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Abstract 

At this moment of the COVID-19 epidemic, it is difficult for caregivers to be fully 

aware of the elderly by closing care to prevent accidents at home. Existing research, 

home-based self-health management strategies, by using contextual tools and a lack 

of empirical procedures or technological components in internet monitoring, home 

accidents from individualized patterns has not been achieved. We use vision 

detecting through the internet monitoring method in a smart lighting materials house 

to fill this research gap. We examined the impact of physical transitions and 

visibility on fall detection and compared the accuracies of fall prediction based on 

combinations of related factors. The results indicated that including both physical 

transitions and visibility would enable older people to avoid falls. We evaluated the 

impact of physical transitions and visibility on fall detection and compared the 

accuracy of falls based on combinations of related factors. The accuracy of 

predictions using both physical transition and visibility was higher than 81%, which 

is a high forecasting accuracy rate. Those are significant contributions to the elderly 

in applied economics. 
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1. Introduction 

 

The elderly are kept at home for a long time because of the COVID-19 epidemic, 

according to a report by the World Health Organization, every year, approximately 

28% of people aged 65 years and approximately 32% of people aged 70 years suffer 

from accidents such as falls [1, 2]. The United Nations has projected an increase of 

more than 30% in the elderly population by 2050 in 64 countries [2]. Injuries 

resulting from house accidents can reduce the activities and socialization of the 

elderly and lead to further physical decline, depression, social isolation, and feelings 

of helplessness [3-5]. In the pass, the elderly with chronic diseases in nursing places 

are safeguarded by doctors or caregivers, most elderly live alone and frequently go 

outside as part of their daily routines [6]. For outside care purposes, existing 

research on internet monitoring could be optimized. Examples of such factors are 

physical symptoms, impairment records, and demographic details [7, 8]. For this 

moment of COVID-19, it is difficult for caregivers to be fully aware of the real-time 

for the elderly to prevent accidents [9]. Internet monitoring with materials 

communications about accidents involve information about an entity (e.g., smart 

home-connected light appliances) that is relevant to the relationship between 

accidents and the elderly and may help induce preferred behavior of the elderly in 

these internet monitoring materials contexts [10]. 

 

Dynamic and extrinsic materials context factors, such as smart home-connected 

light appliances, are usually used because the behavior variability of the elderly is 

higher with respect to such factors compared to outside care factors such as 

demography, for example [9, 11-13]. Owing to time pressures, it is difficult for 

caregivers to judge whether there has been a change in a factor within a short 

timeframe [14-16]. Accordingly, our first research question for this study was: What 

are the features of internet monitoring materials contexts relevant to accidents? The 

elderly may have different preferences and change their behaviors frequently even 
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under the same conditions, which affects the effectiveness of internet monitoring 

materials contexts [17-19]. Accordingly, our second research question for this study 

was: Based on the features identified in addressing the first research questions, how 

can we dynamically distinguish the elderly with different preferences? 

 

2. Literature Review 

 

Many studies in various fields have used the data science technique of mutual help 

such as Collaborative Filtering (CF). Mutual help needs trust and touch for each 

other and mutual trust is the bedrock of a relationship [20-23]. However, during the 

COVID-19 epidemic, people need to keep away from each other. Several studies 

use smart materials or tools such as sensors within wearables, which have used 

accelerometers to generate measurable times and observable behaviors [24]. 

However, people must fasten sensors around their waist or on their shoes, for 

otherwise there would be too many angles to track owing to the device’s orientation 

to the human frame [25]. Because of these limitations, it is difficult to accurately 

measure physical transitions. Alternatively, accelerometer sensors could be 

embedded in smartphones to detect the physical transition from holding the phone 

to putting it down [26-28]. Light and materials are mutually dependent on each other. 

Materials are key to understanding light in architecture because they directly affect 

the quantity and the quality of the light. Some studies in recent years have 

considered light intensity in the internet monitoring because it can be used to detect 

smart home-connected light appliances and changes in real time [29, 30]. A light 

sensor with an illuminance unit can detect light and measure its intensity. For 

example, an illuminance lower than 119 lux could indicate a dark room. In 

residential aged care (RAC), illuminance could help understand the likelihood of 

falls. The Illuminating Engineering Society of North America, which is the 

recognized technical authority on illumination, has established standard levels for 

lights in terms of lux units [31]. Lights can be categorized into five levels as shown 
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in Table 1 [31]. 

