = 0, 0 ≤ x ≤ L

u = 0, v = 0, T = Tw at x = L, 0 ≤ y ≤ H

u = 0, v = 0, T = Tw at x = 0, 0 ≤ y ≤ H

(6)
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t > 0 :


u = u0, v = 0, T = Tp at y = H, 0 ≤ x ≤ L

u = 0, v = 0, T = Tw at y = 0, 0 ≤ x ≤ L

u = 0, v = 0, T = Tw at x = L, 0 ≤ y ≤ H

u = 0, v = 0, T = Tw at x = 0, 0 ≤ y ≤ H

(7)

Temperature of the porous media and that of the walls are assumed to be

equal. It is also assumed that temperature of the wall is greater than the that

of the plate i.e. Tw > Tp.

In this study, the following non-dimensional quantities have been used to trans-

form the governing equations.

t∗ =
u0t

L
, x∗ =

x

L
, y∗ =

y

H
, u∗ =

u

u0
, v∗ =

v

u0
, T ∗ =

T − Tp
Tw − Tp

The viscosity variation parameter is expressed as:

γ =
1

µ

(
∂µ

∂T

)
Tf (Tw − Tp) (8)

Hence, (5) becomes:

µ = µ0

[
1 + γ

(
T − Tp
Tw − Tp

)]
= µ0(1 + γT ∗) (9)

Using these non-dimensional quantities, equation (2), (3) and (4) in dimen-

sionless form become:

∂u∗

∂t∗
+ u∗∂u∗

∂x∗
+

v∗

Ar

∂u∗

∂y∗
=

(1 + γT ∗)

Re

(
∂2u∗

∂x∗2
+

1

A2
r

∂2u∗

∂y∗2

)
+

Re

X
(1 + γT ∗)u∗

+ MRe sinα(u∗ sinα + v∗ cosα)

(10)

Equation (10) is the momentum equation in x−direction in dimensionless form.

∂v∗

∂t∗
+ u∗∂v∗

∂x∗
+

v∗

Ar

∂v∗

∂y∗
=

(1 + γT ∗)

Re

(
∂2v∗

∂x∗2
+

1

A2
r

∂2v∗

∂y∗2

)
+

Re

X
(1 + γT ∗)v∗

+ MRe cosα(u∗ sinα + v∗ cosα)

(11)

Equation (11) is the momentum equation in y−direction in dimensionless form.

∂T ∗

∂t∗
+ u∗∂T

∗

∂x∗
+

v∗

Ar

∂T ∗

∂y∗
=

1

RePr

[
∂2T ∗

∂x∗2
+

1

A2
r

∂2T ∗

∂y∗2

]
+

(1 + γT ∗)Ec

Re

[
4

(
1

Ar

∂v∗

∂y∗

)2

+

(
1

Ar

∂u∗

∂y∗
+
∂v∗

∂x∗

)2
]

(12)
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Equation (12) is the energy equation in dimensionless form. Equation (6) and

(7) in dimensionless form become:

t∗ = 0 :


u∗ = 0, v∗ = 0, T ∗ = 1 at y∗ = 1, 0 ≤ x∗ ≤ 1

u∗ = 0, v∗ = 0, T ∗ = 1 at y∗ = 0, 0 ≤ x∗ ≤ 1

u∗ = 0, v∗ = 0, T ∗ = 1 at x∗ = 1, 0 ≤ y∗ ≤ 1

u∗ = 0, v∗ = 0, T ∗ = 1 at x∗ = 0, 0 ≤ y∗ ≤ 1

(13)

t∗ > 0 :


u∗ = 1, v∗ = 0, T ∗ = 0 at y∗ = 1, 0 ≤ x∗ ≤ 1

u∗ = 0, v∗ = 0, T ∗ = 1 at y∗ = 0, 0 ≤ x∗ ≤ 1

u∗ = 0, v∗ = 0, T ∗ = 1 at x∗ = 1, 0 ≤ y∗ ≤ 1

u∗ = 0, v∗ = 0, T ∗ = 1 at x∗ = 0, 0 ≤ y∗ ≤ 1

(14)

Equation (13) and (14) are the initial and boundary conditions respectively in

dimensionless form.

3. Numerical Simulations and Discussions
In this study, the Crank-Nicolson method was used to obtain the numerical

scheme for solving the governing equations. The knowledge of central differ-

ence for solving PDEs was used to determine the corresponding finite differ-

ence equation (FDE) of each governing equation. The obtained FDEs were

implemented in a computer program which was executed at different values of

non-dimensional numbers and the angle of inclination of the magnetic field,

α, to determine the velocity and temperature profiles of the fluid flow. The

effect of the angle of inclination of the magnetic field, α, and non-dimensional

numbers like Reynold’s number, Re, Magnetic parameter, M, Permeability pa-

rameter, X, Eckert number, Ec, and Prandtl number, Pr on the determined

velocity and temperature profiles are also discussed in this section as follows.

From Figure 2 and 3, it is observed that an increase in the angle of inclination

of the magnetic field (α) leads to an increase in the magnitude of both primary

and secondary velocity profiles. The magnetic field is inclined at an angle, α,

to the direction of the flow. Therefore, an increase in magnitude of the angle of

inclination of the magnetic field, α, (which is measured in a clockwise direction

from the plate) leads to an increase in both primary and secondary velocity

profiles of the fluid flow.
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Figure 2: Effect of angle of inclination on primary velocity.

Figure 3: Effect of angle of inclination on secondary velocity.

