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Abstract. This paper presents a new radial basis collocation
method to obtain the approximate solution and approximate de-
rivative of the solution for pantograph Volterra integro-differential
equations. The method is based on an explicit interpolation for-
mula of Gaussian radial basis functions. The proposed technique
provides a simple, efficiant and stable algorithm which yields accu-
rate resultls. Numerical experiments are included and the results
are compared with analytical solution and with those of standard
radial basis collocation method and spectral method to confirm the
accuracy and efficiency of the new scheme.

1. Intorduction

Radial basis functions (RBFs) have been considered for solving par-
tial differential equations in three decades ago [1, 2, 3]. They are ap-
propriate choice to more traditional methods such as finite differences
and finite elements methods. Part of their attractiveness returns to the
fact that without orthogonality and complicated forms of other inter-
polants, it is able to approximate the functions with high(exponential)
accuracy and fast rate of convergence [1]. Some other practical interests
in RBFs methods are due to: (i) ability to handle data in multiple di-
mensions; (ii) flexibility in the node and centers locations; (iii)They are
truly meshless methods; (iv) The RBFs collocation points can be de-
fined with any interval because RBFs are defined in the whole real line
[4]. However there have been some challenges with RBFs approaches.
In their standard formulation, RBFs methods often involve the solution

2010 Mathematics Subject Classification. Primary 47A55; Secondary 39B52,
34K20, 39B82.

Key words and phrases. Radial basis function, shape parameter, meshless
method.

∗ corresponding author:ghorbanzadeh imamreza@yahoo.com
1



2 M. GHORBANZADEH AND O. R. N. SAMADI

of linear systems whose system matrices usually are full and severely
ill-conditioned, specially, if certain popular RBFs such as Gaussians
or inverse multiquadrics are used with small values of their associated
shape parameter. To be more precise, the challenges as mentioned in
[5] are: serious numerical ill-conditioning for a fixed N (the number of
collocation points or basis functions) and small shape parameter, sim-
ilar ill-conditioning problems for a fixed shape parameter and large N .
Also in [6] it has been proved that, if the shape parameter tends to zero
then RBFs interpolation is equivalent to polynomial interpolation on
the same nodes; hence in such a flat limit case the RBFs approximation
suffers of Rung phenomenon. Some of various techniques which have
been done to deal with the above difficulties include changing the basis
of the approximation space, using techniques from complex analysis ,
applying contour-integral approach and using specialized precondition-
ers to the system matrix, see [7, 8] and references therein. In [9] the
authors exploited a connection between Gaussian RBFs (GRBFs) and
polynomials using standard tools of potential theory which provides a
simple explicit interpolation formula through the use of some cardinal
functions, so the difficulty of inverting the associated matrix can be
avoided. Furthermore they obtained stable nodes that can prevent the
Runge phenomenon and enable stable approximations.
It is only recently that the integral equations have been considered
with the standard RBFs methods [10, 11, 12]. In contrast collocation
schemes have been investigated for solving the delay integral and dif-
ferential equations for a long time [13, 14, 15, 16, 17, 18, 19, 20]. To
our best of knowledge nobody accomplished solving the delay Volterra
integro-differential equations of pantograph type with a RBFs colloca-
tion method. This paper considers the following Pantograph Volterra
Integro-Differential Equation (PVIDE) in bounded domain

y′(t) = g(t) + a(t)y(t) + b(t)y(qt) +

∫ t

0

K0(t, s)y(s)ds

+

∫ qt

0

K1(t, s)y(s)ds, t ∈ [0, T ], 0 < q < 1, (1.1)

y(0) = ȳ0, (1.2)

