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Abstract

The generalized beta distribution of the second kind (GB2), McDon-
ald [I1], McDonald and Xu [12] is an important distribution with ap-
plications in finance and actuarial sciences, as well as economics, where
Dagum distribution which is a sub-model of GB2 distribution plays an
important role in size distribution of personal income. In this note,
a new class of generalized Dagum distribution called gamma-Dagum
distribution is presented. The gamma-Dagum (GD) distribution which
includes the gamma-Burr III (GB III), gamma-Fisk or gamma-log logis-
tic (GF of GLLog), Zografos and Balakrishnan-Dagum (ZB-D), ZB-Burr
III (ZB-B III), ZB-Fisk of ZB-Log logistic (ZB-F or ZB-LLog), Burr III
(B III), and Fisk or Log logistic (F or LLog) as special cases is proposed
and studied. Some mathematical properties of the new distribution
including moments, mean and median deviations, distribution of the
order statistics, and Renyi entropy are presented. Maximum likelihood
estimation technique is used to estimate the model parameters and ap-
plications to real datasets to illustrates the usefulness of the model are
presented.
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1 Introduction

Kleiber [9] traced the genesis of Dagum distribution and summarized sev-
eral statistical properties of this distribution. Domma et al. [5] obtained the
maximum likelihood estimates of the parameters of Dagum distribution from
censored samples. Dagum [3] distribution is a special case of generalized beta
distribution of the second kind (GB2), McDonald [I1], McDonald and Xu [12],
when the parameter ¢ = 1, where the probability density function (pdf) of the
GB2 distribution is given by:

ayap— 1

) — f ) 1
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Note that a > 0,p > 0,q > 0, are the shape parameters and b > 0 is the scale
parameter and B(p, q) = % is the beta function. Domma and Condino [4]
obtained statistical properties of the beta-Dagum distribution. The pdf and

cumulative distribution function (cdf) of Dagum distribution are given by:

oy X, B,8) = BASy M1+ Ay %) 71, (2)
and

respectively. The hazard and the reverse hazard functions are given by:

: oy A B,8)  BASY (L Ay )
h,D(ya )\7675) o FD(y, )\7ﬁ75) o 1— (1 + )\y,(;),ﬁ ) (4)

and
(Y A, B,0) = BASYy Ay + 1) (5)

respectively. The k** raw or non central moments are:
k k k k k
E(Y*) = B(Y¥|8,6,) = BASB( f+ 51— <), ford > k.

Motivated by the various applications of Dagum distribution in finance and
actuarial sciences, as well as in economics, where Dagum distribution plays are
important role in size distribution of personal income, we construct a new class
of Dagum-type distribution called the Gamma-Dagum (GD) distribution and
apply the model to real lifetime data.

For any baseline cdf F(z), and x € R, Zografos and Balakrishnan [23]
defined the distribution (when 6 = 1) with pdf g(z) and cdf G(x) (for a > 0)
as follows

1

0(x) = Fraygal~ BP0 = P)7 (), (6)
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and
1 ~loslF) (=0 log(F(x)), @)
_ ta—l —t/@dt _ )
@) = e | e )
respectively, for a, 6 > 0, where g( ) = dG(zx )/dx I(a) = [t*e™tdt de-
notes the gamma function, and ~ fo tote~tdt denotes the incomplete

gamma function. The correspondmg hazard rate function (hrf) is

[~ log(1 — F(@))]*~" f(2)(1 — F(a)/ (8)
0(I'(e) = y(—=0"log(1l — F(z)),a))

hg(x) =

The class of distributions for the special case of § = 1, is referred to as the
ZB-G family of distributions. Also, (when # = 1), Risti¢ and Balakrishnan
[20] proposed an alternative gamma-generator defined by the cdf and pdf

Ga(z) =1— ﬁ / e 2 le 0t o >0, (9)
and )
g2(x) = (o) (= log(F())]* 7 (F ()97 f(x), (10)

respectively. Note that if # =1 and o = n + 1, in equation @, we obtain the
cdf and pdf of the upper record values U given by

| [ loa(1—F(w)
Gotw) = | ey, (1)
n- O
and
gu(u) = f(u)[—log(1 — F(u))]"/nl. (12)
Similarly, from equation , the pdf of the lower record values is given by
9.(t) = f(£)[=log(F(t))]" /n!. (13)