From Figure 4 and 5, it is observed that increase in Reynold’s number (Re)

leads to the increase in the magnitude of both primary and secondary velocity

profiles of the fluid flow. Reynold’s number is the ratio of inertia force to the

viscous force. Increasing Reynold’s number leads to the decrease in the viscous

force which is the force that opposes the motion of the fluid flow. Hence, since

he force that opposes the motion of the fluid flow decreases as the Reynold’s

number increases, then the velocity profiles of both primary and secondary

velocity increase in magnitude as the Reynold’s number increases.
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Figure 4: Effect of Reynold’s number on primary velocity.

Figure 5: Effect of Reynold’s number on secondary velocity.

From Figure 6 and 7, it is observed that an increase in Magnetic field parameter

(M) leads to an increase in both primary and secondary velocity profiles. If

magnetic fields are introduced to an electricity conducting flowing fluid, then

the Lorentz force will be introduced to the flow. In this study, magnetic fields

are applied in the same direction of the fluid flow and inclined at angle, α.

This means that the applied magnetic fields introduce the Lorentz force to

the flow. Thus, increasing Magnetic field parameter leads to an increase of

the force due to electromagnet which is the Lorentz force in this study. Hence,

since the Lorentz force is applied in the same direction with the fluid flow, then

an increase in Magnetic field parameter leads to an increase in the magnitude

of both primary and secondary velocity profiles.
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Figure 6: Effect of Magnetic parameter on primary velocity.

Figure 7: Effect of Magnetic parameter on secondary velocity.

From Figure 8 and 9, it is observed that an increase in permeability parameter

(X) leads to the decrease in both primary and secondary velocity profiles of

the fluid flow. Increase in permeability parameter leads to an increase in

the porosity of the porous medium and hence reduces the acceleration of the

fluid flow in the porous medium. Decreasing the acceleration of the fluid flow

reduces the particles movement as the result it leads to the decrease in the

magnitude of both primary and secondary velocity profiles of the fluid flow.
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Figure 8: Effect of Permeability parameter on primary velocity.

Figure 9: Effect of Permeability parameter on secondary velocity.

From Figure 10, it is observed that an increase in Reynold’s number leads to

the increase in temperature profiles. Reynold’s number is the ratio of inertia

force to the viscous force. Increasing Reynold’s number leads to the decrease in

the viscous force which is the force that opposes the motion of the fluid flow.

Since the viscous force is decreased then the velocity of the fluid increases

which leads to an increase in the collision of the fluid particles. This leads to

the dissipation of heat in the boundary layers in the porous medium and hence

an increase in the temperature profiles of the fluid flow.
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Figure 10: Effect of Reynold’s number on temperature.

From Figure 11, it is observed that an increase in Eckert number (Ec) leads to

an increase in temperature profiles. Eckert number is the ratio of the kinetic

energy to the fluid enthalpy, thus, increasing Eckert number implies that there

is high kinetic energy. The kinetic energy is always high when the velocity of

the fluid flow is high. When the velocity of the fluid is high, the collision of the

fluid particles increases which leads to an increase of the self-heating effects

due to dissipation of heat in the boundary layers in the porous medium. Since

the self-heating effects due to dissipation is high, it implies that there is an

increase in the magnitude of temperature. Hence, Increasing Eckert number

leads to an increase of temperature profiles of the fluid flow.

Figure 11: Effect of Eckert number on temperature.

From Figure 12, it is observed that an increase in Prandtl number (Pr) leads to



13

an increase in temperature profiles. Prandtl number is the ratio of the viscous

diffusion rate to the thermal diffusion rate expressed as the ratio of kinematic

viscosity to the thermal diffusivity. Increasing Prandtl number implies that,

there is low thermal diffusivity of the fluid as the result the fluid expands and

the molecules moves apart hence increases the temperature of the fluid. Thus,

an increase of the Prandtl number leads to an increase of the magnitude of the

temperature profiles of the fluid increase.

Figure 12: Effect of Prandtl number on temperature.

4. Conclusion
In this section, a summary of the effects of non-dimensional numbers and the

angle of inclination of the magnetic field on velocity and temperature profiles

of the fluid flow is presented.

Increasing the inclination angle, α, leads to an increase in the magnitude of

both primary and secondary velocity profiles of the fluid flow. This implies

that the velocity varies directly proportional with the inclination angle, α.

Increasing Reynold’s number, Re, Magnetic parameter, M, leads to an in-

crease in both primary and secondary velocity profiles of the fluid flow. This

shows that the velocity varies directly proportional with Reynold’s number,

Re, Magnetic parameter, M. Increase in Permeability parameter, X, leads to

the decrease in both primary and secondary velocity profiles of the fluid flow.

This implies that the velocity varies inversely proportional with the Perme-

ability parameter, X.

Increasing Reynold’s number, Re, Eckert number, Ec, and Prandtl number, Pr

leads to am increase in magnitude of the temperature profiles of the fluid flow.
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This means that, temperature of the fluid flow varies directly proportional

with the Reynold’s number, Re, Eckert number, Ec, and Prandtl number, Pr.
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Nomenclature
Symbol Meaning

B0 Magnetic field strength, [wbm−2]

u, v Components of velocity vector [ms−1]

H Height of the porous media, [m]

L Length of the porous media [m]

φ Viscous dissipation function, [s−1]

σ Electrical conductivity, [Ω−1m−1]

ρ Fluid density, [Kgm−3]

k Thermal conductivity of the fluid, [WK−1m−1]

M Magnetic parameter

Kp Darcy permeability, [m2]

Pr Prandtl number.

Re Reynolds number.

Ec Eckert number

Ar Aspect Ratio

X Permeability parameter

T Absolute free temperature of the fluid, [K]

Tw Temperature of the wall, [K]

Tp Temperature of the plate, [K]

Cp Specific heat at a constant temperature, [JKg−1K−1]
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