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Abstract: Recently, heat and mass transfer simulation is more and more important in various engineering fields. In 
order to analyze how heat and mass transfer in a thermal environment, heat and mass transfer simulation is needed. 
However, it is too much time-consuming to obtain numerical solutions to heat and mass transfer equations.  Therefore, 
in this paper, one of acceleration techniques developed in the graphics community that exploits a graphics processing 
unit (GPU) is applied to the numerical solutions of heat and mass transfer equations. The nVidia Compute Unified 
Device Architecture (CUDA) programming model provides a straightforward means of describing inherently parallel 
computations. This paper improves the performance of solving heat and mass transfer equations over solid and hollow 
capillary porous cylinder with the second kind boundary and initial conditions numerically running on GPU. Heat and 
mass transfer simulation using the novel CUDA platform on nVidia Quadro FX 4800 is implemented. Our 
experimental results clearly show that GPU can accurately perform heat and mass transfer simulation. GPU can 
significantly accelerate the performance with the maximum observed speedups 10 times. Therefore, the GPU is a good 
approach to accelerate the heat and mass transfer simulation. 
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1. INTRODUCTION 
During the last half century, many scientists and 

engineers working in Heat and Mass Transfer processes 
have put lots of efforts in finding solutions both 
analytically/numerically, and experimentally.  To precisely 
analyze physical behaviors of heat and mass environment, 
to simulate several heat and mass transfer phenomena such 
as heat conduction, convection, and radiation are very 
important.  A heat transfer simulation is accomplished by 
utilizing parallel computer resources to simulate such heat 
and mass transfer phenomena. With the helps from 
computer, initially the sequential solutions were found, and 
later when high-end computers became available, fast 
solutions were obtained to heat and mass transfer problems.  
However, the heat and mass transfer simulation requires 
much more computing resources than the other 
simulations.  Therefore, acceleration of this simulation is 
very essential to implement a practical big data size heat 
and mass transfer simulation. 

This paper utilizes the parallel computing power of 
GPUs to speedup the heat and mass transfer simulation.  
GPUs are very efficient considering theoretical peak 
floating-point operation rates [1]. Therefore, comparing 
with super-computer, GPUs is a powerful co-processor on 
a common PC which is ready to simulate a large-scale heat 
and mass transfer at a less resources. The GPU has several 
advantages over CPU architectures, such as highly parallel, 
computation intensive workloads, including higher 
bandwidth, higher floating-point throughput. The GPU can 
be an attractive alternative to clusters or super-computer in 
high performance computing areas. 
CUDA [2] by nVidia already proved its effort to develop 
both programming and memory models. CUDA is a new 
parallel, C-like language programming Application 
program interface (API), which bypasses the rendering 
interface and avoids the difficulties from using GPGPU. 

Parallel computations are expressed as general-purpose, C-
like language kernels operating in parallel over all the 
points in a application. 

This paper develops the numerical solutions to Two-
point Initial-Boundary Value Problems (TIBVP) of Heat 
and Mass with the second kind boundary and initial 
conditions in solid and hollow capillary porous cylinder.  
These problems can be found some applications in drying 
processes, space science, absorption of nutrients, 
transpiration cooling of space vehicles at re-entry phase, 
and many other scientific and engineering problems. 
Although some traditional approaches of parallel 
processing to the solutions of some of these problems have 
been investigated, no one seems to have explored the high 
performance computing solutions to heat and mass transfer 
problems with compact multi-processing capabilities of 
GPU, which integrates multi-processors on a chip. With the 
advantages of this compact technology, we developed 
algorithms to find the solution of TIBVP with the second 
kind boundary and initial conditions and compare with 
some existing solutions to the same problems. All of our 
experimental results show significant performance 
speedups. The maximum observed speedups are about 10 
times.  
The rest of the paper is organized as follow:  Section II 
briefly introduces some closely related work; Section III 
describes the basic information on GPU and CUDA; 
Section IV presents the mathematical model of heat and 
mass transfer and numerical solutions to heat and mass 
transfer equations; Section V presents our experimental 
results; And Section VI concludes this paper and give 
some possible future work directions 

2. RELATED WORK 
 
The simulation of heat and mass transfer has been a 

very hot topic for many years.  And there is lots of work 
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related to this field, such as fluid and air flow simulation. 
We just refer to some most recent work close to this field 
here. 