For implementation of a high accuracy RBFs method, we assume the
functions a(t), b(t), g(t), K0(t, s) andK1(t, s) to be sufficiently smooth
on their domains.
The PVIDEs are models of evolutionary problems with memory and
have many applications such as the population dynamics, infectious
diseases and chemical kinetics (see, e.g. , [21] and references therein).
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Also to study the existence, uniqueness and regularity of solutions of
(1.1) and (1.2), see [15].
There are some existing numerical methods for PVIDEs. In [22] the
authors proposed a collocation method using piecewise polynomials,
and analyzed the global and local orders of superconvergence of the
collocation solutions for (1.1) and (1.2). Also in [23] the author applied
a Legendre spectral method and analyzed the exponential convergence
of the method where K0 and K1 are convolution. Our aim throughout
this paper is to establish some results of the paper [9] on the [0, T ],
specially the Gaussian RBF (GRBF) explicit interpolation formula.
Then by employing of these results we offer a new Gaussian collocation
method (NGCM) to approximate the solutions of the PVIDEs (which
are often stiff and have oscillation on the related domain) and their
first derivatives. Also we analyze how the problem parameters q and
T and the parameters in our method i.e. N (number of basis functions
or collocation points) and the shape parameter should be selected and
how susceptible the approximations are to changes in the parameters.
In addition in order to challenge the NGCM, we compare with the
standard RBFs collocation methods and a spectral collocation method
[24].
The following sections of this paper are structured as follows: in section
2 we describe the properties of radial basis functions and establish the
GRBF explicit interpolation formula. The NGCM is implemented in
section 3. To support our findings, we present results of numerical
experiments in section 4. The conclusions are discussed in the final
section.

2. Basic knowledge about RBFs

In this section, we collect some well-known definitions and properties
from [9, 25] which we shall utilize throughout the paper.

Definition 2.1. Let Πm denotes the subspace of C(Rd) consisting of
all algebraic polynomials of degree less than m on Rd and ϕ : Rd → R
be a continuous function. We say that ϕ is conditionally positive def-
inite of order m ∈ N if for every finite set of pairwise distinct points
X = {ξ1, · · · , ξN} ⊆ Rd and for every α = (α1, · · · , αN) ∈ RN \ 0 sat-
isfying

N∑
j=1

αjp(ξj) = 0, p ∈ Πm,
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the quadric form

N∑
i=1

N∑
j=1

αiαjϕ(ξi − ξj)

is positive definite.

Definition 2.2. A function ϕ : Rd → R is radial in the sense that
ϕ(t) = φ(r), where r = ∥t∥ and ∥ · ∥ is the usual Euclidean norm.
RBFs fall into two main classes: infinitely smooth and including a free
parameter (shape parameter), such as multiquadrics (φ(r) =

√
r2 + c2)

and Gaussians (φ(r) = e−
r2

c2 ); and piecewise smooth and parameter
free, such as cubics (φ(r) = r3) and thin plate splines (φ(r) = r2 ln r).

2.1. Standard RBF (SRBF) interpolation. Let f : Rd → R be a
continuous function and given a set of distinct points(centers)
X = {ξ0, · · · , ξN} in Ω ⊆ Rd. Interpolation of f on X using RBFs
usually takes the following form

INf =
N∑
n=0

λnϕ(t− ξn) +
l∑

m=1

αmpm(t), (2.1)

where {pm}lm=1 is a basis for ΠM and λ′s and α′s are coefficients to be
determined.
Equation of (2.1) can be written without the additional polynomial
term. In that case ϕ must be unconditionally positive definite to en-
sure the solvability of the resulting system. (e.g. Gaussian or inverse
multiquadric) [26]. Hence (2.1) can be presented as follow

INf =
N∑
n=0

λnϕ(t− ξn), (2.2)

Let the expansion coefficient vector λ be λ = [λ0, · · · , λn]T then from
interpolation conditions INf(tn) = f(tn), n = 0, · · · , N we reach a
system of linear equations that can be displayed in matrix form as

Φλ = F, (2.3)

where F = [f(t0), · · · , f(tN)]T , Φij = ϕ(ti − ξj) and {ti}Ni=0 are the
interpolation points.
Note that for all infinitely smooth RBFs the coefficient matrix Φ in
(2.3) is nonsingular [1]. So the unique interpolant of the form (2.2) can
be obtained.
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2.2. New GRBFs interpolation. For providing an explicit interpo-
lation formula based on the GRBFs in (2.2) we choose d = 1 and
centers ξn = hn, n = 0, 1, · · · , N, h = T

N
on [0, T ]. Therefor the

GRBF approximation is

INf =
N∑
n=0

λne
−
(

t−hn
c

)2

= e−
t2

c2

N∑
n=0

λne
−h2n2

c2 e
2tnh
c2 , (2.4)

following [9], we let β = 2h
c2

= 2T
Nc2

and apply the transformation

s = eβt, s ∈ [1, eβT ],

to find that

G(s) = INf
( log s
β

)
= e−

N log2 s
2Tβ

N∑
n=0

λ̃ns
n = ψNβ (s)

N∑
n=0

λ̃ns
n, (2.5)