 

Table 1. Light levels by luminosity 

 

 

The idea behind the use of internet monitoring context such as lights for fall 

prevention in RAC is that older people cannot concentrate on their smart home-

connected light appliances sufficiently if the visibility is low [32, 33]. Therefore, 

low visibility or reduced internet monitoring could be considered a risk signal.  

 

To increase the accuracy of fall prediction, we use machine learning to dynamically 

evaluate different proven features used in fall prevention .To our knowledge, this is 

the first empirical machine learning study that examines featues of falls in RAC. 

This research provides several new theoretical and practical insights on adapting 

physical transitions and lighting for effective forecasting of falls in RAC.  

 

3. Proposed Framework and Research Model 

 

A previously proposed framework consists of a server, user interface, remote base 

station, and community cloud [34]. It has numerous sensors (e.g., time and location 

sensors) and incorporates personal information. However, it does not adequately 

focus on the factors relevant to falls. The main measurement methods of fall factors 

include Hidden Markov Models and machine learning. Prevailing methods mainly 

use Hidden Markov Models to calculate the probability of state transitions following 

a single step. The limitations of this approach are the inability to build prediction 
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models and the requirement of many parameters because of the static nature of the 

method [16, 35]. An ideal approach should identify fall processes and construct a 

self-learning framework (Figure 1). 

 

 

Figure 1. Self-learning framework 

 

Our proposed comprehensive fall framework (Figure 2) includes the relevant 

features (including the self-learning framework in Figure 1), sensor detection, 

context awareness, and an application service that would interact with cloud 

computing and caregiving. A fall prevention model should consider the entire 

process of a fall to identify relevant features and physical transitions. Invariable 

position after horizontality indicates the position of the fall from verticality and 

serves to define the duration of the fall process in RAC. A component of context 

awareness must be included. The framework should be representable in a structured, 

uniform, and interchangeable format for implementation on different system 

architectures. Figure 2 shows our proposed framework. Later, we propose an 

experimental process based on this framework.  
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Figure 2. Fall prevention framework. 

 

Body inclination can be measured by accelerometer sensors fastened around the 

waist, on the shoes, or embedded in mobile devices. However, they still cannot 

address the issue of physical transitions when falling. We aimed to find a way to 

measure various angles to calculate the shift of the barycenter. The accelerometer 

z-axis sensor can measure the acceleration of gravity to read the body inclination in 

the horizontal angle for certain durations (Figure 3).  

 

 

Figure 3. Detection of physical transitions 

 

In Equation (1) below, Acc_Z represents the accelerometer z-axis in a certain period 
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from the vertical to the inclination Acc_Z′ variable, and θ indicates the inclination 

angle of the shift of the barycenter in that period. 

 

   (1) 

 

The accelerometer z-axis sensor is useful for detecting physical transitions because 

it is near the surface of the earth around 9.8 m/s^2, which is used as G (that is, 1 G 

= 9.8 m/s^2). If the value of the barycenter is greater than a certain threshold on θ, 

we can conclude that a physical transition toward a fall is occurring. Conversely, if 

an individual is using a support device such as crutches by holding them, the value 

of the acceleration will be lower than the θ as the barycenter is still in the horizontal 

plane. An algorithm for applying this inclination detection approach is presented 

below. The algorithm initializes the parameters (e.g., accelerometer X, Y, and Z 

values), sets up logic functions (e.g., Angle_X12 represents the dynamic angle based 

on initial X1 and X2), computes the initial inclination, and verifies the final 

conditions to enable dynamic detection of the barycenter shift to assess whether the 

conditions of not falling are met. 

 

Algorithm 1. Detecting inclination 
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The RAC facilities would consist of some combination of dark, dimmed, and bright 

rooms. Light intensity is a internet monitoring context factor in this scenario. 

Mobile light sensors and Internet of Things can help dynamically capture and 

modulate light intensity and visibility. For example, an illuminance lower than 120 

lux could indicate dark conditions and a higher probability of falling. Therefore, to 

decrease the probability of falls, the illuminance should be increased to a bright 

level (Figure 4). 

