
Journal of Applied Mathematics & Bioinformatics, vol. x, no. x, 2011, x-x

ISSN: 1792-6602(print), 1792-6939(online)

c⃝International Scientific Press, 2011

Hybrid regularization for wavelet frame and total

variation with application to Poisson noise removal

Xiaojuan Yang 1

Abstract

Blurred images corrupted by Poisson noise frequently appear in var-

ious applications such as medical and astronomical imaging. Due to the

strong edge preserving ability, the Total variation (TV) regularization

has been developed as an important regularization method to solve the

Poisson denoising problem. However, TV introduces staircase effects.

In this paper, we propose a hybrid variational model which takes advan-

tages of the wavelet tight frame and TV. An efficient iterative algorithm

based on the augmented Lagrangian technique is proposed. Under some

conditions, the convergence property of the proposed algorithm is also

investigated. Numerical experiments illustrate the effectiveness of the

proposed method.
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1 Introduction

The deblurring problem for images corrupted by Poisson noise is an important

task in various applications, such as astronomical [1], medical [2] and pho-
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tographic imaging [3]. The problem of restoration of Poissonian images has

received considerable attention in recent years. Image restoration in such fields

of applications can often be formulated as linear ill-posed problems. The goal

of image deblurring and denoising is to recover approximate images of original

images from blurred and noisy measurements.

Let u ∈ Rn×n be the original image, f ∈ Rn×n be the observed image,

K : Rn×n → Rn×n is a blurring operator which model a convolution or some

other linear observation mechanism, such as emission tomography. Then the

degradation model can be written as

f = P(Ku+ b), (1)

where P(α) denotes a Poisson distributed random vector with mean α, and

b ≥ 0 is an array describing the expected value of the background emission.

We know that the intensity fi,j in the pixel (i, j) is a random variable

that follows a Poisson law of mean (Ku + b)i,j. The likelihood probability

distribution of (1) can be expressed as

p(f |Ku) =
n∏

i,j=1

[(Ku+ b)i,j]
fi,j

fi,j!
e−(Ku+b)i,j . (2)

By taking the negative logarithms of the likelihood and adding a suitable

constant leads to the log-likelihood function [1, 4]

−log[p(f |Ku)] =
n∑

i,j=1

{
fi,jlog

fi,j
(Ku+ b)i,j

+ (Ku+ b)i,j − fi,j

}
,

By dropping some terms independent of u, the above equation is equivalent to

−log[p(f |Ku)] =
n∑

i,j=1

(Ku+ b)i,j − fi,jlog(Ku+ b)i,j, (3)

the unknown image can be recovered by minimizing the likelihood function (3)

with respect to u.

The standard algorithm for the minimization of (3) is the Richardson-Lucy

(RL) algorithm [5, 6], which takes account Poisson statistics of the photon

counting. The algorithm has non-negativity of the iterates and flux conser-

vation (in the case b = 0). However, this method is unable to prevent noise
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amplification sufficiently during the iterative process due to the ill-posedness

of the inverse problem.

Since as a consequence of noise and ill-posedness of the inverse problem, in

general the minimizers of the function −log[p(f |Ku)] are not reliable solutions
of the image restoration problem and they are sparse [7, 8, 9]. Usually, some

regularity condition has to be imposed on the solution space in order to turn

the underlying ill-posed problem to a well-posed one [10]. The minimization

of the function −log[p(f |Ku)] is replaced by the minimization of a penalized

function of the form

min
u

n∑
i,j=1

(Ku+ b)i,j − fi,jlog(Ku+ b)i,j + µΦreg(u), (4)

where Φreg(u) is the regularizer that enforces the a priori knowledge and the

regularization parameter µ is used to balance the two terms.

The Tikhonov-like class [11] regularization, which includes Φreg(u) = ∥Lu∥22,
is a standard regularization method. The matrix L is the identity operator or

differentiation operator. The authors [12, 13] proposed an efficient hybrid

gradient projection-reduced Newton method for the problem of restoration of

Poissonian images with Tikhonov regularizater. In spite of the computational

advantages, the Tikhonov regularization tend to make images overly smooth,

so they often fail to adequately preserve important image attributes such as

sharp edges.

