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Abstract

A new flexible and versatile generalized family of distributions, namely,
half logistic odd Weibull-Topp-Leone-G (HLOW-TL-G) family of dis-
tributions is presented. The distribution can be traced back to the
exponentiated-G distribution. We derive the statistical properties of
the proposed family of distributions. Maximum likelihood estimates of
the HLOW-TL-G family of distributions are also presented. Five spe-
cial cases of the proposed family are presented. A simulation study and
real data applications on one of the special cases are also presented.

Keywords: Half-Logistic-G, Topp-Leone-G, odd Weibull-G distribution,
Maximum Likelihood Estimation.

1 Introduction

Gurvich et al. [1] introduced a general family of univariate distributions from
the Weibull distribution. The cumulative distribution function (cdf) and prob-
ability density function (pdf) of the generalized family are given by

G(x; ξ) = 1− exp[−αH(x, ξ)] (1.1)

and
g(x; ξ) = α exp[−αH(x; ξ)]h(x; ξ), (1.2)

respectively forH(x; ξ) a non-negative monotonically increasing function which
depends of the parameter vector ξ. The choices of H(x; ξ) is infinitely many

and for example H(x; ξ) can be x, x2, G(x;ξ)

G(x;ξ)
, 1−Gα(x;ξ)

G
α
(x;ξ)

, to mention a few.

The generalization by Gurvich has led to the advent of many generalized distri-
butions for example the Weibull-G by Bourguignon et al. [2]. There are several
generalizations in the literature including beta-G by Eugene et al. [3], beta odd
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Lindley-G by Chipepa et al. [4], Half Logistic-G by Cordeiro et al. [5], Topp-
Leone-G by Al-Shormrani et al. [6], Topp-Leone-Marshall-Olkin-G by Chipepa
et al. [7], Kumaraswamy-G by Cordeiro et al. [8], Kumaraswamy odd Lindley-
G by Chipepa et al. [9], to mention a few. All these generalizations provide
versatile and flexible models in data fitting.

Balakrishnan [10] also developed the half logistic distribution which received
much attention from physicists and hydrologists. The distribution by Balakr-
ishan [10] exhibit monotonic hazards rate shapes. Generalizations of the half
logistic distribution also produced very flexible distributions in data modeling.
Available in the literature is the exponentiated half-logistic family of distri-
butions by Cordeiro et al. [11], type I half-logistic family of distributions by
Cordeiro et al. [5], Kumaraswamy type 1 half logistic family of distributions by
El-Sayed and Mahmoud [12], odd exponentiated half-logistic-G family by Afify
et al. [13], exponentiated Half-Logistic Exponential distribution by Abdullah
et al. [14], to mention a few.

In this paper, we propose a new model referred to as the half logistic odd
Weibull-Topp-Leone-G (HLOW-TL-G) family of distributions. We use the
generalization by Cordeiro et al. [5] with cdf given by

F
HL−G(x; ξ) =

G(x; ξ)

1 +G(x; ξ)
(1.3)

and our recently proposed generalized distribution referred to as the odd
Weibull-Topp-Leone-G (OW-TL-G) family of distributions with cdf given by

F (x; b, β, ξ) = 1− exp

{
−
[

[1−G2
(x; ξ)]b

[1− (1−G2
(x; ξ))b]

]β}
, (1.4)

for b, β > 0 and parameter vector ξ. We develop a new family of distributions
that

� is versatile and flexible in data fitting;

� can model both monotonic and non-monotonic hazard rate functions;

� has good tractability property and can be traced back to the exponentiated-
G distribution.

We hope the new distribution will attract the attention of more researchers in
data analysis.

The rest of the paper is arranged as follows; the proposed model, expansion of
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the density is presented in Section 2. In Section 3 we present Statistical prop-
erties. We do estimation in Section 4. Special cases are presented in Section
5. A simulation study is contacted in Section 6. Real data examples are given
in Section 7, followed by concluding remarks.

2 The Model

We develop the HLOW-TL-G family of distributions using equations 1.3 and
1.4. The cdf and pdf of the HLOW-TL-G family of distributions are given by

F
HLOW−TL−G(x; b, β, ξ) =

1− exp

(
−
[

[1−G2
(x;ξ)]b

1−[1−G2
(x;ξ)]b

]β)
1 + exp

(
−
[

[1−G2
(x;ξ)]b

1−[1−G2
(x;ξ)]b

]β) (2.1)

and

fHLOW−TL−G(x; b, β, ξ) =
4bβg(x; ξ)G(x; ξ)[1−G2

(x; ξ)]bβ−1 exp
(
−
[ [1−G2

(x;ξ)]b

1−[1−G2
(x;ξ)]b

]β)
(1− [1−G2

(x; ξ)]b)β+1
(
1 + exp

(
−
[ [1−G2

(x;ξ)]b

1−[1−G2
(x;ξ)]b

]β))2 ,

(2.2)

respectively, for b, β > 0 and ξ is a vector of parameters from the baseline
distribution function G(.).

2.1 Hazard Rate and Reverse Hazard Rate Functions

The hazard rate and reverse hazard rate functions of the HLOW-TL-G family
of distributions are given by

hF (x; b, β, ξ) =
4bβg(x; ξ)G(x; ξ)[1−G2

(x; ξ)]bβ−1 exp
(
−
[ [1−G2

(x;ξ)]b

1−[1−G2
(x;ξ)]b

]β)
(1− [1−G2

(x; ξ)]b)β+1
(
1 + exp

(
−
[ [1−G2

(x;ξ)]b

1−[1−G2
(x;ξ)]b

]β))2

×

1−
1− exp

(
−
[

[1−G2
(x;ξ)]b

1−[1−G2
(x;ξ)]b

]β)
1 + exp

(
−
[

[1−G2
(x;ξ)]b

1−[1−G2
(x;ξ)]b

]β)

−1

and

τF (x; b, β, ξ) =
4bβg(x; ξ)G(x; ξ)[1−G2

(x; ξ)]bβ−1 exp
(
−
[ [1−G2

(x;ξ)]b

1−[1−G2
(x;ξ)]b

]β)
(1− [1−G2

(x; ξ)]b)β+1
(
1 + exp

(
−
[ [1−G2

(x;ξ)]b

1−[1−G2
(x;ξ)]b

]β))
×

[
1− exp

(
−
[

[1−G2
(x; ξ)]b

1− [1−G2
(x; ξ)]b

]β)]−1
,
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respectively.

2.2 Some Sub-Families of Distributions

� When β = 1, we obtain the half logistic odd exponential-Topp-Leone-G (HLOW-
TL-G) family of distributions.

� We obtain the half logistic odd Rayleigh-Topp-Leone-G (HLOR-TL-G) family
of distributions by setting β = 2.

� By letting b = 1, we obtain a new family of distributions with cdf given by

F (x;β, ξ) =

1− exp

(
−
[
[1−G2

(x;ξ)]

G
2
(x;ξ)

]β)
1 + exp

(
−
[
[1−G2

(x;ξ)]

G
2
(x;ξ)

]β) .
� We also obtain other new families of distributions with cdfs given by

F (x; ξ) =

1− exp

(
−
[
[1−G2

(x;ξ)]

G
2
(x;ξ)

])
1 + exp

(
−
[
[1−G2

(x;ξ)]

G
2
(x;ξ)

])
and

F (x; ξ) =

1− exp

(
−
[
[1−G2

(x;ξ)]

G
2
(x;ξ)

]2)
1 + exp

(
−
[
[1−G2

(x;ξ)]

G
2
(x;ξ)

]2) ,
by setting b = β = 1 and b = 1 and β = 2, respectively.