In this paper, we consider the generalized family of distributions given in equa-
tion @ via Dagum distribution. Zografos and Balakrishnan [23] motivated the
ZB-G model as follows. Let X (1), X(2), ...... , X(n) be lower record values from a
sequence of independent and identically distributed (i.i.d.) random variables
from a population with pdf f(x). Then, the pdf of the n'® upper record value
is given by equation @, when 6 = 1. A logarithmic transformation of the
parent distribution F' transforms the random variable X with density @ to a
gamma distribution. That is, if X has the density @, then the random vari-
able Y = —log[l — F(X)] has a gamma distribution GAM («a; 1) with density
k(y, o) = FLa)ya le=v y > 0. The opposite is also true, if ¥ has a gamma
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GAM (a; 1) distribution, then the random variable X = G71(1 — ¢™¥) has a
ZB-G distribution (Zografos and Balakrishnan [23]). In addition to the mo-
tivations provided by Zografos and Balakrishnan [23], we are also interested
in the generalization of the Dagum distribution via the gamma-generator and
establishing the relationship between the distributions in equations @ and
(10)), and weighted distributions in general.

Weighted distribution provides an approach to dealing with model specifi-
cation and data interpretation problems. It adjusts the probabilities of actual
occurrence of events to arrive at a specification of the probabilities when those
events are recorded. Fisher [13] first introduced the concept of weighted dis-
tribution, in order to study the effect of ascertainment upon estimation of fre-
quencies. Rao [19] unified concept of weighted distribution and use it to iden-
tify various sampling situations. Cox [2] and Zelen [22] introduced weighted
distribution to present length biased sampling. Patil [16] used weighted dis-
tribution as stochastic models in the study of harvesting and predation. The
usefulness and applications of weighted distribution to biased samples in vari-
ous areas including medicine, ecology, reliability, and branching processes can
also be seen in Nanda and Jain [I4], Gupta and Keating [7], Oluyede [15] and
in references therein.

Suppose Y is a non-negative random variable with its natural pdf f(y;0),
where 6 is a vector of parameters, then the pdf of the weighted random variable

Y™ is given by:
: ;0
Foyi,p) — LD (14)

w
where the weight function w(y, ) is a non-negative function, that may depend
on the vector of parameters 3, and 0 < w = E(w(Y, )) < oo is a normalizing
constant. In general, consider the weight function w(y) defined as follows:

w(y) = P F () F (y). (15)

Setting k=0 k=j=1=0;l=i=7=0k=1=0;1—1—1;,j =n —1;
k=1l=i=0and k =1 =7 =0 in this weight function, one at a time, im-
plies probability weighted moments, moment-generating functions, moments,
order statistics, proportional hazards and proportional reversed hazards, re-
spectively, where F(y) = P(Y < y) and F(y) = 1 — F(y). If w(y) = y, then
Y* =Y" is called the size-biased version of Y.

Risti¢ and Balakrishnan [20], provided motivations for the new family of
distributions given in equation @ when 6 = 1, that is for n € N, equation @[)
above is the pdf of the n'" lower record value of a sequence of i.i.d. variables
from a population with density f(z). Risti¢ and Balakrishnan [20] used the
exponentiated exponential (EE) distribution with cdf F(z) = (1 — e=#%)e,
where o > 0 and 8 > 0, in equation to obtained and study the gamma-
exponentiated exponential (GEE) model. See references therein for additional
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results on the GEE model. Pinho et al. [I7] presented the statistical properties
of the gamma-exponentiated Weibull distribution. In this note, we obtain a
natural extension for Dagum distribution, which we call the gamma-Dagum
(GD) distribution.

This paper is organized as follows. In section [2| some basic results, the
gamma-Dagum (GD) distribution, series expansion and its sub-models, haz-
ard and reverse hazard functions and the quantile function are presented. The
moments and moment generating function, mean and median deviations are
given in section [3] Section [ contains some additional useful results on the
distribution of order statistics and Renyi entropy. In section [5| results on the
estimation of the parameters of the GD distribution via the method of maxi-
mum likelihood are presented. Applications are given in section [0 followed by
concluding remarks.

2 GD Distribution, Expansion, Sub-models,
Hazard and Reverse Hazard Functions

In this section, the GD distribution, series expansion of its pdf, some sub-
models, hazard and reverse hazard functions as well some graphs of these
functions are presented. By inserting Dagum distribution in equation , the
cdf Gep(z) = G(x) of the GD distribution is obtained as follows:

1 —log[1—(14+Az=%)=#] —
GGD(QT) == W/O t* e / dt
I'(a) ’

where 2> 0, A >0, >0, >0, «>0,0>0, and v(z,0) = [ 2> e~ "dt is
the lower incomplete gamma function. The corresponding GD pdf is given by

01 a—1
9op (x) = %(1 + /\x—5)—/3—1 ( — log[l — (1 + )\I—(S)—B])

XL - (14 A=) H00, (17)

The graph of pdf for some combinations of values of the model parameters
are given in Figure [l The plots indicate that the GD pdf can be decreasing
or right skewed. The GD distribution has a positive asymmetry.