Soviet Union was in the fore-front for exploring the 
coupled Heat and Mass Transfer in Porous media, and 
major advances were made at Heat and Mass Transfer 
Institute at Minsk, BSSR.  Later England and India took 
the lead and made further contributions for analytical and 
numerical solutions to certain problems. Narang [4-9] 
explored the wavelet solutions to heat and mass transfer 
equations and Ambethkar [10] explored the numerical 
solutions to some of these problems. 

Krüger et al. [11] computed the basic linear algebra 
problems with the feathers of programmability of 
fragments on GPU, and further computed the 2D wavelets 
equations and NSEs on GPU. Bolz et al. [12] matched the 
sparse matrix into textures on GPU, and utilized the 
multigrid method to solve the fluid problem. In the 
meantime, Goodnight et al. [13] used the multigrid method 
to solve the boundary value problems on GPU. Harris [14, 
15] solved the PDEs of dynamic fluid motion to get cloud 
animation.  

GPU is also used to solve other kinds of PDEs by other 
researchers. Kim et al. [16] solved the crystal formation 
equations on GPU. Lefohn et al. [17] matched the level-set 
iso surface data into a dynamic sparse texture format. 
Another creative usage was to pack the information of the 
next active tiles into a vector message, which was used to 
control the vertices and texture coordinates needed to send 
from CPU to GPU. To learn more applications about 
general-purpose computations GPU, more information can 
be found from here [18]. 

 

3. AN OVERVIEW OF CUDA ARCHITECTURE 
 
The GPU that we have used in our implementations is 

nVidia’s Quadro FX 4800, which is DirectX 10 compliant. 
It is one of nVidia’s fastest processors that support the 
CUDA API and as such all implementations using this 
API are forward compatible with newer CUDA compliant 
devices. All CUDA compatible devices support 32-bit 
integer processing. An important consideration for GPU 
performance is its level of occupancy. Occupancy refers to 
the number of threads available for execution at any one 
time. It is normally desirable to have a high level of 
occupancy as it facilitates the hiding of memory latency. 

The GPU memory architecture is shown in figure 1. 
 

 
Figure 1: GPU Memory Architecture [2] 

4. MATHEMATICAL MODEL AND NUMERICAL 
SOLUTIONS OF HEAT AND MASS TRANSFER 

A. Mathematical Model  
     Consider the Heat and Mass Transfer through a porous 
cylinder with boundary and initial conditions of the second 
kind. Let the z-axis be directed upward along the cylinder 
and the r-axis radius of the cylinder. Let u and v be the 
velocity components along the z- and r- axes respectively. 
Then the heat and mass transfer equations in the 
Boussinesq's approximation, are: 
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0 < z <∞,a < r < b*, t > 0  
*a = 0,b =∞  for solid cylinder. 
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Since the cylinder is assumed to be porous, 1µ  is the 

velocity of the fluid, pT  the temperature of the fluid near 

the cylinder, ¥T  the temperature of the fluid far away 

from the cylinder, pC  the concentration near the cylinder, 

¥C  the concentration far away from the cylinder, g  the 

acceleration due to gravity, b  the coefficient of volume 

expansion for heat transfer, 
'b  the coefficient of volume 

expansion for concentration, n the kinematic viscosity, s  
the scalar electrical conductivity, w  the frequency of 

oscillation, k  the thermal conductivity. 
From Equation (1) we observe From Equation (1) we 