2.3 Expansion of Density Function

In this section, we provide series expansion of density of the HLOW-TL-G family of
distribution. By applying the series expansion (1− x)−2 =

∑∞
n=1 nx

n−1, get(
1 + exp

(
−
[

[1−G2
(x; ξ)]b

1− [1−G2
(x; ξ)]b

]β))−2
=

∞∑
n=1

n(−1)n−1

× exp

(
− (n− 1)

[
[1−G2

(x; ξ)]b

1− [1−G2
(x; ξ)]b

]β)
such that

fHLOW−TL−G(x; b, β, ξ) =
∞∑
n=1

n(−1)n−1
4bβg(x; ξ)G(x; ξ)[1−G2

(x; ξ)]bβ−1

(1− [1−G2
(x; ξ)]b)β+1

× exp

(
− n

[
[1−G2

(x; ξ)]b

1− [1−G2
(x; ξ)]b

]β)
.
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Furthermore, using the following series expansions

exp

(
− n

[
[1−G2

(x; ξ)]b

1− [1−G2
(x; ξ)]b

]β)
=
∞∑
z=0

(−1)znz

z!

[
[1−G2

(x; ξ)]b

1− [1−G2
(x; ξ)]b

]βz
,

(1− [1−G2
(x; ξ)]b)−(β(z+1)+1) =

∞∑
w=0

(−1)w
(
−(β(z + 1) + 1)

w

)
[1−G2

(x; ξ)]bw,

[1−G2
(x; ξ)]b(βz+β+w)−1 =

∞∑
i=0

(−1)i
(
b(βz + β + w)− 1

i

)
G

2i
(x; ξ)

and

G
2i+1

(x; ξ) =

∞∑
j=0

(−1)j
(

2i+ 1

j

)
Gj(x; ξ)

yields

fHLOW−TL−G(x; b, β, ξ) =

∞∑
z,w,i,j=0

∞∑
n=1

4bβnz+1(−1)z+w+i+j+n−1

z!

(
−(β(z + 1) + 1)

w

)

×
(
b(βz + β + w)− 1

i

)(
2i+ 1

j

)
g(x; ξ)Gj(x; ξ)

=

∞∑
j=0

ψjhj(x; ξ), (2.3)

where hj(x; ξ) = (j + 1)g(x; ξ)Gj(x; ξ) is the exponentiated-G (Exp-G) distribution
with power parameter j and

ψj =

∞∑
z,w,i=0

∞∑
n=1

4bβnz+1(−1)z+w+i+j+n−1

z!(j + 1)

(
−(β(z + 1) + 1)

w

)

×
(
b(βz + β + w)− 1

i

)(
2i+ 1

j

)
. (2.4)

Therefore, the HLOW-TL-G family of distributions is a linear combination of Exp-G
distribution. Other statistical properties for example moments, generating function,
and probability-weighted moments of the HLOW-TL-G family of distributions can
be derived directly from the Exp-G distribution.

3 Statistical Properties

In this section, we present some statistical properties of the HLOW-TL-G family
of distributions. The statistical properties considered are the quantile function,
moments, generating functions, distribution of order statistics, probability-weighted
moments, and entropy.
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3.1 Quantile Function

The quantile function for the HLOW-TL-G family of distributions is obtained by
solving the non-linear equation:

1− exp

(
−
[

[1−G2
(x;ξ)]b

1−[1−G2
(x;ξ)]b

]β)
1 + exp

(
−
[

[1−G2
(x;ξ)]b

1−[1−G2
(x;ξ)]b

]β) = u

for 0 ≤ u ≤ 1. Simplifying the equation we get

ln

[
1− u
1 + u

]
= −

[
[1−G2

(x; ξ)]b

1− [1−G2
(x; ξ)]b

]β
which simplifies to

1−G2
(x; ξ) =


(
− ln

[
1−u
1+u

])1/β

1 +

(
− ln

[
1−u
1+u

])1/β


1/b

.

The equation can be further simplified to

G(x; ξ) = 1−

1−


(
− ln

[
1−u
1+u

])1/β

1 +

(
− ln

[
1−u
1+u

])1/β


1/b


1/2

.

Therefore, we obtain quantiles for HLOW-TL-G family of distributions by solving
the equation

x(u) = G−1

1−

1−


(
− ln

[
1−u
1+u

])1/β

1 +

(
− ln

[
1−u
1+u

])1/β


1/b


1/2
 (3.1)

via iterative methods in R or Matlab software. We present some quantiles for selected
parameters values for the HLOW-TL-LLoG distribution in Table 3.1.
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Table 3.1: Table of Quantiles for Selected Parameters of the HLOW-TL-LLoG
Distribution

u (0.5,1,1) (0.8,1,1.5) (1.1,1.5,0.5) (0.5,0.9,0.5) (1,1,0.9)
0.1 0.0143 0.1501 0.0346 0.0001 0.0738
0.2 0.0444 0.2515 0.0780 0.0015 0.1539
0.3 0.0822 0.3372 0.1259 0.0058 0.2358
0.4 0.1254 0.4151 0.1784 0.0150 0.3205
0.5 0.1737 0.4897 0.2371 0.0309 0.4104
0.6 0.2286 0.5648 0.3046 0.0568 0.5092
0.7 0.2936 0.6451 0.3864 0.0983 0.6235
0.8 0.3766 0.7384 0.4949 0.1693 0.7675
0.9 0.5028 0.8670 0.6684 0.3168 0.9845

3.2 Moments and Generating Functions

The HLOW-TL-G family of distributions is a linear combination of the Exp-G dis-
tribution, we, therefore, derive the properties of the HLOW-TL-G family of distri-
butions directly from the Exp-G distribution. Let Hj be an Exp-G distribution with
power parameter j, then the rth ordinary moment of the HLOW-TL-G is given by

µ′r = E(Xr) =
∞∑
j=0

ψjE(Hr
j ), (3.2)

where ψj is the linear component and is given by equation (2.4) and E(Hr
j ) is the

rth moment of the Exp-G distribution. Also, the sth central moment of X is given
by

µs =
s∑
r=0

(
s

r

)
(−µ′1)s−rE(Xr) =

s∑
r=0

∞∑
j=0

ψj

(
s

r

)
(−µ′1)s−rE(Hr

j ).

Furthermore, the rth incomplete moment of X is given by

φr(z) =

∫ z

−∞
xrf(x)dx =

∞∑
j=0

ψj

∫ z

−∞
xrhj(x; ξ)dx, (3.3)

where hj(x; ξ) = (j+1)g(x; ξ)Gj(x; ξ) is and Exp-G distribution with power param-
eter j and

∫ z
−∞ x

rhj(x; ξ)dx is the rth incomplete moment of the Exp-G distribution.
The incomplete moment is used to estimate Bonferroni and Lorenz curves, which
are very useful in reliability, medicine, economics, demography, and insurance.

A table of moments, standard deviation (SD), coefficient of variation (CV), co-
efficient of skewness (CS) and coefficient of kurtosis (CK) for the half logistic odd
Weibull-Topp-Leone-log logistic (HLOW-TL-LLoG) distribution for selected param-
eters values is given in Table 3.2.
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Table 3.2: Moments of the HLOW-TL-LLoG distribution for some parameter
values

(1,0.5,1.5) (1.5,1,0.5) (0.5,0.5,1.5) (1.5,1.5,0.5) (0.5,0.5,1)
E(X) 0.2922 0.2529 0.2746 0.3507 0.2032
E(X2) 0.1820 0.1464 0.1602 0.2059 0.1113
E(X3) 0.1313 0.1016 0.1113 0.1415 0.0754
E(X4) 0.1023 0.0774 0.0846 0.1062 0.0566
E(X5) 0.0836 0.0623 0.0679 0.0844 0.0451
SD 0.3108 0.2871 0.2912 0.2879 0.2646
CV 1.0637 1.1350 1.0602 0.8210 1.3019
CS 0.7195 0.9663 0.8398 0.4650 1.3108
CK 2.1675 2.7209 2.4669 2.0857 3.6237

The moment generating function (mgf) of the HLOW-TL-G family of distributions
is given by

MX(t) = E(etX) =

∞∑
j=0

ψjMj(t),

where Mj(t) is the mgf of the Exp-G distribution with power parameter j.