Another well-known class of regularizers is Total variation (TV), which was

proposed for image denoising by Rudin, Osher and Fatemi in [14], and then

extended to image deblurring in [15]. TV regularizer restricts the domain of

possible candidate solutions to those having sparse gradient, i.e. the solution

of (4) for which ∥u∥TV is minimal, where

∥u∥TV , ∥∇u∥1 =
∑

1≤j,k≤n

√
|(∇u)xj,k)|2 + |(∇u)yj,k)|2, (5)

is the discrete total variation of u. The discrete gradient operator ∇ : Rn×n →
(Rn×n,Rn×n) with periodic boundary condition is defined by

(∇u)j,k = ((∇u)xj,k, (∇u)
y
j,k)

with

(∇u)xj,k =

uj+1,k − uj,k if 1 ≤ j < n,

uj,1 − uj,n if j = n,
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(∇u)yj,k =

uj,k+1 − uj,k if 1 ≤ k < n,

u1,k − un,k if k = n,

for j, k = 1, · · · , n. Here uj,k refers to the (j, k) pixel location of the image.

Various algorithms were proposed to solve (4) with Φreg(u) = ∥u∥TV .

Sawatzky et al. [16] proposed EM-TV algorithm. Based on EM-TV algorith-

m, Brune et al.[18] proposed primal and dual Bregman-EM-TV algorithms.

In [34], Figueiredo et al. used the alternating direction method of multipliers

(ADMM) method to restore Poissonian images with the TV function, and they

present sufficient conditions for existence and uniqueness of solutions.

While preserving sharp discontinuities, the TV-based regularization cannot

preserve details and textures very well in regions with complex structures be-

cause of the staircase effects [19]. To mitigate this problem, one approach [23]

reducing the staircase effect is adding a higher order regularization term to the

original ROF model. The other is based on wavelet frames. It is well known

that images, especially natural images, can be regarded as piecewise smooth

functions, and wavelet frames can usually provide good sparse approximations

to piecewise smooth functions. The ability to approximate images sparsely

is an important characteristic of wavelets, see [22]. There are mainly three

formulations utilizing the sparseness of the wavelet frame coefficients, namely

analysis based approach, synthesis based approach, and balanced approach. In

our work, we will focus on the analysis approach because it provides a direct

link to the local geometry of u [29]. The analysis approach is often modeled

as a regularization term as follows

Φreg(u) = ∥Wu∥1,

where W is the analysis operator and Wu is the corresponding wavelet frame

coefficients.

Framelet-based algorithms are introduced in [34, 21, 20] for Poissonian im-

age restoration. However, the methods implemented by pure wavelet thresh-

olding also revoke unpleasant artifacts around discontinuities as a result of

Gibbs phenomenon.

In this paper, in order to combine the advantages of wavelet-based and total

variation methods and avoid their main drawbacks, we proposed the following
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hybrid variation model

min
u

n∑
i,j=1

(Ku+ b)i,j − fi,jlog(Ku+ b)i,j + α∥Wu∥1 + β∥∇u∥1 (6)

for Poissonian image restoration. The proposed method can reduce the stair-

case effect and remove the Gibbs oscillations in the restored images.

This paper is organized as follows. In Section 2, we give some preliminaries

of framelets and examples of framelets used in this paper. In Section 3, we

employ the ADMM for the modle (6), and discuss the convergence of the

algorithm. Some numerical experiments are given to illustrate the performance

of the proposed algorithm in Section 4.

2 Framelets

In this section, we present some preliminaries of tight framelets. For simplicity,

we only present the univariate framelets and the framelets for two variables can

be constructed by tensor product of univariate framelets. The details about

how to construct the tight framelets and the detailed frame theory can be

found in [24, 25].

A system X ⊂ L2(R) is called a tight frame of L2(R) if

f =
∑
g∈X

< f, g > g, ∀f ∈ L2(R). (7)

This is equivalent to

∥f∥22 =
∑
g∈X

| < f, g > |2 ∀f ∈ L2(R), (8)

where < ·, · > and ∥ · ∥2 =< ·, · > 1
2 are the inner product and norm of L2(R).

We can see that an orthonormal basis is a tight frame, since the identities (7)

and (8) hold for arbitrary orthonormal bases in L2(R). Hence, tight frames

are generalization of orthonormal bases that bring in the redundancy which is

often useful in applications such as denoising, see, e.g., [26].