observe that 1v is independent of space co-ordinates and 
may be taken as constant. We define the following non-
dimensional variables and parameters. 
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Now taking into account Equations (5), (6), (7), and (8), 
equations (1) and (2) reduce to the following form: 
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   0£t                              
 C(r, z, t) = 0 , T (r, z, t) = T0                   (11) 
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B. Numerical Solutions   
        Here we sought a solution by finite difference 
technique of implicit type namely Crank-Nicolson implicit 
finite difference method which is always convergent and 
stable. This method has been used to solve Equations (9), 
and (10) subject to the conditions given by (11), (12) and 
(13).  To obtain the difference equations, the region of the 
heat is divided into a gird or mesh of lines parallel to z  
and r  axes. Solutions of difference equations are obtained 
at the intersection of these mesh lines called nodes. The 

values of the dependent variablesT , and C  at the nodal 

points along the plane 0=x  are given by ),0( tT  and 
),0( tC hence are known from the boundary conditions. 

In the figure 2,Δz , Δr are constant mesh sizes along z  
and r  directions respectively. We need an algorithm to 
find single values at next time level in terms of known 
values at an earlier time level.  A forward difference 
approximation for the first order partial derivatives of T
andC .  And a central difference approximation for the 
second order partial derivative of T and C  are used. On 
introducing finite difference approximations for: 
 

 
Figure 2: Finite Difference Grid for solid cylinder 
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Figure 3: Finite Difference Grid for hollow cylinder 

 
The shaded portion of the grid represents the hollow in the 
cylinder. For the purposes of coming up with a numerical 
solution for the problem, the height of the hollow is 0.1, 
while the radius of the cylinder is 1.0 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The finite difference approximation of Equations (9) and 
(10) are obtained with substituting Equation (14) into 

Equations (9) and (10) and multiplying both sides by tD
and after simplifying, we let Δt

Δz( )2
= r ' =1  (method is 

always stable and convergent), under this condition the 
above equations can be written as: 
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Let U =  1,11,1,1,1 +-++-+ -+- jijijiji TTTT  

Let V = 1,11,1,1,1 +-++-+ -+- jijijiji CCCC  

5. EXPERIMENTAL RESULTS AND DISCUSSION 

A. Setup and Device Configuration  
The experiment was executed using the CUDA 

Runtime Library, Quadro FX 4800 graphics card, Intel 
Core 2 Duo. The programming interface used was Visual 
Studio. 

The experiments were performed using a 64-bit 
Lenovo ThinkStation D20 with an Intel Xeon CPU E5520 
with processor speed of 2.27 GHZ and physical RAM of 
4.00GB. The Graphics Processing Unit (GPU) used was 
an NVIDIA Quadro FX 4800 with the following 
specifications: 
CUDA Driver Version:                                      3.0 
Total amount of global memory:                       1.59 Gbytes 
Number of multiprocessors:                               24 
Number of cores:                                                92 
Total amount of constant memory:                    65536 bytes 
Total amount of shared memory per block:       16384 bytes 
Total number of registers available per block:  16384 
Maximum number of threads per block:            512 
Bandwidth: 

Host to Device Bandwidth: 3412.1 (MB/s) 
Device to Host Bandwidth: 3189.4 (MB/s) 
Device to Device Bandwidth: 57509.6 (MB/s) 

In the experiments, we considered solving heat and 
mass transfer differential equations in solid and hollow 
capillary porous cylinder with boundary and initial 
conditions of second kind using numerical methods. Our 
main purpose here was to obtain numerical solutions for 
Temperature T, and concentration C distributions across the 
various points in a cylinder as heat and mass are transferred 
from one end of the cylinder to the other. For our 
experiment, we compared the similarity of the CPU and 
GPU results. We also compared the performance of the 
CPU and GPU in terms of processing times of these results. 