If a random variable X has the GD density, we write X ~ GD(\, 3,6, «, 6).
Let y = [1 4+ Az™°]7?, and ¢y = 1/, then using the series representation

—log(l—y) =>2, %, we have

o] [ () (S 5) )

m=0 s=0
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Graph of GD pdfr
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Figure 1: Graph of GD pdf for selected parameters

and applying the result on power series raised to a positive integer, with a, =

(s +2)71, that is,
( Z asys) = Z bs,mysa (18)
s=0

5=0
where by, = (sag) ™t Y7 [m(l + 1) — s|a;bs_im, and b, = a3, (Gradshteyn
and Ryzhik [6]), the GD pdf can be written as

MBIz 071 + A0 AL

Yep (z) F(a)@a ol
X i i (aT; 1) bs?mym—i-s i <¢ ; 1) (_1>kyk
m=0 s=0 k=0
MBSz 4 A0 A
B I'«)h
S S = 1) <77Z) - 1) k a+m+s+k—1
X (_1) bS,my
mzz(]s,k’zo( m k
R SR ST AR A De.m
] mzz( U ) e e

X AB(m A+ s+ k+ a)dx 01 4 \g~0)AlmEsthia)=l

where f(z; A\, B(m+s+k+«),d) is the Dagum pdf with parameters A, 5(m +
s+k+a), and 6. Let C = {(m, s, k) € Z3}, and ¢y = 1/6, then the weights in
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the GD pdf are
-1\ /¢y -1 b
— (_1)k « m,s
wy = )(m )< k )(m+s+k+a)8af(a)’

9op (@) = Y _wofo(m; X, Bm+ s+ k+ ), 0). (19)

veC

and

It follows therefore that the GD density is a linear combination of the Dagum
pdfs. The statistical and mathematical properties can be readily obtained from
those of the Dagum distribution. Note that g, (z) is a weighted pdf with the
weight function

w(z) = [~ log(1 - F@)*'[1 - F@)]#~" 0)
that is,
9op (@) = [~ log(1 — F(gz)zlza)[l — F(z)]o~ ‘o)
_ @)
 Er(w(X))’ (21)

where 0 < Ep[[—log(l — F(z))]*[1 — F(z)]#"}] = 6°I'(a) < oo, is the
normalizing constant. Similarly,

[~ log(F(X )" ' [F(X)]o !
0T ()

g2(r) =
where 0 < Er(w(X)) = EF([—log(F(X))]a_l[F(X)ﬁ’l) =0T () < 0.

2.1 Some Sub-models of the GD Distribution

Some of the sub-models of the GD distribution are listed below:

e If § = 1, we obtain the gamma-Dagum distribution via the ZB-D (ZB-
Dagum) distribution.

e When A = 6 =1, we have the ZB-Burr III (ZB-B III) distribution.

e When 8 = 6 = 1, we obtain the ZB-Fisk or ZB-Log logistic (ZB-F or
ZB-LLog) distribution.

o If « = 1, we get the exponentiated Dagum (ED) distribution, which is
also a Dagum distribution.
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When g = 1, we have the gamma-Fisk or gamma-Log logistic (GF or
GLLog) distribution.

e If A =1, we obtain the gamma-Burr III (GB III) distribution.

e If ) =1, and a = 1 we have Dagum (D) distribution.

When A = a = 60 = 1, we have Burr III (B III) distribution.

When A = a = 1 we have exponentiated Burr III (EB III) distribution.

When 8 = a = 1, we obtain Fisk or Log logistic (F or LLog) distribution.

2.2 Hazard and Reverse Hazard Functions

Let X be a continuous random variable with distribution function F, and
probability density function (pdf) f, then the hazard function, reverse hazard
function and mean residual life functions are given by hp(z) = f(z)/F(x),
mr(x) = f(x)/F(x), and 6p(z) = [ F(u)du/F(x) respectively. The functions
hp(z), 6p(z), and F(z) are equivalent (Shaked and Shanthikumar [21]). The
hazard and reverse hazard functions of the GD distribution are

_ MBSz 1 + Az A (= log(1 — [1 + Az~0]#))>=1[1 — (1 + Az~9)~F](W/0)-1

ha(x) 0 (I (o) — y(—=01Llog(1 — (1 + )\xﬂS)fﬁ)’ a))
(23)
and
(2) ABox 0 1 4+ Ao 0] A= (—log(1 — [1 + Az ~°] 7)) [1 — (1 + Az—9)~F)(1/0)-1
TG\T) =

0 (y(=0~"log(1 — (1 + Az=0)~F), )
(24)

forz >0, A>0,8>0,0>0,a>0,and § > 0, respectively.