3.3 Distribution of Order Statistics

The pdf of the ith order statistics can be obtained using the formula given by

fi:n(x) =
f(x)

B(i, n− i+ 1)

n−j∑
j=0

(
n− i
j

)
F (x)j+i−1, (3.4)

where B(., .) is the beta function. Substituting the cdf and pdf of the HLOW-TL-G
family of distributions into equation (3.4) and considering f(x)F (x)j+i−1, we have

f(x)F (x)j+i−1 =
4bβg(x; ξ)G(x; ξ)[1−G2

(x; ξ)]bβ−1 exp
(
−
[ [1−G2

(x;ξ)]b

1−[1−G2
(x;ξ)]b

]β)
(1− [1−G2

(x; ξ)]b)β+1

×

[
1− exp

(
−
[

[1−G2
(x;ξ)]b

1−[1−G2
(x;ξ)]b

]β)]j+i−1
[
1 + exp

(
−
[

[1−G2
(x;ξ)]b

1−[1−G2
(x;ξ)]b

]β)]j+i+1
.

Considering the following expansion[
1 + exp

(
−
[

[1−G2
(x; ξ)]b

1− [1−G2
(x; ξ)]b

]β)]−(j+i+1)

=
∞∑
z=0

(
−(j + i+ 1)

z

)

× exp

(
− z
[

[1−G2
(x; ξ)]b

1− [1−G2
(x; ξ)]b

]β)
,



Half Logistic Odd Weibull-Topp-Leone-G Distribution 9

[
1− exp

(
−
[

[1−G2
(x; ξ)]b

1− [1−G2
(x; ξ)]b

]β)]j+i−1
=

∞∑
w=0

(−1)w
(
j + i− 1

w

)

× exp

(
− w

[
[1−G2

(x; ξ)]b

1− [1−G2
(x; ξ)]b

]β)
and

exp

(
− (z + w + 1)

[
[1−G2

(x; ξ)]b

1− [1−G2
(x; ξ)]b

]β)
=

∞∑
l=0

(−1)l(z + w + 1)l

l!

×
[

[1−G2
(x; ξ)]b

1− [1−G2
(x; ξ)]b

]βl
,

we get

f(x)F (x)j+i−1 =
∞∑

z,w,l=0

4bβ(−1)w+l(z + w + 1)l

l!

(
−(j + i+ 1)

z

)(
j + i− 1

w

)

× g(x; ξ)G(x; ξ)[1−G2
(x; ξ)]bβ(l+1)−1

(1− [1−G2
(x; ξ)]b)β(l+1)+1

.

Also, considering the following expansions

(1− [1−G2
(x; ξ)]b)−(β(l+1)+1) =

∞∑
p=0

(−1)p
(
−(β(l + 1) + 1)

p

)
[1−G2

(x; ξ)]bp,

[1−G2
(x; ξ)]b(βl+β+p)−1 =

∞∑
q=0

(−1)q
(
b(βl + β + p)− 1

q

)
G

2q
(x; ξ)

and

G
2q+1

(x; ξ) =
∞∑
k=0

(−1)k
(

2q + 1

k

)
Gk(x; ξ)

we can write

f(x)F (x)j+i−1 =
∞∑

z,w,l,p,q,k=0

4bβ(−1)w+l+p+q+k(z + w + 1)l

l!

(
−(j + i+ 1)

z

)
×

(
j + i− 1

w

)(
−(β(l + 1) + 1)

p

)(
b(βl + β + p)− 1

q

)
×

(
2q + 1

k

)
g(x; ξ)Gk(x; ξ). (3.5)
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Hence, the distribution of the ith order statistic from the HLOW-TL-G family
of distributions can be obtained from the equation

fi:n(x) =
1

B(i, n− i+ 1)

∞∑
z,w,l,p,q,k=0

n−j∑
j=0

4bβ(−1)w+l+p+q+k(z + w + 1)l

l!

(
n− i
j

)
×

(
−(j + i+ 1)

z

)(
j + i− 1

w

)(
−(β(l + 1) + 1)

p

)(
b(βl + β + p)− 1

q

)
×

(
2q + 1

k

)
g(x; ξ)Gk(x; ξ)

×
∑
k=0

ψ∗khk(x; ξ), (3.6)

where hk(x; ξ) = (k + 1)g(x; ξ)Gk(x; ξ) is the Exp-G distribution with power
parameter k and

ψ∗k =
1

B(i, n− i+ 1)

∞∑
z,w,l,p,q=0

n−j∑
j=0

4bβ(−1)w+l+p+q+k(z + w + 1)l

l!(k + 1)

(
n− i
j

)
×

(
−(j + i+ 1)

z

)(
j + i− 1

w

)(
−(β(l + 1) + 1)

p

)(
b(βl + β + p)− 1

q

)
×

(
2q + 1

k

)
. (3.7)

Therefore, the distribution of the ith order statistic from the HLOW-TL-G
family of distributions can be obtained directly from the Exp-G distribution.

3.4 Probability Weighted Moments

Probability Weighted Moments (PWMs), say φj,i of X∼ HLOW-TL-G (b, β, ξ)
distribution is given by

φj,i = E(XjF (X)i) =

∫ ∞
−∞

xjf(x)F (x)idx.

Using equation (3.5), we can write

f(x)F (x)i =
∞∑

z,w,l,p,q,k=0

4bβ(−1)w+l+p+q+k(z + w + 1)l

l!

(
−(i+ 2)

z

)
×

(
i

w

)(
−(β(l + 1) + 1)

p

)(
b(βl + β + p)− 1

q

)
×

(
2q + 1

k

)
g(x; ξ)Gk(x; ξ).
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Using the properties of the Exp-G distribution the PWMs of the HLOW-TL-G
family of distributions is given by

f(x)F (x)i =
∞∑
k=0

ηkhk(x; ξ),

where

ηk =
∞∑

z,w,l,p,q=0

4bβ(−1)w+l+p+q+k(z + w + 1)l

l!(k + 1)

(
−(i+ 2)

z

)
×

(
i

w

)(
−(β(l + 1) + 1)

p

)(
b(βl + β + p)− 1

q

)
×

(
2q + 1

k

)
and hk(x; ξ) = (k + 1)g(x; ξ)[G(x; ξ)]k is an Exp-G distribution with power
parameter k. Therefore, the PWM of the HLOW-TL-G family of distributions
is given by

φj,i =
∞∑
k=0

ηk

∫ ∞
−∞

xjhk(x; ξ)dx

=
∞∑
k=0

ηkE(Hj
k),

where Hj
k is the jth power of an Exp-G distributed random variable with power

parameter k.