Where the λ′s are independent of s.
From (2.5) it is clear that G

ψN
β
is a polynomial of degree no greater than

N . If F is chosen by interpolation to a given f at N + 1 points, then
we have following theorem in the complex plane z = t+ iy.
Theorem: suppose that f is analytic in a closed simply connected region
R that lies inside the strip − π

2β
< Im(z) < π

2β
and that C is simple,

closed and rectifiable curve that lies in R and contains the interpolation
points t0, t1, · · · , tN . Then the remainder of the GRBF interpolation
for f at t can be represented as the contour integral

f(t)− INf(t) =
βηN(t)

2πi

∫
C

f(z)eβz

ηN(z)(eβz − eβt)
dz,

where

ηN(t) = e−
Nβ
2T

t2
N∏
k=0

(eβt − eβtk).

Proof. Consider the conformal map w = eβz and let g(s) = f
(
log s
β

)
.

Under this transformation, the region R is mapped to a closed simply
connected region that lies in the half-plane Re(w) > 0. Thus g

ψN
β

is

analytic in this region in the w-plane, and we can use the Hermite
formula for the error in polynomial interpolation [27],

g(s)−G(s) = ψNβ (s)
( g(s)

ψNβ (s)
−

N∑
k=0

λ̃ks
k
)

=
ψNβ (s)

∏N
k=0(s− sk)

2πi

∫
C

g(w)

(w − s)ψNβ
∏N

k=0(w − sk)
dw,
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where sk = eβtk and C is the image of C in the w-plane. A change of
variables completes the proof. □

Using above theorem and if we let µ be the limiting node density
function [28] of nodes on[0, T ] and defining the logarithmic potential
function as follow

µβ(z) =
β

2T
Re(z2)−

∫ T

0

log(|eβz − eβt|)µ(t)dt,

similar to [9] by applying standard potential theory one can prove that
the GRBF interpolant converges exponentially to the target function
on [0, T ] under some conditions.
Now we define an explicit interpolation formula through the following
Gaussian cardinal functions

Ln(t) = e−
Nβ
2T

(t2−t2n)
N∏
j=0

j ̸=n

eβt − eβtj

eβtn − eβtj
, (2.6)

It is easy to verify that Ln(tn) = 1, Ln(tj) = 0, j ̸= n and by (2.5),

Ln(t) ∈ span{e−
(t−ξn)2

c2 }. So we can write the unique GRBF interpolant
as

INf(t) =
N∑
n=0

f(tn)Ln(t), (2.7)

3. New Gaussian collocation method (NGCM)

Consider the PVIDE given in (1.1) and (1.2). At first, for ease of
applying the NGCM we restate the initial condition (1.2) as

y(t) = y0 +

∫ t

0

y′(s)ds, (3.1)

so without integration both sides of (1.1) one can approximate the y(t)
and y′(t) using the NGCM naturally. This idea has been used in some
literature [24, 29].
In order to acquire a computationally form of the collocation equations
(1.1) and (3.1), we declare yN and y′N on [0, T ] by (2.7) as

yN = INy(t) =
N∑
k=0

ykLk(t), yk = y(tk), (3.2)

y′N = INy
′(t) =

N∑
k=0

y′kLk(t), y′k = y′(tk), (3.3)
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with

Lk(t) =
N∏
j=0

j ̸=k

=
e−

β
2T

(t2−t2k)(eβt − eβtj)

eβtk − eβtj
, k = 0, 1, · · · , N, (3.4)

which is a simple modification of (2.6) that improves the accuracy of
approxmitions.

As on outcome of the above notations, the collocation equations (1.1)
and (3.1) at the collocation points {ti}Ni=0 turn to

y′i = g(ti) + a(ti)yi + b(ti)yN(qti) +

∫ ti

0

K0(ti, s)yN(s)ds+∫ qti

0

K1(ti, s)yN(s)ds

yi = y0 +

∫ ti

0

y′N(s)ds, i = 0, 1, · · · , N. (3.5)

Now we change the integration intervals to [0, T ] using the following
transformations

s = si(θ) =
ti
T
θ, s = sqi (θ) =

qti
T
θ.

Therefor the above equations become

yi = g(ti) + a(ti)y(ti) + b(ti)yN(qti) +
ti
T

∫ T

0

K0

(
ti, si(θ)

)
yN

(
si(θ)

)
dθ

+
qti
T

∫ T

0

K1

(
ti, qsi(θ)

)
yN

(
qsi(θ)

)
dθ,

yi = y0 +
ti
T

∫ T

0

y′N
(
si(θ)

)
dθ, i = 0, 1, · · · , N.