In the experimental setup, we are given the initial 
temperature T0 and concentration C0 at point z = 0 on the 
cylinder. Also, there is a constant temperature and 
concentration N0 constantly working the surface of the 
cylinder. The temperature at the other end of the cylinder 
where z = ∞ is assumed to be ambient temperature 
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(assumed to be zero). Also, the concentration at the other 
end of the cylinder where z = ∞ is assumed to be negligible 
(≈ 0). Our initial problem was to derive the temperature T1 
and concentration C1 associated with the initial temperature 
and concentration respectively. We did this by employing 
the finite difference technique. Hence, we obtained total 
initial temperature of (T0 + T1) and total initial 
concentration of (C0 + C1) at z = 0. These total initial 
conditions were then used to perform calculations. 
For the purpose of implementation, we assumed a fixed 
length of the cylinder and varied the number of nodal 
points N to be determined in the cylinder. Since N is 
inversely proportional to the step size ∆z, increasing N 
decreases ∆z and therefore more accurate results are 
obtained with larger values of N. For easy implementation 
in Visual Studio, we employed the Forward Euler Method 
(FEM) for forward calculation of the temperature and 
concentration distributions at each nodal point in both the 
CPU and GPU. For a given array of size N, the nodal 
points are calculated iteratively until the values of 
temperature and concentration become stable.  In this 
experiment, we performed the iteration for 10 different 
time steps. After the tenth step, the values of the 
temperature and concentration became stable and are 
recorded. We run the tests for several different values of N 
and ∆z and the error between the GPU and CPU calculated 
results were increasingly smaller as N increased. Finally, 
our results were normalized in both the GPU and CPU. 

B. Experimental Results  
The normalized temperature and concentration 

distributions at various points in the solid cylinder are 
depicted in Table 1 and Table 2, and hollow cylinder are 
depicted in Table 3 and Table 4 respectively. We can 
immediately see that, at each point in the cylinder, the CPU 
and GPU computed results are similar. In addition, the 
value of temperature is highest and the value of 
concentration is lowest at the point on the cylinder where 
the heat resource and mass resource are constantly applied. 
As we move away from this point, the values of the 
temperature decrease and concentration increase. At a point 
near the designated end of  the cylinder, the values of the 
temperature approach zero and concentration approach one.  

TABLE 1. COMPARISON OF GPU AND CPU RESULTS  FOR SOLID 
CYLINDER (TEMPRETURE) 

Z CPU RESULTS GPU RESULTS 

7.813 0.697518 0.697419 

15.625 0.437492 0.437392 

29.688 0.122683 0.122583 

37.500 0.047844 0.047644 

45.313 0.016684 0.016584 

53.125 0.006823 0.006723 

60.938 0.003061 0.002961 

68.750 0.002110 0.002010 

76.563 0.001917 0.001817 

82.813 0.002074 0.001774 

89.063 0.001860 0.001760 

96.875 0.001856 0.001756 

104.690 0.001850 0.001750 

129.690 0.001657 0.001558 

143.750 0.000897 0.000797 

150.000 - - 

TALBLE 2.  COMPARISON OF GPU AND CPU RESULTS  FOR SOLID 
CYLINDER (CONCENTRATION) 

Z CPU RESULTS GPU RESULTS 

7.813 0.000470 0.000464 

15.625 0.000581 0.000575 

29.688 0.000645 0.000638 

37.500 0.000653 0.000645 

45.313 0.000657 0.000648 

53.125 0.000659 0.000649 

60.938 0.000656 0.000651 

68.750 0.000671 0.000665 

76.563 0.000732 0.000725 

82.813 0.000909 0.000901 

89.063 0.001629 0.001620 

96.875 0.004753 0.004743 

104.690 0.015492 0.015482 

129.690 0.244210 0.244200 

143.750 0.696986 0.696978 

150.000 1.000000 1.000000 

TABLE 3. .  COMPARISON OF GPU AND CPU RESULTS  FOR HOLLOW 
CYLINDER (CONCENTRATION) 

Z GPU RESULTS CPU RESULTS 

7.813 0.000487 0.000488 

15.625 0.001130 0.001132 

29.688 0.002084 0.002087 

37.5 0.002567 0.002571 

45.313 0.003079 0.003084 

53.125 0.003671 0.003677 

60.938 0.004812 0.004813 

68.75 0.006331 0.006333 

76.563 0.010615 0.010618 

82.813 0.014678 0.014682 

89.063 0.025268 0.025273 

96.875 0.044846 0.044852 

104.69 0.095074 0.095081 

129.69 0.448736 0.448737 

143.75 0.849127 0.849128 

150 1.000000 1.000000 

TALBLE 4.  COMPARISON OF GPU AND CPU RESULTS  FOR HOLLOW 
CYLINDER (TEMPRETURE) 