3.5 Entropy

Entropy is a measure of variation of uncertainty for a random variable X
with pdf g(x). There are two famous measures of entropy, namely Shannon
entropy [15] and Rényi entropy [16]. Rényi entropy is defined by

IR(ν) = (1− ν)−1 log

[∫ ∞
0

f ν(x)dx

]
,

where ν > 0 and ν 6= 1. By taking f(x) to be the pdf of the HLOW-TL-G
family of distributions we get

∫ ∞
0

fν(x)dx =

∫ ∞
0

(4bβ)νgν(x; ξ)G
ν
(x; ξ)[1−G2

(x; ξ)](bβ−1)νe

(
−ν
[

[1−G2
(x;ξ)]b

1−[1−G2
(x;ξ)]b

]β)
(1− [1−G2

(x; ξ)]b)(β+1)ν
(
1 + exp

(
−
[ [1−G2

(x;ξ)]b

1−[1−G2
(x;ξ)]b

]β))2ν dx
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By considering the following series expansions(
1 + exp

(
−
[

[1−G2
(x; ξ)]b

1− [1−G2
(x; ξ)]b

]β))−2ν
=

∞∑
z=0

(
−2ν

z

)

× exp

(
− z
[

[1−G2
(x; ξ)]b

1− [1−G2
(x; ξ)]b

]β)
,

exp

(
− (z + 1)

[
[1−G2

(x; ξ)]b

1− [1−G2
(x; ξ)]b

]β)
=
∞∑
w=0

(−1)w(z + 1)w

w!

[
[1−G2

(x; ξ)]b

1− [1−G2
(x; ξ)]b

]βw
,

(1− [1−G2
(x; ξ)]b)−(β(w+ν)+ν) =

∞∑
p=0

(−1)p
(
−(β(w + ν) + ν)

p

)
[1−G2

(x; ξ)]bp,

[1−G2
(x; ξ)]b(βw+βν+p)−ν =

∞∑
q=0

(−1)q
(
b(βw + βν + p)− ν

q

)
G

2q
(x; ξ)

and

G
2q+ν

(x; ξ) =
∞∑
j=0

(−1)j
(

2q + ν

j

)
Gj(x; ξ)

yields∫ ∞
0

f ν(x)dx =
∞∑

z,w,p,q,j=0

(−1)w+p+q+j(z + 1)w

w!

(
−2ν

z

)(
−(β(w + ν) + ν)

p

)
×

(
b(βw + βν + p)− ν

q

)(
2q + ν

j

)[ 1

[j/ν + 1]

]ν
×

∫ ∞
0

[
(j/ν + 1)g(x; ξ)Gj/ν(x; ξ)

]ν
dx.

Therefore, the Rényi entropy of the HLOW-TL-G family of distributions is
given by

IR(ν) = (1− ν)−1 log

[
∞∑
j=0

Φje
(1−ν)IREG

]
, (3.8)

where IREG =
∫∞
0

[
(j/ν+1)g(x; ξ)Gj/ν(x; ξ)

]ν
dx is the Rényi entropy of Exp-G

distribution with power parameter j/ν and

Φj =
∞∑

z,w,p,q=0

(−1)w+p+q+j(z + 1)w

w!

(
−2ν

z

)(
−(β(w + ν) + ν)

p

)
×

(
b(βw + βν + p)− ν

q

)(
2q + ν

j

)[ 1

[j/ν + 1]

]ν
.
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4 Maximum Likelihood Estimation

If Xi ∼ HLOW − TL − G(b, β; ξ) with the parameter vector Ψ = (b, β; ξ)T .
The total log-likelihood ` = `(Ψ) from a random sample of size n is given by

` = n log(4bβ) +
n∑
i=1

log[g(xi; ξ)] +
n∑
i=1

log[G(xi; ξ)]

+ (bβ − 1)
n∑
i=1

log[1−G2
(xi; ξ)]−

n∑
i=1

[
(1−G2

(xi; ξ))
b

1− (1−G2
(xi; ξ))b

]β
− (β + 1)

n∑
i=1

log[1− (1−G2
(xi; ξ))

b]

− 2
n∑
i=1

log

[
1 + exp

(
−
[

(1−G2
(xi; ξ))

b

1− (1−G2
(xi; ξ))b

]β)]
.

The score vector U =
(
∂`
∂b
, ∂`
∂β
, ∂`
∂ξk

)
has elements given by:

∂`

∂b
=

n

b
+ β

n∑
i=1

log[1−G2
(xi; ξ)]−

n∑
i=1

(
(1−G2

(xi; ξ))
b

1− (1−G2
(xi; ξ))b

)β−1
× β(1−G2

(xi; ξ))
b log(1−G2

(xi; ξ))

(1− (1−G2
(xi; ξ))b)2

+ (β + 1)
n∑
i=1

(1−G2
(xi; ξ))

b log(1−G2
(xi; ξ))

1− (1−G2
(xi; ξ))b

+ 2β
n∑
i=1

exp

(
−
[

(1−G2
(xi;ξ))

b

1−(1−G2
(xi;ξ))b

]β)
log[1−G2

(xi; ξ)](
1 + exp

(
−
[

(1−G2
(xi;ξ))b

1−(1−G2
(xi;ξ))b

]β))(
1− (1−G2

(xi; ξ))b
)β+1

×
(
(1−G2

(xi; ξ))(1−G
2
(xi; ξ))

bβ−1),
∂`

∂β
=

n

β
+ b

n∑
i=1

log[1−G2
(xi; ξ)]−

n∑
i=1

log[1− (1−G2
(xi; ξ))

b]

−
n∑
i=1

[
(1−G2

(xi; ξ))
b

1− (1−G2
(xi; ξ))b

]β
log

[
(1−G2

(xi; ξ))
b

1− (1−G2
(xi; ξ))b

]

+ 2
n∑
i=1

exp

(
−
[

(1−G2
(xi;ξ))

b

1−(1−G2
(xi;ξ))b

]β)
log

[
(1−G2

(xi;ξ))
b

1−(1−G2
(xi;ξ))b

]
(1−G2

(xi; ξ))
bβ(

1 + exp

(
−
[

(1−G2
(xi;ξ))b

1−(1−G2
(xi;ξ))b

]β))(
1− (1−G2

(xi; ξ))b
)β ,
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and

∂`

∂ξk
=

n∑
i=1

1

g(xi; ξ)

∂g(xi; ξ)

∂ξk
− 2

n∑
i=1

1

[G(xi; ξ)]

∂[G(xi; ξ)]

∂ξk

− (bβ − 1)
n∑
i=1

1

1−G2
(xi; ξ)

∂
[
1−G2

(xi; ξ)
]

∂ξk
−

n∑
i=1

[
(1−G2

(xi; ξ))
b

1− (1−G2
(xi; ξ))b

]β−1

×
(1−G2

(x; ξ))b ∂[1−(1−G
2
(xi;ξ))

b]
∂ξk

− (1− (1−G2
(xi; ξ))

b)∂(1−G
2
(xi;ξ))

b

∂ξk

(1− (1−G2
(xi; ξ))b)2

− (β + 1)

n∑
i=1

1

1− (1−G2
(xi; ξ))b

∂
[
1− (1−G2

(xi; ξ))
b
]

∂ξk

− 2
n∑
i=1

1[
1 + exp

(
−
[

(1−G2
(xi;ξ))b

1−(1−G2
(xi;ξ))b

]β)] ∂
[
1 + exp

(
−
[

(1−G2
(xi;ξ))

b

1−(1−G2
(xi;ξ))b

]β)]
∂ξk

,

respectively. These partial derivatives are not in closed form and can be solved using
R, MATLAB, and SAS software by the use of iterative methods.

