

 1

An Efficient Acceleration of Solving Heat and Mass Transfer Equations with
the Second Kind Boundary and Initial Conditions in Solid and Hollow Cylinder

Using Programmable Graphics Hardware

Hira Narang1, Fan Wu2 and Abisoye Ogunniyan3
Head and Professor, Computer Science Department, Tuskegee University, Tuskegee, Alabama, USA 1
Associate Professor, Computer Science Department, Tuskegee University, Tuskegee, Alabama, USA 2
Research Student, Computer Science Department, Tuskegee University, Tuskegee, Alabama, USA 3

Abstract: Recently, heat and mass transfer simulation is more and more important in various engineering fields. In
order to analyze how heat and mass transfer in a thermal environment, heat and mass transfer simulation is needed.
However, it is too much time-consuming to obtain numerical solutions to heat and mass transfer equations. Therefore,
in this paper, one of acceleration techniques developed in the graphics community that exploits a graphics processing
unit (GPU) is applied to the numerical solutions of heat and mass transfer equations. The nVidia Compute Unified
Device Architecture (CUDA) programming model provides a straightforward means of describing inherently parallel
computations. This paper improves the performance of solving heat and mass transfer equations over solid and hollow
capillary porous cylinder with the second kind boundary and initial conditions numerically running on GPU. Heat and
mass transfer simulation using the novel CUDA platform on nVidia Quadro FX 4800 is implemented. Our
experimental results clearly show that GPU can accurately perform heat and mass transfer simulation. GPU can
significantly accelerate the performance with the maximum observed speedups 10 times. Therefore, the GPU is a good
approach to accelerate the heat and mass transfer simulation.

Keywords: Numerical Solution; Heat and Mass Transfer; General Purpose Graphics Processing Unit; CUDA.

1. INTRODUCTION
During the last half century, many scientists and

engineers working in Heat and Mass Transfer processes
have put lots of efforts in finding solutions both
analytically/numerically, and experimentally. To precisely
analyze physical behaviors of heat and mass environment,
to simulate several heat and mass transfer phenomena such
as heat conduction, convection, and radiation are very
important. A heat transfer simulation is accomplished by
utilizing parallel computer resources to simulate such heat
and mass transfer phenomena. With the helps from
computer, initially the sequential solutions were found, and
later when high-end computers became available, fast
solutions were obtained to heat and mass transfer problems.
However, the heat and mass transfer simulation requires
much more computing resources than the other
simulations. Therefore, acceleration of this simulation is
very essential to implement a practical big data size heat
and mass transfer simulation.

This paper utilizes the parallel computing power of
GPUs to speedup the heat and mass transfer simulation.
GPUs are very efficient considering theoretical peak
floating-point operation rates [1]. Therefore, comparing
with super-computer, GPUs is a powerful co-processor on
a common PC which is ready to simulate a large-scale heat
and mass transfer at a less resources. The GPU has several
advantages over CPU architectures, such as highly parallel,
computation intensive workloads, including higher
bandwidth, higher floating-point throughput. The GPU can
be an attractive alternative to clusters or super-computer in
high performance computing areas.
CUDA [2] by nVidia already proved its effort to develop
both programming and memory models. CUDA is a new
parallel, C-like language programming Application
program interface (API), which bypasses the rendering
interface and avoids the difficulties from using GPGPU.

Parallel computations are expressed as general-purpose, C-
like language kernels operating in parallel over all the
points in a application.

This paper develops the numerical solutions to Two-
point Initial-Boundary Value Problems (TIBVP) of Heat
and Mass with the second kind boundary and initial
conditions in solid and hollow capillary porous cylinder.
These problems can be found some applications in drying
processes, space science, absorption of nutrients,
transpiration cooling of space vehicles at re-entry phase,
and many other scientific and engineering problems.
Although some traditional approaches of parallel
processing to the solutions of some of these problems have
been investigated, no one seems to have explored the high
performance computing solutions to heat and mass transfer
problems with compact multi-processing capabilities of
GPU, which integrates multi-processors on a chip. With the
advantages of this compact technology, we developed
algorithms to find the solution of TIBVP with the second
kind boundary and initial conditions and compare with
some existing solutions to the same problems. All of our
experimental results show significant performance
speedups. The maximum observed speedups are about 10
times.
The rest of the paper is organized as follow: Section II
briefly introduces some closely related work; Section III
describes the basic information on GPU and CUDA;
Section IV presents the mathematical model of heat and
mass transfer and numerical solutions to heat and mass
transfer equations; Section V presents our experimental
results; And Section VI concludes this paper and give
some possible future work directions

2. RELATED WORK

The simulation of heat and mass transfer has been a

very hot topic for many years. And there is lots of work

 2

related to this field, such as fluid and air flow simulation.
We just refer to some most recent work close to this field
here.