For given Ψ := {ψ1, · · · , ψq} ⊂ L2(R), the corresponding wavelet (or affine)

system X(Ψ) generated by Ψ is defined by the collection of dilations and shifts

of Ψ as

X(Ψ) = {2k/2ψl(2
kx− j) : 1 ≤ l ≤ q; k, j ∈ Z}.
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When X(Ψ) forms a tight frame of L2(R), each function ψl, l = 1, · · · , q, is
called a (tight) framelet and the whole X(Ψ) is called a tight wavelet frame.

The construction of framelet Ψ, which are desirably (anti)symmetric and

compactly supported functions, are usually based on a multiresolution analysis

(MRA) that is generated by some refinable function ϕ with refinement mask

a0 satisfying the refinement equation

ϕ̂(2·) = â0ϕ̂(·),

where ϕ̂ is the Fourier transform of Ψ, and â0 which is 2π periodic is the Fourier

transform of a0. The idea of an MRA-based construction of framelet Ψ is to

find masks al, which are finite sequence, such that

ψ̂l(2·) = âlϕ̂(·), l = 1, · · · , q,

where âl which is 2π periodic is the Fourier transform of al. The sequence

a1, · · · , aq are called wavelet frame masks, or the high pass filters of the system,

and the refinement mask a0 is called low pass filter. The unitary extension

principle (UEP) of [27] asserts that the system X(Ψ) generated by a finite

set Ψ forms a tight frame in L2(R) provided that the masks a0, a1, · · · , aq are

finitely supported and their Fourier series satisfy

q∑
l=0

|âl(ξ)|2 = 1 and

q∑
l=0

âl(ξ)âl(ξ + ν) = 0,

for all ν ∈ {0, π}\{0} and ξ ∈ [−π, π], the framelets we adopt in this pa-

per are constructed from piecewise linear B-spline first given in [27]. The

refinement mask is â0(ξ) = cos2(ξ/2), whose corresponding low pass filter

is â0 = 1
4
[1, 2, 1]. The two framelet masks are â1(ξ) = −

√
2i
2
sin2(ξ/2) and

â2(ξ) = sin2(ξ/2), whose corresponding low pass filters are â1 =
√
2
4
[1, 0,−1]

and â2 =
1
4
[−1, 2,−1], respectively. We can see that the masks a1 and a2 cor-

respond to the first order and second order difference operators respectively

up to a scaling. The associated refinable function and framelets are given in

Fig.1.

The numerical computation of the wavelet framelet transform is done by

using the WF decomposition algorithm given in [28]. We conduct the decom-

position algorithm without downsampling by means of refinement and framelet

masks. We denote the fast framelet transform as W and the inverse framelet
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Figure 1: Piecewise linear framelets.

transform as W T , which is the adjoint operator of W . The frame coefficients

of u can be computed by x = Wu, and we will have the perfect reconstruction

formula u = W Tx, i.e., u = W TWu. Hence W is a tight frame if and only if

W TW = I, where I is the identity matrix. Unlike the orthonormal case, we

emphasize that WW T ̸= I in general.

3 Numerical algorithm

3.1 Alternating direction method

The ADMM is an improved variant of the classical augmented Lagrangian

method [30, 31] for solving linearly constrained convex programming problems

min
x1,x2

T1(x1) + T2(x2) s.t. A1x1 + A2x2 = d, xi ∈ Ωi, i = 1, 2 (9)

where Ti : Ωi → R (i = 1, 2), are convex functions, Ai ∈ Rm×ni (i = 1, 2), and

d ∈ Rm, Ωi, i = 1, 2 are two given closed convex sets.

An alternating minimization method was applied to the augmented La-

grangian function of (9):

L̃(x1, x2, ρ) = T1(x1)+T2(x2)−ρT (A1x1+A2x2−d)+
τ

2
∥A1x1+A2x2−d∥22, (10)

where ρ ∈ Rm is the Lagrange multiplier and τ is a penalty parameter, which

results in the following iterative scheme
xk+1
1 = argminx1 L̃(x1, x

k
2, ρ

k),

xk+1
2 = argminx2 L̃(x

k+1
1 , x2, ρ

k),

ρk+1 = ρk − τ(A1x
k+1
1 + A2x

k+1
2 − d).