We further obtain the (2+p) × (2+p) Fisher information matrix J(Ψ) with ele-
ments given by

J(Ψ) =

Jbb(Ψ) Jbβ(Ψ Jbξ(Ψ)

Jβb(Ψ) Jββ(Ψ) Jβξ(Ψ)
Jξb(Ψ) Jξβ(Ψ) Jξξ(Ψ)

 , (4.1)

where Ji,j = −∂2`(∆)
∂i∂j , for i, j = b, β, ξ, where ξ is a p component vector, Jξξ(Ψ) is

a p × p matrix, Jbξ(Ψ) and Jβξ(Ψ) has p × 1 components, respectively. We use the
Fisher information matrix to estimate the asymptotic confidence intervals of the
parameters Ψ = (b, β, ξ). Under the usual regularity conditions Ψ̂ is asymptotically
normal distributed, that is Ψ̂ ∼ N(0, I−1(Ψ)) as n −→∞, where I(Ψ) is the expected
information matrix. The asymptotic behaviour remains valid if I(Ψ) is replaced by
J(Ψ̂), the information matrix evaluated at Ψ̂ .

5 Some Special Cases

In this section, we present five special cases of the HLOW-TL-G family of distribu-
tions. We considered cases when the baseline distributions are Burr XII, Uniform,
Power function, Kumaraswamy, and Weibull distributions.
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5.1 Half Logistic Odd Weibull-Topp-Leone-Burr XII
Distribution

Consider the Burr XII distribution as the baseline distribution with pdf and cdf
given by g(x; c, k) = ckxc−1(1+xc)−k−1 and G(x; c, k) = 1−(1+xc)−k, respectively,
for c, k > 0. The cdf and pdf of the half logistic odd Weibull-Topp-Leone-Burr XII
(HLOW-TL-BXII) distribution are given by

FHLOW−TL−BXII (x; b, β, c, k) =

1− exp

(
−
[

[1−(1+xc)−2k]b

1−[1−(1+xc)−2k]b

]β)
1 + exp

(
−
[

[1−(1+xc)−2k]b

1−[1−(1+xc)−2k]b

]β)
and

fHLOW−TL−BXII (x; b, β, c, k) =
4bβckxc−1(1 + xc)−2k−1[1− (1 + xc)−2k]bβ−1

(1− [1− (1 + xc)−2k]b)β+1

×
exp

(
−
[ [1−(1+xc)−2k]b

1−[1−(1+xc)−2k]b

]β)(
1 + exp

(
−
[ [1−(1+xc)−2k]b

1−[1−(1+xc)−2k]b

]β))2 ,
respectively, for b, β, c, k > 0. By setting k = 1 and c = 1, we obtain the half lo-
gistic odd Weibull-Topp-Leone-log logistic (HLOW-TL-LLoG) and the half lo-
gistic odd Weibull-Topp-Leone-Lomax (HLOW-TL-Lx), respectively from the
HLOW-TL-BXII distribution.

Figure 5.1: Plots of the pdf and hrf for the HLOW-TL-BXII distribution

Figure 5.1 shows the pdfs of the HLOW-TL-BXII distribution. The pdf can
take various shapes that include almost symmetric, reverse-J, left, or right-
skewed. Furthermore, the hrfs for the HLOW-TL-BXII distribution exhibit
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increasing, decreasing, reverse-J, bathtub, and upside bathtub followed by
bathtub shapes.

5.2 Half Logistic OddWeibull-Topp-Leone-Uniform Dis-
tribution

By taking the baseline distribution to be a uniform distribution with pdf and
cdf given by g(x) = 1/θ and G(x, θ) = x/θ, respectively, for 0 < x < θ, obtain
the half logistic odd Weibull-Topp-Leone-Uniform (HLOW-TL-U) distribution
with cdf and pdf given by

F
HLOW−TL−U (x; b, β, θ) =

1− exp

(
−
[

[1−(1−x/θ)2]b
1−[1−(1−x/θ)2]b

]β)
1 + exp

(
−
[

[1−(1−x/θ)2]b
1−[1−(1−x/θ)2]b

]β)
and

fHLOW−TL−U (x; b, β, θ) =
4bβ(1− x/θ)[1− (1− x/θ)2]bβ−1

θ(1− [1− (1− x/θ)2]b)β+1

×
exp

(
−
[ [1−(1−x/θ)2]b
1−[1−(1−x/θ)2]b

]β)(
1 + exp

(
−
[ [1−(1−x/θ)2]b
1−[1−(1−x/θ)2]b

]β))2 ,
respectively, for b, β > 0 and , 0 < x < θ.

Figure 5.2: Plots of the pdf and hrf for the HLOW-TL-U distribution

Figure 5.2, shows the pdfs and hrfs of the HLOW-TL-U distribution. The pdfs can
take various shapes that include left or right-skewed and almost symmetric shapes.
The hrf exhibit increasing, decreasing, reverse-J, and bathtub shapes.
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5.3 Half Logistic Odd Weibull-Topp-Leone-Power Dis-
tribution

By considering the power distribution as the baseline distribution with pdf and cdf
given by g(x; θ, k) = kθkxk−1 and G(x; θ, k) = (θx)k, for 0 < x < 1/θ, θ, k > 0,
respectively, we get the Half logistic odd Weibull-Topp-Leone-power (HLOW-TL-P)
distribution with cdf and pdf given by

FHLOW−TL−P (x; b, β, θ, k) =

1− exp

(
−
[

[1−(1−(θx)k)2]b
1−[1−(1−(θx)k)2]b

]β)
1 + exp

(
−
[

[1−(1−(θx)k)2]b
1−[1−(1−(θx)k)2]b

]β)
and

fHLOW−TL−P (x; b, β, θ, k) =
4bβkθkxk−1(1− (θx)k)[1− (1− (θx)k)2]bβ−1

(1− [1− (1− (θx)k)2]b)β+1

×
exp

(
−
[ [1−(1−(θx)k)2]b
1−[1−(1−(θx)k)2]b

]β)(
1 + exp

(
−
[ [1−(1−(θx)k)2]b
1−[1−(1−(θx)k)2]b

]β))2 ,
respectively, for b, β, θ, k > 0.

Figure 5.3: Plots of the pdf and hrf for the HLOW-TL-P distribution

Figure 5.3 shows the pdfs and hrfs for the HLOW-TL-P distribution. The pdf
of the HLOW-TL-P distribution takes various shapes that include left or right-
skewed and reverse-J. The distribution also addresses variation in kurtosis. The
hrf exhibit increasing, J, reverse-J, and bathtub shapes.
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5.4 Half Logistic OddWeibull-Topp-Leone-Kumaraswamy
Distribution

By taking the Kumaraswamy distribution as the baseline distribution with pdf
and cdf given by g(x;α, θ) = αθxα−1(1−xα)θ−1 and G(x;α, θ) = 1− (1−xα)θ,
for α, θ > 0, respectively, we get the Half logistic odd Weibull-Topp-Leone-
Kumaraswamy (HLOW-TL-Kw) distribution with cdf and pdf given by

F
HLOW−TL−Kw(x; b, β, α, θ) =

1− exp

(
−
[

[1−(1−xα)2θ]b
1−[1−(1−xα)2θ]b

]β)
1 + exp

(
−
[

[1−(1−xα)2θ]b
1−[1−(1−xα)2θ]b

]β)
and

fHLOW−TL−Kw(x; b, β, α, θ) =
4bβαθxα−1(1− xα)2θ−1[1− (1− xα)2θ]bβ−1

(1− [1− (1− xα)2θ]b)β+1

×
exp

(
−
[ [1−(1−xα)2θ]b
1−[1−(1−xα)2θ]b

]β)(
1 + exp

(
−
[ [1−(1−xα)2θ]b
1−[1−(1−xα)2θ]b

]β))2 ,
respectively, for b, β, α, θ > 0.

Figure 5.4: Plots of the pdf and hrf for the HLOW-TL-Kw distribution

Figure 5.4 shows the pdfs and hrfs for the HLOW-TL-Kw distribution. The
pdf of the HLOW-TL-Kw distribution take various shapes that include U, left,
or right-skewed. The distribution also addresses variation in kurtosis. The hrf
also exhibit increasing, J, and bathtub shapes.