Soviet Union was in the fore-front for exploring the
coupled Heat and Mass Transfer in Porous media, and
major advances were made at Heat and Mass Transfer
Institute at Minsk, BSSR. Later England and India took
the lead and made further contributions for analytical and
numerical solutions to certain problems. Narang [4-9]
explored the wavelet solutions to heat and mass transfer
equations and Ambethkar [10] explored the numerical
solutions to some of these problems.

Krüger et al. [11] computed the basic linear algebra
problems with the feathers of programmability of
fragments on GPU, and further computed the 2D wavelets
equations and NSEs on GPU. Bolz et al. [12] matched the
sparse matrix into textures on GPU, and utilized the
multigrid method to solve the fluid problem. In the
meantime, Goodnight et al. [13] used the multigrid method
to solve the boundary value problems on GPU. Harris [14,
15] solved the PDEs of dynamic fluid motion to get cloud
animation.

GPU is also used to solve other kinds of PDEs by other
researchers. Kim et al. [16] solved the crystal formation
equations on GPU. Lefohn et al. [17] matched the level-set
iso surface data into a dynamic sparse texture format.
Another creative usage was to pack the information of the
next active tiles into a vector message, which was used to
control the vertices and texture coordinates needed to send
from CPU to GPU. To learn more applications about
general-purpose computations GPU, more information can
be found from here [18].

3. AN OVERVIEW OF CUDA ARCHITECTURE

The GPU that we have used in our implementations is

nVidia’s Quadro FX 4800, which is DirectX 10 compliant.
It is one of nVidia’s fastest processors that support the
CUDA API and as such all implementations using this
API are forward compatible with newer CUDA compliant
devices. All CUDA compatible devices support 32-bit
integer processing. An important consideration for GPU
performance is its level of occupancy. Occupancy refers to
the number of threads available for execution at any one
time. It is normally desirable to have a high level of
occupancy as it facilitates the hiding of memory latency.

The GPU memory architecture is shown in figure 1.

Figure 1: GPU Memory Architecture [2]

4. MATHEMATICAL MODEL AND NUMERICAL
SOLUTIONS OF HEAT AND MASS TRANSFER

A. Mathematical Model
 Consider the Heat and Mass Transfer through a porous
cylinder with boundary and initial conditions of the second
kind. Let the z-axis be directed upward along the cylinder
and the r-axis radius of the cylinder. Let u and v be the
velocity components along the z- and r- axes respectively.
Then the heat and mass transfer equations in the
Boussinesq's approximation, are:

t
T
¶
¶

= k1)1(2

2

2

2

z
T

r
T

rr
T

¶
¶

+
¶
¶

+
¶
¶

+ k2)(
t
C
¶
¶

 (1)

t
C
¶
¶

 = k3 +
¶
¶

+
¶
¶

+
¶
¶)1(2

2

2

2

z
C

r
C

rr
C

 k4

)1(2

2

2

2

z
T

r
T

rr
T

¶
¶

+
¶
¶

+
¶
¶

 (2)

0 < z <∞,a < r < b*, t > 0
*a = 0,b =∞ for solid cylinder.

Initial Conditions

0),,(
1),,(

=
=

ozrC
ozrT

 (3)

Boundary Conditions

0),,(
1),,(

0

0

==
==

CozrC
TtorT

 (4)

 3

0.001),,(

0.001),,(

==
¶

¶

==
¶

¶

a

a

C
X
tzaC

T
X
tzaT

 (5a)

0.00015),,(

0.00015),,(

==
¶

¶

==
¶

¶

b

b

C
X
tzbC

T
X
tzbT

 (5b)

1),,(
0),,(
==¥
==¥

¥

¥

CorC
TtrT

 (6)