(11)



8 running headAuthor 1 and Author 2

Let (x∗1, x
∗
2, ρ

∗) be an saddle point of the Lagrangian function (10), then

(x∗1, x
∗
2, ρ

∗) ∈ Ω1 × Ω2 × R and it satisfies [32]
T1(x1)− T1(x

∗
1) + (x1 − x∗1)

T (AT
1 (τ(A1x1 + A2x2 − d)− ρ∗) ≥ 0,

T2(x2)− T2(x
∗
2) + (x2 − x∗2)

T (AT
2 (τ(A1x1 + A2x2 − d)− ρ∗) ≥ 0,

(ρ− ρ∗)T (A1x1 + A2x2 − d) ≥ 0.

The authors in [32] show the convergence of the ADMM and its variant,

and as a special case of the result in Theorem 1 of [32],∥∥∥∥∥ A2(x
k+1
2 − x∗2)

1
τ
(ρk+1 − ρ∗)

∥∥∥∥∥
2

2

≤

∥∥∥∥∥ A2(x
k
2 − x∗2)

1
τ
(ρk − ρ∗)

∥∥∥∥∥
2

2

−

∥∥∥∥∥ A2(x
k+1
2 − xk2)

1
τ
(ρk+1 − ρk)

∥∥∥∥∥
2

2

.

Then by Theorem 3 in [32], limk→∞ρ
k = ρ∗ and limk→∞A2x

k
2 = A2x

∗
2. If

matrices A1 and A2 have full column rank, we will get that limk→∞x
k
1 = x∗1

and limk→∞x
k
2 = x∗2.

Note that the two terms added to T1(x1) + T2(x2) in (10) can be written

as a single quadratic term, then we get the following alternative form of (11)
xk+1
1 = argminx1 T1(x1) +

τ
2
∥A1x1 + A2x

k
2 − d− ρ̄k∥22,

xk+1
2 = argminx2 T2(x2) +

τ
2
∥A1x

k+1
1 + A2x2 − d− ρ̄k∥22,

ρ̄k+1 = ρ̄k − (A1x
k+1
1 + A2x

k+1
2 − d),

(12)

where ρ̄k = ρk

τ
and ρk is determined in (11).

The equivalence of (11) and (12) implies that instead (10), we can consider

the augmented Lagrange function

L̃(x1, x2, ρ) = T1(x1) + +T2(x2) +
τ

2
∥A1x1 + A2x2 −

1

τ
ρ∥22, (13)

where ρ ∈ Rm is the Lagrange multiplier and τ is a penalty parameter,

3.2 Proposed algorithm

Here we discuss the details of the algorithm to solve the hybrid model (6).

The proposed algorithm is an application of the ADMM. By introducing three

auxiliary variables x, y, z, we reformulate the model (6) as the following con-

strained optimization problem

min
u,x,y,z

n∑
i,j=1

(x+ b)i,j − fi,jlog(x+ b)i,j + α∥y∥1 + β∥z∥1, (14)
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s.t. Ku = x,Wu = y,∇u = z.

It is not difficult to see that the problem (14) is a special case of the problem

(9) with the following specifications,

A1 =

 K

W

∇

 , A2 =

 −I 0 0

0 − I 0

0 0 − I

 , x1 = u, x2 =

 x

y

z

 , d =

 0

0

0

 .

The resulting augmented Lagrangian function is

L(u, x, y, z) =
n∑

i,j=1

(x+ b)i,j − fi,jlog(x+ b)i,j +
σ1
2
∥Ku− x+

λ1
σ1

∥22 + α∥y∥1

+
σ2
2
∥Wu− y +

λ2
σ2

∥22 + β∥z∥1 +
σ3
2
∥∇u− z +

λ3
σ3

∥22,

where λ1, λ2 and λ3 are the vectors corresponding to the Lagrange multipliers

to the linear constraints, and σ1, σ2 and σ3 are the penalty parameters of the

ADMM to control the speed of the convergence; see, for instance, [33]. We

denote d1 =
λ1

σ1
, d2 =

λ2

σ2
and d3 =

λ3

σ3
, then the above equation can be rewritten

as

L(u, x, y, z) =
n∑

i,j=1

(x+ b)i,j − fi,jlog(x+ b)i,j +
σ1
2
∥Ku− x+ d1∥22 + α∥y∥1

+
σ2
2
∥Wu− y + d2∥22 + β∥z∥1 +

σ3
2
∥∇u− z + d3∥22.