Half Logistic Odd Weibull-Topp-Leone-G Distribution 19

5.5 Half Logistic OddWeibull-Topp-Leone-Weibull Dis-
tribution

Consider the Weibull distribution as the baseline distribution with pdf and cdf
given by g(x;λ, ω) = λωxω−1e−λx

ω
and G(x;λ, ω) = 1−e−λxω , respectively, for

λ, ω > 0. The cdf and pdf of the half logistic odd Weibull-Topp-Leone-Weibull
(HLOW-TL-W) distribution are given by

F
HLOW−TL−W (x; b, β, λ, ω) =

1− exp

(
−
[

[1−e−2λxω ]b

1−[1−e−2λxω ]b

]β)
1 + exp

(
−
[

[1−e−2λxω ]b

1−[1−e−2λxω ]b

]β)
and

fHLOW−TL−W (x; b, β, λ, ω) =
4bβλωxω−1e−3λx

ω
[1− e−2λxω ]bβ−1

(1− [1− e−2λxω ]b)β+1

×
exp

(
−
[ [1−e−2λxω ]b

1−[1−e−2λxω ]b

]β)(
1 + exp

(
−
[ [1−e−2λxω ]b

1−[1−e−2λxω ]b

]β))2 ,
respectively, for b, β, λ, ω > 0.

Figure 5.5: Plots of the pdf and hrf for the HLOW-TL-W distribution

Figure 5.5 shows the pdfs of the HLOW-TL-W distribution. The pdf can take
various shapes that include J, reverse-J, left, or right-skewed. Furthermore, the
hrfs for the HLOW-TL-W distribution exhibit increasing, decreasing, reverse-
J, J, and bathtub shapes.
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6 Simulation Study

We conducted a simulation study from the HLOW-TL-LLoG distribution to
evaluate the performance of the maximum likelihood estimates. We consider
sample sizes n= 50, 100, 200, 400, 800 and 1000. We simulated for N=1000
for each sample. We estimate the mean, root mean square error (RMSE),
and average bias. We consider simulations for the following sets of initial
parameters values (I : b = 1.0, β = 1.0, c = 1.0), (II : b = 1.5, β = 1.0, c =
1.0), (III : b = 1.0, β = 1.0, c = 1.5) and (IV : b = 1.0, β = 1.5, c = 1.0).
If the model performs better, we except the mean to approximate the true
parameter values, the RMSE, and bias to decay toward zero for an increase in
sample size. From the results in Table 6.1, the mean values approximate the
true parameter values, RMSE and bias decay towards zero for all the parameter
values.

7 Applications

We expose the HLOW-TL-LLoG distribution to two data sets of varying skew-
ness to demonstrate the flexibility of the new model compared to well known
equi-parameter non-nested models. We also compared the HLOW-TL-LLoG
model to its nested models so as to show the flexibility enjoyed by adding the
additional parameters to the baseline distribution. Maximum likelihood esti-
mation technique through the use of R software is used to estimate the model
parameters. The model parameters estimates are reliable and dependable as
supported by the behavior of simulation results. We present model parameters
estimates (standard errors in parenthesis) in Tables 7.1 and 7.2.

Model performance was assessed by utilizing the following goodness-of-fit statis-
tics; -2loglikelihood (-2 log L), Akaike Information Criterion (AIC), Consistent
Akaike Information Criterion (AICC), Bayesian Information Criterion (BIC),
Cramer von Mises (W ∗) and Andersen-Darling (A∗) (see Chen and Balakr-
ishnan [17] for details), Kolmogorov-Smirnov (K-S) statistic (and its p-value).
The best model has smaller values of these statistics and a bigger p-value for
the K-S statistic.

Furthermore, to demonstrate how the HLOW-TL-LLoG model fit the given
data sets, we provide fitted densities and histogram of the data, probability
plots (as described by Chambers et al. [18]). The plots are shown in Figures
7.1 and 7.2.

The HLOW-TL-LLoG model was compared to the following non-nested mod-
els: the Topp-Leone-Marshall-Olkin-log-logistic (TL-MO-LLo) by Chipepa et



Half Logistic Odd Weibull-Topp-Leone-G Distribution 21

Table 6.1: Monte Carlo Simulation Results for HLOW-TL-LLoG Distribution:
Mean, RMSE and Average Bias

I: b = 1.0, β = 1.0, c = 1.0 II: b = 1.5, β = 1.0, c = 1.0
n Mean RMSE Bias Mean RMSE Bias
25 1.198742 0.670467 0.198742 1.475756 0.551835 -0.024245
50 1.194917 0.583723 0.194917 1.546171 0.482082 0.046171
100 1.154124 0.490620 0.154124 1.569252 0.440803 0.069252

b 200 1.091532 0.381202 0.091532 1.562534 0.393072 0.062534
400 1.056788 0.254272 0.056788 1.580414 0.346499 0.080414
800 1.019481 0.155520 0.019481 1.552770 0.285582 0.052770
1000 1.016985 0.130398 0.016985 1.555542 0.263057 0.055542
25 2.496573 3.154074 1.496573 2.092720 3.119717 1.092720
50 2.152205 2.648576 1.152205 2.147152 3.113453 1.147152
100 1.819582 2.197011 0.819582 2.105784 2.872665 1.105784

β 200 1.443098 1.599337 0.443098 1.921575 2.664450 0.921575
400 1.166439 0.743856 0.166439 1.786585 2.231715 0.786585
800 1.042295 0.209920 0.042295 1.506721 1.721239 0.506721
1000 1.032600 0.162442 0.032600 1.420757 1.436552 0.420757
25 1.249829 1.212281 0.249829 1.672248 1.798843 0.672248
50 1.033781 0.768525 0.033781 1.253909 1.112435 0.253909
100 0.980622 0.552889 -0.019378 1.102464 0.796578 0.102464

c 200 0.996824 0.428958 -0.003176 1.052738 0.641138 0.052738
400 0.979565 0.290557 -0.020435 0.971645 0.495546 -0.028356
800 0.997751 0.204238 -0.002249 0.977734 0.400124 -0.022266
1000 0.994521 0.174264 -0.005479 0.962519 0.362166 -0.037481

III: b = 1.0, β = 1.0, c = 1.5 IV: b = 1.0, β = 1.5, c = 1.0
25 1.195559 0.675460 0.195559 1.248401 0.761135 0.248401
50 1.201429 0.591105 0.201429 1.245833 0.678238 0.245833
100 1.149928 0.492230 0.149928 1.191079 0.586957 0.191079

b 200 1.095099 0.389228 0.095099 1.141021 0.494869 0.141021
400 1.055518 0.255139 0.055518 1.103634 0.375530 0.103633
800 1.017853 0.154659 0.017853 1.046501 0.254100 0.046501
1000 1.015717 0.129858 0.015717 1.040563 0.218538 0.040563
25 2.565671 3.337909 1.565671 4.279704 4.956300 2.779704
50 2.230741 2.841546 1.230741 3.698364 4.204864 2.198364
100 1.854389 2.358496 0.854389 3.124294 3.581765 1.624294