 

 

Figure 4. Internet monitoring detection with light intensity sensors 

 

An algorithm for applying this internet monitoring detection approach is presented 

below. The algorithm initializes the parameters for motion and light detection and 

initial values, sets up logic functions (e.g., the motion function represents whether 

dynamic motion is occurring based on t 

he initial Motion_Y and Motion_N values), and dynamically computes parameters 

to assess whether the physical internet monitoring is a dark room (represented by 

one), dimmed room (represented by two), or bright room (represented by three) 

following from the categorization guidelines of the Illuminating Engineering 

Society of North America. 
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Algorithm 2. Internet monitoring detection 

 

 

Next, we describe our proposed research model, which is a novel idea that 

incorporates relevant factors into a dynamic self-learning method. For our problem 

area, the main challenges faced by classification methods is the existence of many 

unclear physical transitions and the varied features of the contextual internet 

monitoring.  

 

We reflect the different combinations of fall factors as follows. The factors for falls 

are restricted to light levels and accelerometer X Y Z readings, light levels and 

accelerometer X Y readings, light levels and accelerometer X readings, 

accelerometer X Y Z readings, accelerometer X Y readings, and accelerometer X 

readings. Accordingly, we evaluate the different combinations of falls at six levels. 

Figure 5 illustrates this research model. 
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Figure 5. The research model 

 

We include the following machine learning algorithms: support vector machines 

(SVM)[36-42], logistic regression, multi-layer perceptron (MLP), and random 

forests. These algorithms were chosen because they are popular machine learning 

algorithms and have been widely used [30, 43, 44]. SVM can handle 

multidimensional time series with a high level of noise and make coordinated multi-

resolution forecasts [45, 46]. 

 

Please refer Equations (2) and (3) below. X represents the four dimensions of 

features in the training dataset and Y indicates the range of conditions 1, 2, and 3. 

As Equation (4) shows, SVM is a supervised learning method with statistical risk 

minimization to estimate a classified hyperplane. In Equation (5), the boundary 

between the two categories (2 / ||w||) should be maximized to find a decision 

boundary between the two categories that forms the optimal hyperplane. When the 

margins are maximized, the two categories are perfectly separated. 

 

(2) 
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     (3) 

 

                           

         (4) 

         

 

(5) 

 

To our knowledge, there is no other existing research work that incorporates 

physical transitions, visibility, and fall factor combinations into a machine learning 

system. Compared to younger people, older people sometimes have different 

preferences for visibility and different patterns of physical behaviors and transitions. 

We consider physical transitions and visibility to be relevant to fall prediction. Fall 

frequency in daily activities refers to the total probability of falls during a period of 

time, which may change depending on the number and type of activities in the 

period of time. It is important to dynamically distinguish physical transitions and 

visibility from different combinations. Accordingly, we test two hypotheses, as 

explained below. 

 

H1: Incorporating both physical transitions and visibility into a fall prediction 

framework will lead to better performance than incorporating only physical 

transitions or visibility. 

 

H2. Different combinations of fall factors will cause significant differences in the 

performance of prediction. 

 

Through these hypotheses and our experimental tests, we aimed to create a novel, 

high-performing fall prediction framework that incorporates physical transitions 
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and visibility in different combinations. 

 

4. Experiments 

 

We applied SVM, logistic regression, MLP, and random forests to test our 

hypotheses and quantitatively evaluate our research model for its accuracy in fall 

prediction. Our training data consisted of data from daily activities from a total of 

1294 datasets 4 . This sensor-generated data contained light levels along with 

accelerometer x, accelerometer y, and accelerometer z readings from the laboratory 

experiment (Figures 6–9). 

 

 

Figure 6. Visibility improvement in the bedroom from dark to bright 

 

                                                 

4 https://drive.google.com/file/d/1_Wut8kt_HF0iap0tXtr9TGx1PS_h1b-o/view?usp=sharing 
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Figure 7. Visibility improvement in the living room from dark to bright 

 

 

Figure 8. Visibility improvement in the rest room from dark to bright 

 

 

Figure 9. Visibility improvement in the kitchen from dark to bright 
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We used the R programming language to preprocess and transform the physical 

transition and visibility data (Table 2). 

 

Table 2. Data processing in R 

 

 

We separated our evaluations into two parts: In the first part, we evaluated both 

physical transitions and visibility related to falls. In the second part, we measure the 

predictive performance of different combinations of physical transitions and 

visibility. The independent variable is the level of the factors used for fall prediction, 

which is operationalized as six levels: 1) lights-accelerometer x; 2) lights-

accelerometer x and y; 3) lights-accelerometer x, y, and z; 4) accelerometer x; 5) 

accelerometer x and y; and, 6) accelerometer x, y, and z. The dependent variable is 

the performance of fall prediction.  