Since the cylinder is assumed to be porous, 1µ is the

velocity of the fluid, pT the temperature of the fluid near

the cylinder, ¥T the temperature of the fluid far away

from the cylinder, pC the concentration near the cylinder,

¥C the concentration far away from the cylinder, g the

acceleration due to gravity, b the coefficient of volume

expansion for heat transfer,
'b the coefficient of volume

expansion for concentration, n the kinematic viscosity, s
the scalar electrical conductivity, w the frequency of

oscillation, k the thermal conductivity.
From Equation (1) we observe From Equation (1) we

observe that 1v is independent of space co-ordinates and
may be taken as constant. We define the following non-
dimensional variables and parameters.

t = t1V0
2

4v
, z = V0z1

4v (8)

'
,,,, 11

0

1

D
vS

k
vP

CC
CCC

TT
TTT

V
uu cr

PP

==
-
-

=
-
-

==
¥

¥

¥

¥

()

3
0

2
0

2
0 ,

V
TTvgG

V
vBM P

r
¥-

==
b

r
s

()

2
0

3
0

4,'
V
v

V
CCvgG iP

m
wwb

=
-

= ¥

Now taking into account Equations (5), (6), (7), and (8),
equations (1) and (2) reduce to the following form:

∂T
∂t

+
∂2T
∂r2

− 4∂C
∂t

+
1
r
∂T
∂r

=
4
Pr
∂2T
∂z2

 (9)

∂C
∂t

+
∂2C
∂r2

− 4∂T
∂t

+
1
r
∂C
∂r

=
4
Pr
∂2C
∂z2

 (10)

 0£t
 C(r, z, t) = 0 , T (r, z, t) = T0 (11)

 0>t
∂C r, z, t()

∂z
+ k

∂T r, z, t()
∂z

= 0 (12)

 0>t
 T r,∞, t() = 0 , () 1,, =¥ trC (13)

B. Numerical Solutions
 Here we sought a solution by finite difference
technique of implicit type namely Crank-Nicolson implicit
finite difference method which is always convergent and
stable. This method has been used to solve Equations (9),
and (10) subject to the conditions given by (11), (12) and
(13). To obtain the difference equations, the region of the
heat is divided into a gird or mesh of lines parallel to z
and r axes. Solutions of difference equations are obtained
at the intersection of these mesh lines called nodes. The

values of the dependent variablesT , and C at the nodal

points along the plane 0=x are given by),0(tT and
),0(tC hence are known from the boundary conditions.

In the figure 2,Δz , Δr are constant mesh sizes along z
and r directions respectively. We need an algorithm to
find single values at next time level in terms of known
values at an earlier time level. A forward difference
approximation for the first order partial derivatives of T
andC . And a central difference approximation for the
second order partial derivative of T and C are used. On
introducing finite difference approximations for:

Figure 2: Finite Difference Grid for solid cylinder

 4

Figure 3: Finite Difference Grid for hollow cylinder

The shaded portion of the grid represents the hollow in the
cylinder. For the purposes of coming up with a numerical
solution for the problem, the height of the hollow is 0.1,
while the radius of the cylinder is 1.0

The finite difference approximation of Equations (9) and
(10) are obtained with substituting Equation (14) into

Equations (9) and (10) and multiplying both sides by tD
and after simplifying, we let Δt

Δz()2
= r ' =1 (method is

always stable and convergent), under this condition the
above equations can be written as:

t
C
¶
¶

=
2
1

()2
,,)(2

(
r

CTVU jiji

D

+-+
+ ()rr

VU
D
+

2
 +

()2
,,)(2

(
z

CTVU jiji

D

+-+
)

t
T
¶
¶

 =
2
1

()2

,,)2(22
(

r
CTVU jiji

D

+-+
 + ()rr

VU
D
+

2
2

 +

()
)
)2(22

2
,,

z
CTVU jiji

D

+-+

Let U = 1,11,1,1,1 +-++-+ -+- jijijiji TTTT

Let V = 1,11,1,1,1 +-++-+ -+- jijijiji CCCC

5. EXPERIMENTAL RESULTS AND DISCUSSION

A. Setup and Device Configuration
The experiment was executed using the CUDA

Runtime Library, Quadro FX 4800 graphics card, Intel
Core 2 Duo. The programming interface used was Visual
Studio.