β 200 1.485031 1.748237 0.485031 2.572827 2.760514 1.072827
400 1.170215 0.790909 0.170215 2.080880 1.831913 0.580880
800 1.040441 0.209006 0.040441 1.701678 0.829364 0.201678
1000 1.031279 0.161598 0.031279 1.666435 0.810587 0.166435
25 1.886307 1.836478 0.386307 1.398391 1.896065 0.398390
50 1.537226 1.139421 0.037226 1.073266 1.090323 0.073266
100 1.479773 0.832512 -0.020227 1.003176 0.695425 0.003176

c 200 1.492349 0.648865 -0.007651 0.989917 0.544675 -0.010083
400 1.472670 0.438289 -0.027330 0.960574 0.391540 -0.039426
800 1.499363 0.305149 -0.000637 0.987321 0.286160 -0.012679
1000 1.493585 0.260748 -0.006415 0.982431 0.247544 -0.017569
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al. [7], exponentiated Weibull by Pal et al. [19], Marshall-Olkin extended in-
verse Weibull (IWMO) by Pakungwati et al. [20], Marshall-Olkin extended
Weibull (MOEW) by Barreto-Souza and Baukoch [21], Topp-Leone generalized
exponential (TL-GE) by Sangsanit and Bodhisuwan [22], Topp-Leone-Weibull
(TL-W) by Rezaei et al. [23], Weibull-Lomax (WLx) by Jamal et al. [24],
Marshall-Olkin log-logistc (MO-LLoG) distribution by Wenhao [25] and alpha
power Weibull (APW) by Nassar et al. [26] distributions.

f
TL−MO−LLo(x; b, δ, c) =

2bδ2cxc−1(1 + xc)−3

[1− δ̄(1 + xc)−1]3

[
1− δ2[1 + xc]−2

[1− δ̄(1 + xc)−1]2

]b−1
,

for b, δ, c > 0,

f
EW

(x;α, β, δ) = αβδxβ−1e−αx
β

(1− e−αxβ)δ,

for α, β, δ > 0,

f
MOEW

(x;α, γ, λ) =
αγλγxγ−1e−λx

γ

(1− αe−λxω)2
,

for α, γ, λ > 0,

f
TL−GE(x;α, β, λ) = 2αβλe−λx(1−(1−e−λx)β(1−e−λx)βα−1(2−(1−e−λx)β))α−1,

for α, β, λ > 0,

f
TL−W (x; a, b, α) = 2αbaxb−1e−2(ax)

b

[1− e−2(ax)b ]α−1,

f
WLx

(x; a, b, α) = αab(1 + bx)aα−1(1− (1 + bx)−a)α−1 exp

(
−
(

1− (1 + bx)−a

(1 + bx)−a

))
,

for a, b, α > 0,

f
IWMO

(x;α, θ, λ) =
αλθ−λx−λ−1e−(θx)

−λ

[α− (α− 1)e−(θx)−λ ]2
,

for α, θ, λ > 0,

f
MO−LLoG(x;α, β, γ) =

αββγxβ−1

(xβ + αβγ)2
,

for α, β, γ > 0,

f
TL−W (x; a, b, α) = 2αbaxb−1e−2(ax)

b

[1− e−2(ax)b ]α−1,

for a, b, α > 0 and

f
APW

(x;α, β, θ) =
log(α)

(α− 1)
βθxβ−1e−θx

β

α1−e−θxβ ,

for α, β, θ > 0.
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7.1 20 mm Fibers Data

The first real data set was originally reported by Badar and Priest [27], which
represents the strength measured in GPa for single carbon fibers and impreg-
nated at gauge lengths of 1, 10, 20, and 50 mm. Impregnated tows of 100 fibers
were tested at gauge lengths of 20, 50, 150, and 300 mm. Here, we consider
the data set of single fibers of 20 mm in gauge with a sample of size 63. The
observations are: 1.901, 2.132, 2.203, 2.228, 2.257, 2.350, 2.361, 2.396, 2.397,
2.445, 2.454, 2.474, 2.518, 2.522, 2.525, 2.532, 2.575, 2.614, 2.616, 2.618, 2.624,
2.659, 2.675, 2.738, 2.740, 2.856, 2.917, 2.928, 2.937, 2.937, 2.977, 2.996, 3.030,
3.125, 3.139, 3.145, 3.220, 3.223, 3.235, 3.243, 3.264, 3.272, 3.294, 3.332, 3.346,
3.377, 3.408, 3.435, 3.493, 3.501, 3.537, 3.554, 3.562, 3.628, 3.852, 3.871, 3.886,
3.971, 4.024, 4.027, 4.225, 4.395, 5.020.

Table 7.1: Parameter estimates and goodness of fit statistics for various models
fitted for 20 mm fibers data set

Estimates Statistics
Model b β c −2 log L AIC AICC BIC W ∗ A∗ K-S p-value

HLOW-TL-G 1.0354 ×103 0.4888 3.3650 112.0 118.0 118.4 124.4 0.0356 0.2359 0.0620 0.9687
(4.0919 ×10−5) (0.0446) (0.0789)

HLOW-TL-G(1, β, c) 1 0.0535 7.4874 298.3 302.3 302.5 306.6 0.0596 0.3673 0.7088 < 2.2× 10−16

- (0.0372) (5.1761)
HLOW-TL-G(b, 1, c) 58.1839 1 1.8990 117.5 121.5 121.7 125.8 0.0847 0.5826 0.1021 0.5271

(18.2743) - (0.1362)
HLOW-TL-G(b, 2, c) 11.5483 2 1.0346 122.7 126.7 126.9 131.0 0.1276 0.8778 0.0886 0.7054

(1.9126) (0.0787) -
HLOW-TL-G(b, 1, 1) 9.1144 1 1 166.5 168.5 168.6 170.7 0.0683 0.4540 0.2807 9.7330× 10−5

(0.7827) - -
HLOW-TL-G(1, β, 1) 1 0.3306 1 350.2 352.2 352.3 354.4 0.0599 0.3722 0.7566 < 2.2× 10−16

- (0.0224) -
HLOW-TL-G(1, 1, c) 1 1 0.2199 550.8 552.8 552.9 554.9 0.0573 0.3370 0.9483 < 2.2× 10−16

- - (0.0220)
b δ c

TL-MO-LLo 3.8957 102.0401 4.6049 113.7 119.7 120.1 126.2 0.0777 0.4087 0.0873 0.7226
(4.1429) (223.4681) (1.2483)

α β δ
EW 2.2849 0.9279 353.02 113.6 119.6 120.0 126.0 0.0731 0.3790 0.0931 0.6452

(0.1999) (0.0839) (4.5861 ×10−4)
a b α

TLW 0.5401 1.4541 37.1349 112.6 118.6 119.0 125.1 0.0519 0.2976 0.7989 < 2.2× 10−16

(0.3363) (0.7596) (79.2830)
WLx 0.2653 3.8260 10.3247 121.9 127.9 128.3 134.4 0.1124 0.7839 0.0801 0.8138

(0.2261) (9.1950) (7.0369)
α β λ

TLGE 3.5721 17.5657 1.1719 112.8 118.8 119.2 125.2 0.0641 0.3399 0.0819 0.7917
(18.7661) (84.6400) (0.5386)

α λ θ
IWMO 10.3319 7.9024 0.4538 113.7 119.7 120.2 126.2 0.0736 0.3935 0.0826 0.7829

(12.4659) (1.1449) (0.0485)
α γ λ

MOEW 0.0266 8.3560 0.2158 115.0 121.0 121.4 127.4 0.0770 0.4520 0.0883 0.7093
(0.0415) (1.0019) (0.0328)

α γ λ
MO-LLoG 2.4200 8.6457 6.2842 115.7 121.7 122.1 128.1 0.0889 0.5018 0.0907 0.6777

(0.0815) (0.8902) (0.0036)
α β θ

APW 0.0153 6.1786 1.8016 ×10−4 118.3 124.3 124.7 130.8 0.0915 0.6216 0.0896 0.6928
(0.0314) (5.3276 ×10−5) (9.2507 ×10−5)

The estimated variance-covariance matrix is given by 1.6743× 10−9 9.2982× 10−7 −3.2184× 10−6

9.2982× 10−7 1.9895× 10−3 −1.5271× 10−3

−3.2184× 10−6 −1.5271× 10−3 6.2324× 10−3
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Figure 7.1: Fitted pdfs and probability plots for 20 mm fibers data set

and the 95% confidence intervals for the model parameters are given by
b ∈ [1.0354 × 103 ± 8.0202 × 10−5], β ∈ [0.48880 ± 0.0874] and c ∈ [3.3650 ±
0.1547].