(3.6)

After applying the (3.2) and (3.3) we have

y′i = g(ti) + a(ti)yi + b(ti)
N∑
k=0

Lk(qti)yk +
ti
T

N∑
k=0

(∫ T

0

K0

(
ti, si(θ)

)
Lk

(
si(θ)

)
dθ
)
yk

+
qti
T

N∑
k=0

(∫ T

0

K1

(
ti, qsi(θ)

)
Lk

(
qsi(θ)

)
dθ
)
yk,

yi = y0 +
ti
T

N∑
k=0

(∫ T

0

Lk
(
si(θ)

)
dθ
)
y′k, i = 0, 1, · · · , N.

(3.7)
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In order to acquire a succinct notation for the above linear algebraic
equations, we introduce the matrices and vectors

ȲN = [ȳ0, · · · , ȳ0]T , Yn = [y0, · · · , yN ]T , Y ′
N = [y′0, · · · , y′N ]T ,

GN = [g(t0), · · · , g(tN)]T ,
DN = diagonal

(
a(t0), · · · , a(tN)

)
, Aq1,N =

(
b(ti)Lk(qti)

)
0≤i,k≤N ,

A2,N =
( ti
T

∫ T

0

K0

(
ti, si(θ)

)
Lk

(
si(θ)

)
dθ
)
0≤i,k≤N

,

Aq3,N =
(qti
T

∫ T

0

K1

(
ti, qsi(θ)

)
Lk

(
qsi(θ)

)
dθ
)
0≤i,k≤N

,

A4,N =
( ti
T

∫ T

0

Lk
(
si(θ)

)
dθ
)
0≤i,k≤N

.

So the corresponding system of linear algebraic equations (3.7) take
the following form

Y ′
N = GN + (Dn + Aq1,N + A2,N + Aq3,N)YN ,

YN = ȲN + A4,NY
′
N . (3.8)

We expose (3.8) in a compact form as follow[
BN −IN
IN −A4,N

] [
YN
Y ′
N

]
=

[
−GN

ȲN

]
, (3.9)

where BN = DN + Aq1,N + A2,N + Aq3,N and IN denotes the identity
matrix.
In this way, a linear algebraic system is acquired which can be solved
with an appropriate method and yield the unknown vectors YN and
Y ′
N .

To accelerate solving the linear algebraic system (3.9) one can approxi-
mate the integral terms in (3.7) by a suitable and high accurate numer-
ical integration method such as (N+1)-points Gauss-Legendre, Gauss-
Radau or Gauss-Lobatto quadrature formula concerning the Legendre
weight.

4. Numerical results

In this section, we consider two oscillatory PVIDEs, to verify the
performance of the NGCM. We numerically investigate how the se-
lection of the parameters q, T,N and β can affect the accuracy and
efficiency of the presented method. The domains size and the value of
q determine number of oscillations of the exact solution, so we choose
T,N and β in such a way that we can achieve the most accurate results
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for a given q.
The Gauss-Chebyshev nodes on [0, T ] are used as the collocation points
for the NGCM and the CSCM. For many problems, a Chebyshev distri-
bution of nodes is a good choice [30]. Also we use the Legendre-Gauss
nodes for the LSCM.
We need the following criterions for studying the convergence behavior
of the presented method.

(i) Absolute error:

Abr = |y(t)− yN(t)|,
(ii) The point-wise L∞ error:

LN = MaxNi=0{Abr(ti)},
where {ti}Ni=0 is the set of collocation points.

(iii) The condition number of the coefficient matrix of the discretiza-
tion method:

Ks(A) = ∥A∥s · ∥A−1∥s, s = 2,∞.

All computations are run on a Microsoft PC 32-bit AMD, Dual Core
with 2.70 GHz of CPU and 4GB RAM. Also we use Maple 18 software
for solving the linear algebraic systems directly by the LinearSolve
command. In addition, for counteracting influence of rounding errors
all calculations are performed using 50 digits precision.