The experiments were performed using a 64-bit
Lenovo ThinkStation D20 with an Intel Xeon CPU E5520
with processor speed of 2.27 GHZ and physical RAM of
4.00GB. The Graphics Processing Unit (GPU) used was
an NVIDIA Quadro FX 4800 with the following
specifications:
CUDA Driver Version: 3.0
Total amount of global memory: 1.59 Gbytes
Number of multiprocessors: 24
Number of cores: 92
Total amount of constant memory: 65536 bytes
Total amount of shared memory per block: 16384 bytes
Total number of registers available per block: 16384
Maximum number of threads per block: 512
Bandwidth:

Host to Device Bandwidth: 3412.1 (MB/s)
Device to Host Bandwidth: 3189.4 (MB/s)
Device to Device Bandwidth: 57509.6 (MB/s)

In the experiments, we considered solving heat and
mass transfer differential equations in solid and hollow
capillary porous cylinder with boundary and initial
conditions of second kind using numerical methods. Our
main purpose here was to obtain numerical solutions for
Temperature T, and concentration C distributions across the
various points in a cylinder as heat and mass are transferred
from one end of the cylinder to the other. For our
experiment, we compared the similarity of the CPU and
GPU results. We also compared the performance of the
CPU and GPU in terms of processing times of these results.

In the experimental setup, we are given the initial
temperature T0 and concentration C0 at point z = 0 on the
cylinder. Also, there is a constant temperature and
concentration N0 constantly working the surface of the
cylinder. The temperature at the other end of the cylinder
where z = ∞ is assumed to be ambient temperature

 5

(assumed to be zero). Also, the concentration at the other
end of the cylinder where z = ∞ is assumed to be negligible
(≈ 0). Our initial problem was to derive the temperature T1
and concentration C1 associated with the initial temperature
and concentration respectively. We did this by employing
the finite difference technique. Hence, we obtained total
initial temperature of (T0 + T1) and total initial
concentration of (C0 + C1) at z = 0. These total initial
conditions were then used to perform calculations.
For the purpose of implementation, we assumed a fixed
length of the cylinder and varied the number of nodal
points N to be determined in the cylinder. Since N is
inversely proportional to the step size ∆z, increasing N
decreases ∆z and therefore more accurate results are
obtained with larger values of N. For easy implementation
in Visual Studio, we employed the Forward Euler Method
(FEM) for forward calculation of the temperature and
concentration distributions at each nodal point in both the
CPU and GPU. For a given array of size N, the nodal
points are calculated iteratively until the values of
temperature and concentration become stable. In this
experiment, we performed the iteration for 10 different
time steps. After the tenth step, the values of the
temperature and concentration became stable and are
recorded. We run the tests for several different values of N
and ∆z and the error between the GPU and CPU calculated
results were increasingly smaller as N increased. Finally,
our results were normalized in both the GPU and CPU.

B. Experimental Results
The normalized temperature and concentration

distributions at various points in the solid cylinder are
depicted in Table 1 and Table 2, and hollow cylinder are
depicted in Table 3 and Table 4 respectively. We can
immediately see that, at each point in the cylinder, the CPU
and GPU computed results are similar. In addition, the
value of temperature is highest and the value of
concentration is lowest at the point on the cylinder where
the heat resource and mass resource are constantly applied.
As we move away from this point, the values of the
temperature decrease and concentration increase. At a point
near the designated end of the cylinder, the values of the
temperature approach zero and concentration approach one.

TABLE 1. COMPARISON OF GPU AND CPU RESULTS FOR SOLID
CYLINDER (TEMPRETURE)

Z CPU RESULTS GPU RESULTS

7.813 0.697518 0.697419

15.625 0.437492 0.437392

29.688 0.122683 0.122583

37.500 0.047844 0.047644

45.313 0.016684 0.016584

53.125 0.006823 0.006723

60.938 0.003061 0.002961

68.750 0.002110 0.002010

76.563 0.001917 0.001817

82.813 0.002074 0.001774

89.063 0.001860 0.001760

96.875 0.001856 0.001756

104.690 0.001850 0.001750

129.690 0.001657 0.001558

143.750 0.000897 0.000797

150.000 - -

TALBLE 2. COMPARISON OF GPU AND CPU RESULTS FOR SOLID
CYLINDER (CONCENTRATION)