The HLOW-TL-LLoG model has the smallest values of the goodness-of-fit
statistics and a bigger p-value for the K-S statistic. We, therefore, con-
clude that the HOW-TL-LLoG model performs better than the selected equal-
parameter non-nested models on 20 mm fibers data set. We also conduct a
likelihood ratio test in Section 7.3 to test if the full model performs better than
the nested models. From the fitted densities, we can see the flexibility shown
by the HLOW-TL-G distribution in addressing skewness in the data set.

7.2 Failure Times Data

The second data set represent failure times (per 1000h) of 50 components. The
data is from Murthy et al. [28] and was also analyzed by Oluyede et al. [29].
The data are 0.036, 0.148, 0.590, 3.076, 6.816, 0.058, 0.183, 0.618, 3.147, 7.896,
0.061, 0.192, 0.645, 3.625, 7.904, 0.074, 0.254, 0.961, 3.704, 8.022, 0.078, 0.262,
1.228, 3.931, 9.337, 0.086, 0.379, 1.600, 4.073, 10.940, 0.102, 0.381, 2.006,
4.393, 11.020, 0.103, 0.538, 2.054, 4.534, 13.880, 0.114, 0.570, 2.804, 4.893,
14.73, 0.116, 0.574, 3.058, 6.274, 15.08.
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Table 7.2: Parameter estimates and goodness of fit statistics for various models
fitted for failure times data set

Estimates Statistics
Model b β c −2 log L AIC AICC BIC W ∗ A∗ K-S p-value

HLOW-TL-G 3.0026 0.1995 1.4429 200.2 206.2 206.7 211.9 0.1095 0.7121 0.1029 0.6279
(0.6260) (0.1342) (0.8462)

HLOW-TL-G(1, β, c) 1 0.1295 2.1908 219.0 223.0 223.3 226.9 0.1998 1.2658 0.2192 0.0137
- (0.0774) (1.3009)

HLOW-TL-G(b, 1, c) 2.7245 1 0.3433 204.4 208.4 208.7 212.3 0.1495 0.9398 0.1448 0.2225
(0.2960) - (0.0337)

HLOW-TL-G(b, 2, c) 2.5561 2 0.1737 205.5 209.5 209.7 213.3 0.1564 0.9838 0.1414 0.2461
(0.1486) (0.0190) -

HLOW-TL-G(b, 1, 1) 7.3622 1 1 724.9 726.9 727.0 728.8 0.1072 0.7628 0.4427 1.9130 ×10−9

(0.3414) - -
HLOW-TL-G(1, β, 1) 1 0.2734 1 222.1 224.1 224.1 226.0 0.1713 1.0903 0.2526 0.0027

- (0.0220) -
HLOW-TL-G(1, 1, c) 1 1 0.2099 313.7 315.7 315.8 317.6 0.1639 1.0195 0.5853 8.8820 ×10−16

- - (0.0205)
b δ c

TL-MO-LLo 0.1376 2984.40 3.1222 206.0 212.0 212.5 217.7 0.1485 1.0015 0.1569 0.1529
(0.0195) (2.2197 ×10−5) (0.1872)

α β δ
EW 5.7282 0.1099 201.02 208.7 214.7 215.2 220.4 0.2095 1.2940 0.1596 0.1404

(0.1672) (0.0111) (8.4065 ×10−4)
a b α

TLW 0.1180 0.7706 0.7845 204.7 210.7 211.2 216.4 0.1553 0.9870 0.2944 0.0002
(0.1421) (0.9927) (1.5466)

WLx 5.9651 0.0379 0.5193 203.2 209.2 209.8 215.0 0.1317 0.8815 0.1441 0.2274
(15.5413) (0.1127) (0.0975)

α β λ
TLGE 1.4914 ×103 7.2545 ×10−3 0.0414 202.7 208.7 209.3 214.5 0.1461 0.9050 0.1257 0.3770

(7.1220 ×10−9) (7.9852 ×10−4) (0.0145)
α λ θ

IWMO 6.6220 0.8209 10.4626 208.5 214.5 215.0 220.2 0.2109 1.2973 0.1410 0.2492
(6.9473) (0.1264) (8.7858)

α γ λ
MOEW 0.6042 8.7273 0.2650 204.4 210.4 211.0 216.2 0.1528 0.9525 0.1147 0.4912

(0.5532) (0.1396) (0.1934)
α γ λ

MO-LLoG 0.3938 0.9108 2.6172 211.0 217.0 217.5 222.7 0.2138 1.3281 0.1355 0.2910
(0.1182) (0.1033) (0.0195)

α β θ
APW 0.6459 0.6886 0.4664 206.6 210.6 211.1 216.3 0.1525 0.9535 0.1219 0.4138

(0.7955) (0.1037) (0.2147)

The estimated variance-covariance matrix is given by 0.3918 0.0114 −0.0908
0.0114 0.0180 −0.1123
−0.0908 −0.1123 0.7159


and the 95% confidence intervals for the model parameters are given by
b ∈ [3.0026± 1.2269], β ∈ [0.1995± 0.2631] and c ∈ [1.4429± 1.6585].

Also, from the second example, we can conclude from the HLOW-TL-LLoG
model performs than the selected non-nested models since the HLOW-TL-
LLoG distribution has lower values for the goodness-of-fit statistics. We, there-
fore, recommend researchers to use the HLOW-TL-LLoG distribution in case
of skewed data other than classical distributions or other generalizations of
this classical distribution.
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Figure 7.2: Fitted pdfs and probability plots for failure times data set

7.3 Likelihood Ratio Test

We present the results of the Likelihood ratio test for testing if the HLOW-
TL-LLoG model performs better than its nested models. We conclude from
the values of the χ2 shown in Table 7.3 at 5% level of significance that the
HLOW-TL-LLoG model performs better than its nested models on the two
data sets considered in this paper.

Table 7.3: Likelihood Ratio Test Results

20 mm Fibers Data Failure Times Data
Model χ2 (p-value) χ2 (p-value)
HLOW-TL-G(1, β, c) 186.3 (< 0.00001) 18.8 (0.00002)
HLOW-TL-G(b, 1, c) 5.5 (0.19016) 4.2 (0.04042)
HLOW-TL-G(b, 2, c) 10.7 (0.00107) 5.3 (0.02133)
HLOW-TL-G(b, 1, 1) 54.5 (< 0.00001) 524.7 (< 0.00001)
HLOW-TL-G(1, β, 1) 238.2 (< 0.00001) 21.9 (0.00002)
HLOW-TL-G(1, 1, c) 438.8 (< 0.00001) 113.5 (< 0.00001)

8 Concluding Remarks

A new family of distributions referred to as the half logistic odd Weibull-Topp-
Leone-G (HLOW-TL-G) family of distributions is developed. We derive the
statistical properties of the proposed family of distributions. The new family
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of distributions can be expressed as a linear combination of Exp-G distribu-
tion. We derive maximum likelihood estimates of the HLPW-TL-G family of
distributions. A simulation study on the HLOW-TL-LLoG distribution is also
conducted to assess the consistency of the likelihood estimates. The HLOW-
TL-LLoG distribution was applied to two real data examples and compared
to several equal-parameter non-nested models. The HLOW-TL-LLoG distri-
bution performed better than the selected non-nested models on the two data
sets considered in this paper.
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