(15)

Since the variables u, x, y and z are decoupled, this allows us to solve them more

easily on their corresponding subproblems in the ADMM. We now investigate

these subproblems one by one for the Poisson noise removal problem.

Firstly, we solve for the variable u in the subproblem. This subproblem

corresponds to the following optimization problem

uk+1 = argmin
u

σ1
2
∥Ku−xk + dk1∥22+

σ2
2
∥Wu− yk + dk2∥22+

σ3
2
∥∇u− zk + dk3∥22,

The minimizer can be obtained by equivalently solving a linear system

(σ1K
TK+σ2I+σ3∇T∇)uk+1 = σ1K

T (xk−dk1)+σ2W T (yk−dk2)+σ3∇T (zk−dk3),
(16)

where∇T represents the conjugate operator of∇, and we have usedW TW = I.

Under the periodic boundary conditions, the matrices K and ∇ have block
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circulant with circulant blocks (BCCB) structure, so the above linear system

can be efficiently solved by using FFTs. Denoting F(u) as the fast Fourier

transform of u, We can write

uk+1 = F−1(η),

where

η =
F(σ1K

T (xk − dk1) + σ2W
T (yk − dk2) + σ3∇T (zk − dk3))

F(σ1KTK + σ2I + σ3∇T∇)
. (17)

The minimization of L with respect to x is expressed as the following simple

form

xk+1 = argmin
x

n∑
i,j=1

(x+ b)i,j − fi,jlog(x+ b)i,j +
σ1
2
∥Kuk+1 − x+ dk1∥22.

The corresponding solution can be obtained

xk+1 =
1

2

(
(Kuk+1+b+dk1−

1

σ1
)+

√
(Kuk+1 + b+ dk1 −

1

σ1
)2 + 4

fT

σ1

)
−b. (18)

The minimization of L with respect to y is expressed as the following simple

form

yk+1 = argmin
y
α∥y∥1 +

σ2
2
∥Wuk+1 − y + dk2∥22.

The corresponding solution can be obtained

yk+1 = Ssoft((Wuk+1 + dk2)i,
α

σ2
) (19)

where

Ssoft(x, δ) =

 0, |x| < δ,

x− δsign(x), |x| ≥ δ.

The minimization of L with respect to z is expressed as the following simple

form

zk+1 = argmin
z
β∥z∥1 +

σ3
2
∥∇uk+1 − z + dk3∥22.

The corresponding solution can be obtained

zk+1 = Ssoft((∇uk+1 + dk3)i,
β

σ3
). (20)
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On the other hand, the updating scheme of the Lagrangian multipliers can

be rewritten specifically as

dk+1
1 = dk1 + (Kuk+1 − xk+1),

dk+1
2 = dk2 + (Wuk+1 − yk+1),

dk+1
3 = dk3 + (∇uk+1 − zk+1).

(21)

The resulting algorithm based ADMM is summarized as Algorithm 1.

Algorithm 1 ADMM for the image restoration problem (6)

Initialization: ϵtol,MaxIter, u0 = f, x0 = 0, y0 = Wf, z0 = ∇f, σ1, σ2,
σ3, d

0
i = 0 for i = 1, 2, 3, k = 0, const = 1.

Iteration:

while (const)

compute u: uk+1 = F−1(η), η is defined in (17);

compute x: xk+1 = 1
2

(
(Kuk+1 + b+ dk1 − 1

σ1
)

+
√
(Kuk+1 + b+ dk1 − 1

σ1
)2 + 4fT

σ1

)
− b;

compute y: yk+1 = Ssoft((Wuk+1 + dk2)i,
α
σ2
);

compute z: zk+1 = Ssoft((∇uk+1 + dk3)i,
β
σ3
);

update d1: dk+1
1 = dk1 + (Kuk+1 − xk+1);

update d2: dk+1
2 = dk2 + (Wuk+1 − yk+1);

update d3: dk+1
3 = dk3 + (∇uk+1 − zk+1);

const = ∥uk+1 − uk∥2/∥uk∥2 > ϵtol or k < MaxIter;

k = k + 1;