Z CPU RESULTS GPU RESULTS

7.813 0.000470 0.000464

15.625 0.000581 0.000575

29.688 0.000645 0.000638

37.500 0.000653 0.000645

45.313 0.000657 0.000648

53.125 0.000659 0.000649

60.938 0.000656 0.000651

68.750 0.000671 0.000665

76.563 0.000732 0.000725

82.813 0.000909 0.000901

89.063 0.001629 0.001620

96.875 0.004753 0.004743

104.690 0.015492 0.015482

129.690 0.244210 0.244200

143.750 0.696986 0.696978

150.000 1.000000 1.000000

TABLE 3. . COMPARISON OF GPU AND CPU RESULTS FOR HOLLOW
CYLINDER (CONCENTRATION)

Z GPU RESULTS CPU RESULTS

7.813 0.000487 0.000488

15.625 0.001130 0.001132

29.688 0.002084 0.002087

37.5 0.002567 0.002571

45.313 0.003079 0.003084

53.125 0.003671 0.003677

60.938 0.004812 0.004813

68.75 0.006331 0.006333

76.563 0.010615 0.010618

82.813 0.014678 0.014682

89.063 0.025268 0.025273

96.875 0.044846 0.044852

104.69 0.095074 0.095081

129.69 0.448736 0.448737

143.75 0.849127 0.849128

150 1.000000 1.000000

TALBLE 4. COMPARISON OF GPU AND CPU RESULTS FOR HOLLOW
CYLINDER (TEMPRETURE)

Z GPU RESULTS CPU RESULTS

7.813 0.774215 0.774216

15.625 0.504365 0.504366

29.688 0.2184 0.218401

37.500 0.132061 0.132062

 6

45.313 0.076065 0.076066

53.125 0.034741 0.034747

60.938 0.016236 0.016237

68.750 0.011722 0.011724

76.563 0.007502 0.007503

82.813 0.006701 0.006702

89.063 0.006239 0.006240

96.875 0.006163 0.006169

104.690 0.006122 0.006130

129.690 0.004154 0.004155

143.750 0.00117 0.001171

150.000 0 0

Figure 3a and Figure 3b Shows the temperature and
concentration distribution in the solid cylinder with 4
different radiuses

Figure 3a

Figure 3b

Figure 4a and Figure 4b shows the temperature and
concentration distribution in the hollow cylinder with 4
different radiuses

Figure 4a

Figure 4b

Furthermore, we also evaluated the performance of the
GPU (NVIDIA Quadro FX 4800) in terms of solving heat
and mass transfer equations by comparing its execution
time to that of the CPU (Intel Xeon E5520).

For the purpose of measuring the execution time, the
same functions were implemented in both the device
(GPU) and the host (CPU), to initialize the temperature and
concentration and to compute the numerical solutions. In
this case, we measured the processing time for different
values of N. The graph in Figure 5 depicts the performance
of the GPU versus the CPU in terms of the processing time.
We run the test for N running from 15 to 11500 with
increments of 30 and generally, the GPU performed the
calculations a lot faster than the CPU.

- When N was smaller than 3500, the CPU
performed the calculations faster than the
GPU.

- For N larger than 3500 the GPU performance
began to increase considerably

Figure 5 and Figure 6 show some of our experimental
results for both solid and hollow cylinder.

Figure 5: Performance of GPU and CPU Implementations for solid

cylinder

Figure 6: Performance of GPU and CPU Implementations for hollow
cylinder

 7

Finally, the accuracy of our numerical solution was
dependent on the number of iterations we performed in
calculating each nodal point, where more iteration means
more accurate results. In our experiment, we observed that
after 9 or 10 iterations, the solution to the heat and mass
equation at a given point became stable. For optimal
performance, and to keep the number of iterations the same
for both CPU and GPU, we used 10 iterations. Both
groups of experimental results for solid and hollow
cylinder show about 10 times speed-up.

6. CONCLUSION AND FUTURE WORK
 We have presented our numerical approximations

to the solution of the heat and mass transfer equation with
the second kind of boundary and initial conditions for both
solid and hollow cylinder using finite difference method
on GPGPUs. Our conclusion shows that finite difference
method is well suited for parallel programming. We
implemented numerical solutions utilizing highly parallel
computations capability of GPGPU on nVidia CUDA. We
have demonstrated GPU can perform significantly faster
than CPU in the field of numerical solution to heat and
mass transfer. Both groups of experimental results for solid
and hollow cylinder indicate that our GPU-based
implementation shows a significant performance
improvement over CPU-based implementation and the
maximum observed speedups are about 10 times.
There are several avenues for future work. We would like
to test our algorithm on different GPUs and explore the
new performance opportunities offered by newer
generations of GPUs. It would also be interesting to
explore more tests with large-scale data set. Finally,
further attempts will be made to explore more complicated
problems both in terms of boundary and initial conditions
as well as other geometry

REFERENCES
[1] J.D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krger, A.E.