 

We tested the two hypotheses using all four machine learning algorithms with 10-

fold cross validation to obtain the accuracy of fall prediction for all levels of the fall 

factors. A single subsample was retained as the validation set to test the model, and 

the remaining nine subsamples were used as training data. All observations were 

used for both training and validation. Each observation was used exactly once.  

 

We measured the performance by calculating true positive (TP), true negative (TN), 

false positive (FP), and false negative (FN) rates. The terms positive and negative 

refer to the classifier’s prediction, and the terms true and false refer to whether the 

prediction corresponds to the real observation. Accuracy is the number of correct 
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predictions divided by the total number of fall predictions (i.e., accuracy = (TP+TN) 

/ (TP+TN+FP+FN)). 

 

5. Results 

 

The performance of the three accelerometer levels is shown in Figure 10. 

Accelerometer z had a clearly higher index distribution than the x and y levels.  

 

 

Figure 10. Distributions of accelerometer readings 

 

Table 3 lists the accuracy of factor levels. Considering both physical transition and 

visibility, the accuracy of SVM is 81.92% for both light levels and accelerometer x, 

y, and z; that of logistic regression is 82.15%; that of MLP is 82.15%; and, that of 

random forests is 82.23%. Without considering visibility, the accuracy of SVM 

decreases to 71.25%; if only accelerometer x readings are used, the accuracy of 

SVM is 61.44%, which is the lowest value. 

 

Table 3. Accuracy of factor levels 

 

 

Among all levels, a consideration of accelerometer readings alone yields lower 

accuracy than using both. We performed ANOVA to examine whether the level 



16 

 

used for fall prediction positively influenced the accuracy of predicting direction. 

To account for multiple comparisons, we conducted an LSD test. The ANOVA test 

results were statistically significant (F(5,23) = 39,309.932, p < 0.01). Comparisons 

of all levels showed that both physical transition and visibility were significantly 

different from others (p < 0.05) (Table 4). In summary, the results support the first 

hypothesis. 

 

Table 4. ANOVA of all p-values 

 

 

With respect to comparing different combinations, accelerometer x, y, and z were 

significantly different from accelerometer x, and both light levels and accelerometer 

x were significantly different from accelerometer x. Therefore, we can state that the 

results support the second hypothesis too. 

 

6. Discussion  

 

This result suggests that physical transitions and visibility are important factors in 

fall prevention. Taking into consideration the readings of accelerometer x, y, and z 

yielded significantly higher accuracy than only accelerometer x. This result implies 

that different combinations of accelerometer readings could have different effects 

on fall prediction. 

 

Our findings have several implications for fall prevention. First, adding light 

measurements to RAC smart home-connected light appliances will help in risk 
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detection. Second, effective detection of physical transitions is important for fall 

prevention. This could be achieved using motion detection methods. Adopting 

accelerometers in a way that allows older people to detect the position is essential. 

Lastly, visibility is a vital factor. Older people need to clearly see and understand 

their internet monitoring before moving at any time. Therefore, RAC smart home-

connected light appliances should have sufficient light. 

 

7. Conclusion 

 

In order to find a solution for the issue of the elderly staying alone for home-based 

self-health management strategies during the COVID-19 epidemic, we evaluated 

the impact of physical transitions and visibility on fall prediction and compared the 

accuracy of fall predictions based on combinations of related factors. The accuracy 

of predictions using both physical transition and visibility was higher than 81%, 

which is a high forecasting accuracy rate. It was also notably higher than the 

accuracy obtained from other combinations of factors.  

 

Our study has the following limitations. First, it focuses on dynamic detection for 

falls. However, a change that is too rapid from body verticality to horizontality is 

not perfectly reflected in the values of the accelerometer readings because it takes 

time to record a value in the system for falls. We will endeavor to build a prototype 

automatic fall system to evaluate the relevant factors and reduce response time. 

Second, because of high behavior variability, it is likely that the total amount of 

personal data on patterns is larger than the simulation data in our study. As such, it 

is necessary to capture additional data on real behavior patterns to improve future 

research for the elderly in applied economics. 
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