4 Numerical experiments

In this section, we conduct several numerical experiments to illustrate the per-

formance of the proposed hybrid model. All the experiments were performed

using MATLAB 7.7.0 on a computer equipped with an Intel (R) Core (TM)

2.60 GHz processor, with 4.00 GB of RAM, and running Windows XP.

We compare our method with PIDAL algorithm proposed in [34]), which

can be regarded as special cases of Algorithm 1. If we choose β = 0 or α =

0 in Algorithm 1, we obtain PIDALTV algorithm (only TV regularizer) and

PIDALFA algorithm (only tight frame regularizer) respectively.
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The quality of the restored images is measured by Peak-signal-to-noise ratio

(PSNR), Structural similarity index (SSIM) and the Relative error (ReErr).

They are defined as follows:

PSNR = 20 log10
255

1
mn

∥u− f ∗∥2
,

SSIM =
(2µ∗

fµu + C1)(2σf∗u + C2)

(µ2
f∗ + µ2

u + C1)(σ2
f∗ + σ2

u + C2)
.

ReErr = ∥u−f∗∥2
∥f∗∥2 ,

where f ∗ is the original image, and u is the restored image. µf∗ and µu are

averages of f ∗ and u respectively, σf∗ and σu are the variance of f ∗ and u

respectively, σf∗u is the covariance of f ∗ and u and the positive constants C1

and C2 can be thought of as stabilizing constants for near-zero denominator

values. In general, a high PSNR-value or a small ReErr-value indicates the

restoration is more accurate. However, we know that the PSNR-value or a

small ReErr-value are not always in agreement with visual perception. The

SSIM index is a well-known quality metric used to measure the similarity

between two images. The SSIM map is whiter, the restored image is closer to

the clean image.

We use the stopping criterion when the maximum number of allowed outer

iterations MaxIter has been carried out or the relative differences between

consecutive iterates u1, u2, u3, · · · satisfy

∥uk+1 − uk∥2
∥uk+1∥2

< ϵtol.

In this paper, we set MaxIter = 100 and ϵtol = 10−4.

It is known that the quality of the restored image is highly depended on

the regularization parameters. In order to have fair comparisons for the three

methods, we use the best regularization parameters such that the optimal

PSNR values are achieved. Regarding the penalty parameters σ’s in Algorithm

1, theoretically any positive values of σ1, σ2 and σ3 ensure the convergence of

the ADMM [32]. However, the penalty paremeter does influence the speed of

the algorithms [34]. In numerical experiments, we test some values of these

parameters and pick a optimal value with satisfactory results.
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Figure 2: Original images.

Table 1: Output of the experiments

Images Blur
PSNR SSIM

TV Frame Proposed TV Frame Proposed

Defocus 24.790 25.103 25.242 0.7098 0.7338 0.7331

Lena Motion 27.477 27.403 27.977 0.8008 0.8016 0.8309

Gauss 26.340 26.519 26.737 0.7687 0.7888 0.7919

Defocus 26.140 26.599 26.697 0.7228 0.7268 0.7301

House Motion 28.741 28.666 29.344 0.8074 0.7698 0.8158

Gauss 27.231 27.527 27.852 0.7767 0.7806 0.7912

Defocus 27.219 27.553 27.738 0.7957 0.7941 0.7980

Brain Motion 29.900 29.872 30.786 0.8705 0.8662 0.8831

Gauss 29.595 30.426 30.529 0.8661 0.8704 0.8780

Defocus 25.995 26.175 26.209 0.8327 0.8380 0.8417

Butterfly Motion 27.914 26.006 28.191 0.9023 0.8764 0.9101

Gauss 27.406 27.688 27.746 0.8934 0.9010 0.9020

Defocus 23.384 23.375 23.583 0.6949 0.6891 0.7238

Cameraman Motion 25.288 25.438 25.715 0.7550 0.7364 0.7910

Gauss 24.223 24.049 24.402 0.7565 0.7611 0.7630
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The test images are shown in Figure 2. In order to simulate the degraded