Lefohn, T.J. Purcell,: A survey of general-purpose computation on
graphics hardware. Computer Graphics Forum 26(1) (2007) 80-113.

[2] NVIDIA Corporation. NVIDIA Programming Guide 2.3. Retrieved
July, 2009. www.nvidia.com.

[3] A. V. Luikov. Heat and Mass Transfer in Capillary Porous Bodies,
Pergamon Press, 1966.

[4] Hira Narang and Rajiv Nekkanti. Wavelet-based Solution to Time-
dependent Two-point Initial Boundary Value Problems with Non-
Periodic Boundary Conditions, Proceedings of the IATED
International Conference Signal Processing, Pattern Recognition &
Applications July 3-6 2001, Rhodes, Greece.

[5] Hira Narang and Rajiv Nekkanti. Wavelet-based Solution of
Boundary Value Problems involving Hyperbolic Equations,
Proceedings from the IATED International Conference Signal
Processing, Pattern Recognition & Applications June 25-26, 2002

[6] Hira Narang and Rajiv Nekkanti. Wavelet-based solutions to
problems involving Parabolic Equations, Proceedings of the IATED
International Conference Signal Processing, Pattern Recognition &
Applications 2001, Greece.

[7] Hira Narang and Rajiv Nekkanti. Wavelet-Based Solution to
Elliptic Two-Point Boundary Value Problems with Non-Periodic
Boundary Conditions, Proceedings from the WSEAS international
conference in Signal, Speech, and Image processing Sept 25-28,
2002

[8] Hira Narang and Rajiv Nekkanti. Wavelet-Based Solution to Some
Time-Dependent Two-Point Initial Boundary Value Problems with
Non-Linear Non-Periodic Boundary Conditions, International
Conference on Scientific computation and differential equations,
SCICADE 2003, Trondheim, Norway, June 30. July 4, 2003.

[9] Hira Narang and Rajiv Nekkanti. Wavelet based Solution to Time-
Dependent Two Point Initial Boundary Value Problems with Non-
Periodic Boundary Conditions involving High Intensity Heat and
Mass Transfer in Capillary Porous Bodies, IATED International
Conference proceedings, Gainesville, FL 2004.

[10] Vishwavidyalaya Ambethkar. Numerical Solutions of Heat and
Mass Transfer Effects of an Unsteady MHD Free Conective Flow
Past an Iffinite Vertical Plate With Constant Suction. Journal of
Naval Architecture and Marine Engineering, pages 28-36, June,
2008.

[11] Jens Krüger and Rüdiger Westermann. Linear Algebra Operators
for GPU Implementation of Numerical Algorithms. ACM
Transactions on Graphics (Proceedings of SIGGRAPH), pages908-
916, July 2003.

[12] Jeff Bolz, Ian Farmer, Eitan Grinspun and Peter Schröoder. Sparse
Matrix Solvers on the GPU: Conjugate Gradients and Multigrid.
ACM Transactions on Graphics (Proceedings of SIGGRAPH),
pages917-924, July 2003.

[13] Nolan Goodnight, Cliff Woolley, David Luebke and Greg
Humphreys. A Multigrid Solver for Boundary Value Problems
Using Programmable Graphics Hardware. In Proceeding of
Graphics Hardware, pages 102-111, July 2003.

[14] Mark Harris, William Baxter, Thorsten Scheuermann and Anselmo
Lastra. Simulation of Cloud Dynamics on Graphics Hardware. In
Proceedings of Graphics Hardware, pages 92-101, July 2003.

[15] Mark Harris. Real-Time Cloud Simulation and Rendering. PhD
thesis, 2003.

[16] Theodore Kim and Ming Lin. Visual Simulation of Ice Crystal
Growth. In Proceedings of SIGGRAPH/Eurographics Symposium
on Computer Amination, pages 86-97, July 2003.

[17] Aaron Lefohn, Joe Kniss, Charles Hansen and Ross Whitaker.
Interactive Deformation and Visualization of Level Set Surfaces
Using Graphics Hardware. In IEEE Visualization, pages 75-82,
2003.

[18] GPGPU website. http://www.gpgpu.org.