Example 4.1. For the first example we consider the following PVIDE

y′(t) = g(t) + Cos(t)y(t) + Sin(t)y(qt) +

∫ t

0

tsy(s)ds+∫ qt

0

(t− s)y(s)ds, t ∈ [0, T ], (4.1)

where

g(t) =
Cos( t

q
)

q
− Cos(t)Sin

( t
q

)
− Sin2t− q2tSint− q2tSin

( t
q

)
+ qt2Cos

( t
q

)
− qt− q2tCos(t) + q2Sint+ qtCos(t),

and the exact solution is Sin
(
t
q

)
.

At first we let q = 1 and T = π and solve eq. (4.1) using the stan-
dard Gaussian collocation method (SGCM), the standard inverse mul-
tiquadrid collocation method (SIMCM) and the NGCM. We compare
the methods for different values of N . We increase c for the standard
methods. Therefor from the relation β = 2T

Nc2
, β varies with N for
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(a) LN (yN ) (b) LN (y′N )

Figure 1. Comparision between standard RBF meth-
ods and NGCM for T = π and q = 1.

the NGCM. By using this relation we compare the NGCM and the
SGCM, specifically. Numerical results are displayed in Table 1, fig. 1
.The results show that the convergence rate of NGCM is much faster
than the standard methods. Also we see that the condition number
which relates to the standard methods grows rapidly that is not the
case for the NGCM. Moreover we observe an instable manner in the
SGCM as N and c increase. The situation gets worse for the stan-
dard methods when q < 1. The convergence does not happen due to
severe ill-conditioning of the standard methods. The ill-conditioning
makes them too sensitive to small changes in q. if we let T ≤ 1 for
a given q near to 1 and T ≤ 0.5 for q ≤ 0.5 the results get better to
some extent, but even in these cases the exponential convergence can
not be obtained and the results are very poor. Perhaps if we apply
an appropriate expensive technique to overcome the ill-conditioning,
performance of the standard methods gets better, however with the
NGCM without using any technique we can achieve excellent results
even if we let q ≤ 0.1.

Now we solve equ. (4.1) with the NGCM for q = 0.1 where T = π
and β = 0.5, also for q = 0.1 where T = π and β varies with N
and compare the results with those obtained with the LSCM and the
CSCM. The obtained results are shown in Table 2 for different values of
N . We observe that for the NGCM when we vary β with N the point-
wise L∞ error decreases more rapidly than while the β is fixed. Also
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Figure 2. Behavior of the NGCM in terms of the point-
wise L∞ error versus β for N = 12, q = 0.5 and T = π

it can be seen that the NGCM gives better results than the spectral
method while the condition number is relatively small and does not
grow in like manner to the spectral method. For the spectral method
we run the Maple program several times to obtain the results, whereas
the exponential convergence is achievable easily by using the NGCM
with relatively large N . So, one can conclude that the spectral method
is more sensitive than the NGCM with respect to q.
Next, we apply the NGCM to approximate the solution of equ. (4.1)
for fixed N = 18 and different values of β when q = 0.1 and T = π.
The numerical results are shown in Table 3. Also fig. 2 displays the
behavior of the NGCM in terms of the point-wise L∞ error versus β
for N = 12, q = 0.5 and T = π. Actually we use the Trial & Error
technique which is composed of varying β and selecting the optimal
parameter as the one that causes the minimum point-wise L∞ error.
It can be seen from Table 3 and the figure that one can improve the
accuracy without extra computations.
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(a) Abr(yN ) (b) Abr(y′N )

Figure 3. Absolute errors for N = 42, q = 0.1, β = 0.1
and T = π

(a) Abr(yN ) (b) Abr(y′N )

Figure 4. Absolute errors for N = 50, q = 0.05, β =
0.8 and T = 0.7π.
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Table 3. Numerical results of ex.1 when N = 18, q =
0.1, T = π and different β.

β 3 2 1 0.5 0.3 0.1 0.05 0.01 0.003 0.00005
LN(yN) 7.29e− 1 3.01e− 2 1.69e− 3 3.97e− 4 2.03e− 3 1.85e− 2 2.95e− 2 4.39e− 2 4.72e− 2 4.87e− 2
LN(y

′
N) 5.50e− 1 9.60e− 2 3.65e− 3 9.74e− 4 5.08e− 3 3.00e− 2 4.94e− 2 7.92e− 2 8.65e− 2 8.97e− 2

Cond2 12262 3670 2379 2380 2381 2381 2381 2381 2381 2381
Cond∞ 45935 15331 10451 40453 10454 10455 10455 10455 10455 10455

In order to show the high performance of the NGCM on the whole
domain, we plot the absolute errors for N = 42, q = 0.1, β = 0.1 and
T = π in fig. 3 . Also fig. 4 presents the absolute errors for N = 50,
q = 0.05, β = 0.8 and T = 0.7π.