Z GPU RESULTS CPU RESULTS 

7.813 0.774215 0.774216 

15.625 0.504365 0.504366 

29.688 0.2184 0.218401 

37.500 0.132061 0.132062 
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45.313 0.076065 0.076066 

53.125 0.034741 0.034747 

60.938 0.016236 0.016237 

68.750 0.011722 0.011724 

76.563 0.007502 0.007503 

82.813 0.006701 0.006702 

89.063 0.006239 0.006240 

96.875 0.006163 0.006169 

104.690 0.006122 0.006130 

129.690 0.004154 0.004155 

143.750 0.00117 0.001171 

150.000 0 0 
 
Figure 3a and Figure 3b Shows the temperature and 
concentration distribution in the solid cylinder with 4 
different radiuses 
 

 
Figure 3a 

 

 
Figure 3b 

 

Figure 4a and Figure 4b shows the temperature and 
concentration distribution in the hollow cylinder with 4 
different radiuses 

 

 
Figure 4a 

 

 

 
Figure 4b 

Furthermore, we also evaluated the performance of the 
GPU (NVIDIA Quadro FX 4800) in terms of solving heat 
and mass transfer equations by comparing its execution 
time to that of the CPU (Intel Xeon E5520).  

For the purpose of measuring the execution time, the 
same functions were implemented in both the device 
(GPU) and the host (CPU), to initialize the temperature and 
concentration and to compute the numerical solutions. In 
this case, we measured the processing time for different 
values of N. The graph in Figure 5 depicts the performance 
of the GPU versus the CPU in terms of the processing time. 
We run the test for N running from 15 to 11500 with 
increments of 30 and generally, the GPU performed the 
calculations a lot faster than the CPU.  

- When N was smaller than 3500, the CPU 
performed the calculations faster than the 
GPU. 

- For N larger than 3500 the GPU performance 
began to increase considerably 

Figure 5 and Figure 6 show some of our experimental 
results for both solid and hollow cylinder. 

 
Figure 5: Performance of GPU and CPU Implementations for solid 

cylinder 

Figure 6: Performance of GPU and CPU Implementations for hollow 
cylinder 
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Finally, the accuracy of our numerical solution was 
dependent on the number of iterations we performed in 
calculating each nodal point, where more iteration means 
more accurate results. In our experiment, we observed that 
after 9 or 10 iterations, the solution to the heat and mass 
equation at a given point became stable. For optimal 
performance, and to keep the number of iterations the same 
for both CPU and GPU, we used 10 iterations.  Both 
groups of experimental results for solid and hollow 
cylinder show about 10 times speed-up.  

6. CONCLUSION AND FUTURE WORK 
       We have presented our numerical approximations 

to the solution of the heat and mass transfer equation with 
the second kind of boundary and initial conditions for both 
solid and hollow cylinder using finite difference method 
on GPGPUs. Our conclusion shows that finite difference 
method is well suited for parallel programming. We 
implemented numerical solutions utilizing highly parallel 
computations capability of GPGPU on nVidia CUDA. We 
have demonstrated GPU can perform significantly faster 
than CPU in the field of numerical solution to heat and 
mass transfer. Both groups of experimental results for solid 
and hollow cylinder indicate that our GPU-based 
implementation shows a significant performance 
improvement over CPU-based implementation and the 
maximum observed speedups are about 10 times. 
There are several avenues for future work.  We would like 
to test our algorithm on different GPUs and explore the 
new performance opportunities offered by newer 
generations of GPUs. It would also be interesting to 
explore more tests with large-scale data set. Finally, 
further attempts will be made to explore more complicated 
problems both in terms of boundary and initial conditions 
as well as other geometry 
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