operation in the tests, we generate the blurred and noisy images by blurring

the true images with the given different point spread functions and additionally

contaminate it by Poisson noise, which is implemented by applying the Matlab

routine poissrnd. For each image, we consider three different blurs: the out-of-

focus blur proposed in [35], the Gauss blur function psfGauss proposed in [36]

and the linear motion blur in [37]. In this paper, we choose the out-of-focus

blur with radius 9 which is generated by MATLAB function ones(9, 9)/18, the

Gauss blur with dim = 7 and s = 2 which is generated by MATLAB function

psfGauss(7, 2), and the linear motion blur with r = 7 and θ = 45 which is

generated by MATLAB function fspecial(′motion′, 7, 45).

In Figures 3 and 4, we show the restoration results when the tight frame

method, the total variation method and the hybrid method are applied to

the image restoration problem for the motion blur. From the visual quality

of restored images, the proposed method is competitive with the other two

methods. For showing the effectiveness of our method, we give the SSIM maps

of the restored images with respect to the original images in Figures 3(f)-

(h) and 4(f)-(h). From these images, we can see that the SSIM map of the

restored image obtained by our method is slightly whiter than those by the

other methods, i.e., our method can get better restoration results.

In Figure 5, we plot the convergence results about PSNR versus iteration

for different methods. We observe that the proposed methods is convergent

and get higher PSNR values than others.

In Figure 6, the original image, the degraded image and the restoration

images of the Lena image by three methods are exhibited. Visually, the pro-

posed method is better than the other methods since the image recovered by

the proposed method preserves more details and looks more natural.

For a better visual comparison, we have enlarged some details of the three

restored images in Figures 7 and 8. As can be seen in the zoomed parts (the

part shown as the white rectangle in Figure 6(a)), our method has less staircase

effects and makes a good compromise between edge preserving and smoothing.

In Table 1, the PSNR and SSIM values of three methods are presented,

which shows that our method yields a better restoration result. Therefore,

we conclude that the proposed method performs better than the tight frame

method and the total variation method.
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(a) Brain (b) Degraed

(c) TV(α = 0.002) (d) Frame(β = 0.02) (e) Proposed

(f) TV (g) Frame (h) Proposed

Figure 3: Restoration results for the image “Brain” under the Motion

blur(α = 0.01, β = 0.008, σ1 = σ2 = σ3 = 0.002).
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(a) Butterfly (b) Degraed

(c) TV(α = 0.002) (d) Frame(β = 0.005) (e) Proposed

(f) TV (g) Frame (h) Proposed

Figure 4: Restoration results for the image “Butterfly” under the Motion

blur(α = 0.005, β = 0.01, σ1 = σ2 = σ3 = 0.001).



17

0 50 100 150 200
23

23.5

24

24.5

25

25.5

26

26.5

27

27.5

28

Iteration

P
S

N
R

 

 

TV
Frame
Proposed

(a) House

0 50 100 150 200
20

20.5

21

21.5

22

22.5

23

23.5

24

24.5

25

Iteration

P
S

N
R

 

 

TV
Frame
Proposed

(b) Cameraman

Figure 5: Convergence results for the images “House” and “Cameraman”

under the Gauss blur.

(a) Lena (b) Degraded

(c) TV(α = 0.002) (d) Frame(β = 0.008) (e) proposed

Figure 6: Restoration results for the image “Lena” under the motion

blur(α = 0.005, β = 0.01, σ1 = σ2 = σ3 = 0.005).
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(a) Lena (b) Degraded

(c) TV (d) Frame (e) proposed

Figure 7: Restoration results for the image “Lena” under the motion blur.

(a) Lena (b) Degraded

(c) TV (d) Frame (e) proposed

Figure 8: Restoration results for the image “Lena” under the motion blur.
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5 Conclusion

In this paper, we consider the alternating direction method for restoring blurred

images corrupted by Poisson noise. The proposed method combines advantages

of the wavelet tight frame and TV. The proposed model utilizes the character-

istic of wavelet frame in preserving image details and suppressing the staircase

effect. The numerical experiments show that the proposed method outper-

forms some existimg restoration methods in terms of the PSNR, and SSIM

map for the Poisson noise removal problem.
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