Example 4.2. The second example is as follow

y′(t) = g(t) + ty(t) + e−q
2ty(qt) +

∫ t

0

Cos
(
q(t− s)

)
y(s)ds+∫ qt

0

q(t− s)y(s)ds, t ∈ [0, T ], (4.2)

where g(t) is given such that the exact solution to be eqtCos
(
t
q

)
.

At first we solve this example for q = 0.01 and β = 0.7 where T is
π
4
and π

5
to verify impact of the domains size on the accuracy of the

presented method, where the variation of T is only 0.157. The results
for different values of N are displayed in fig. 5. We see that for the
smaller value of T the results are more accurate. Also in order to see
how susceptible the GNCM is to the selection of β, we solve the equ.
(4.2) for q = 0.01, β = 1.5 and T = π

5
and compare the results with

those obtained for β = 0.7, which is depicted in fig. 6. In addition
for q = 0.01, β = 1.5, T = π

5
and N = 55 we compare the numerical

results yN and y′N and the exact solutions y and y′ which are shown
in fig. 7. Furthermore the absolute error of yN and y′N are plotted in
fig. 8 respectively. These results show the flexibility and capability of
the NGCM for solving such oscillatory problem with high oscillation.
However the spectral method fails to converge when q = 0.01 and
T = π

5
. Although for T ≤ π

7
the situation gets better but the obtained

results are poor and the exponential convergence can not be acquired.
Next, for q = 0.09 and T = π we solve the equ. (4.2), when β varies
with N . The numerical results are reported in Table 4. From the
Table it can be seen that the exponential convergence is achievable.
A comparison between the exact solutions and the numerical solutions
when N = 52 and β = 0.4 is depicted in fig. 9.
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(a) LN (yN ) (b) LN (y′N )

Figure 5. Behavior of the NGCM in terms of the point-
wise L∞ error versus N for q = 0.01 and β = 0.7.

(a) LN (yN ) (b) LN (y′N )

Figure 6. Behavior of the NGCM in terms of the point-
wise L∞ error versus N for q = 0.01 and T = π

5
.

Table 4. Numerical results of ex.2 when β varies with
N and q = 0.09, T = π.

N 16 22 28 34 40 46 52
β 1 0.9 0.8 0.7 0.6 0.5 0.4

LN(yN) 1.69e− 1 2.75e− 4 7.68e− 6 3.60e− 8 6.38e− 11 2.05e− 14 2.67e18
LN(y

′
N) 5.90e− 1 7.50e− 4 1.25e− 5 7.23e− 8 9.23e− 11 4.66e− 14 5.20e− 18

Cond2 11737 11921 11984 12209 12689 12862 12692
Cond∞ 42300 42075 43917 49038 52749 51762 50109
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(a) y(t) (b) y′(t)

Figure 7. Comparision of Numerical solutions and ex-
act solutions when q = 0.01, T = π

5
, β = 1.5 and N = 55

(a) Abr(yN ) (b) Abr(y′N )

Figure 8. Absolute errors for q = 0.01, T = π
5
, β = 1.5

and N = 55.

5. Conclusion

In this paper we use a simple explicit interpolation formula based
on GRBF with equally spaced centers to establish a stable collocation
method for solving the PVIDEs. By this method we overcome the
ill-conditioning of the interpolation matrix, without applying a special
technique. Numerical results show that the efficiency and stability of



AN EFFICIENT GAUSSIAN COLLOCATION ... 17

(a) y(t) (b) y′(t)

Figure 9. Comparision of Numerical solutions and ex-
act solutions when q = 0.09, T = π, β = 0.4 and N = 52

the presented method is excellent with respect to standard method es-
pecially when q < 1. While comparing with the spectral method, the
NGCM shows better performance and it can be seen that the spectral
method is more sensitive than the NGCM with respect to q. Also the
exponential convergence of the presented method is achievable easily
even for relatively small value of q and relatively large N, however that
is not the case for the spectral method. Furthermore one can improve
the accuracy of the NGCM without extra computation while β de-
creases. So the NGCM is a robust method for solving the PVIDEs
which is motivated us to extend it for solving more complicated prob-
lems such as fractional pantograph partial integro-differential equations
that remains for future works.
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