The graph of hazard function for selected parameters are given in Figure
2l The plots show various shapes including monotonically decreasing, mono-
tonically increasing, and bathtub followed by upside down bathtub shapes for
five combinations of values of the parameters. This very attractive flexibility
makes the GD hazard rate function useful and suitable for monotonic and non-
monotone empirical hazard behaviors which are more likely to be encountered
or observed in real life situations.

2.3 GD Quantile Function

The quantile function of GD distribution is obtained by solving the equation

GQy) =y, 0<y<Ll (25)

I

Y
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Graph of GD Hazard Function
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Figure 2: Graph of hazard function for selected parameters

Note that the inverse or quantile function of Dagum distribution, Fp(z) =
[1+ A\x79]78 is given by Qp(.), that is

1

Qpl(y) = A7 (yf71 - 1)5 : (26)

The quantile function of the GD distribution is obtained by inverting equation

to obtain
1 3 13
Qcp(y) = e [(1 — eeu) — 1} , (27)

where u = 7}y '(a), a).

3 Moments, Moment Generating Function, Mean
and Median Deviations
In this section, we present the moments, moment generating function, mean

and median deviations for the GD distribution. These measures can be readily
obtained for the sub-models given in section 2.
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3.1 Moments and Moment Generating Function

Let f* = B(m+s+k+a),and Y ~ D(A, 8*,0). Note that from Y ~ D(«, 5%, 6),
the r** moment of the random variable Y is

E(Y") = g"N/B (5* +51- g) (28)
r < 8, so that the 7" raw moment of GD distribution is given by:
ry __ T\ __ *y7/8 * Z _ C

E(X") =Y w,EY") =Y w,p"\ B(B + 501 5)’ (29)

veC veC

r < 6. The moment generating function (MGF) , for |t| < 1, is given by:

Mx(t) = Y w,My(t)

veC
=t . T r
— ;;MHBA/&B(B +5,1—5>, (30)
for r < 6.
Theorem 3.1.
B{l=og(1 = FOO) 11— FOOY = gt o ga
Proof:
BE{[~log(1 — F(X))"[(1 = F(X))*]}
[ o - F - F
_ 9r+aF(T + a) (32)

(s + 1)*0oT"(a)
Corollary 3.2. If s =0, we have E[—log(1 — F(X))"] = %((ga), and
ifr=0, E[(1 - F(X))*] = [s0 + 1]
Proof: Let s = 0 in equation or equation (32), then

ot (r + «)

E[_ log(l - F(X))T] = Gaf(a)

(33)

Let 0* = s + %, then with r» = 0 in equation or equation(32), we obtain

E[(1-F(X))’] = [s0+1]7“. (34)
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3.2 Mean and Median Deviations

If X has the GD distribution, we can derive the mean deviation about the
mean p by

0 = / |2 — plgep (2)dr = 2uG g, (1) — 20+ 2T (), (35)
0

and the median deviation about the median M by
o= [ o= Mlggy (0)dz = 27(0) ~ . (36)
0

where p = E(X) is given in equation (29), M = Q¢p(0.5) in equation ([27)
and T'(a) = [z - g, (x)dz. Let f* = B(m + s+ k + ), then

T(a) = > wTppses(a)

veC

= Swa (s + 11 5) - B0+ 11— 1) 0

veC

where t(a) = (1+ Aa~*) "), and B(w;a,b) = [ 11 (1 - t)"\dt.

4 Order Statistics and Renyi Entropy

Order Statistics play an important role in probability and statistics. The
concept of entropy plays a vital role in information theory. The entropy of a
random variable is defined in terms of its probability distribution and can be
shown to be a good measure of randomness or uncertainty. In this section, we
present the distribution of the order statistics, and Renyi entropy for the GD
distribution.

4.1 Order Statistics
The pdf of the i order statistics from the GD pdf g(z) is given by

gi:n(l’) = (Z_T;g'((z)_ i)![G(m)]i_l[l—G(x)]”*l
nig(@ S (n—1 i1
) <z—1>£v'<(n)-@->1§;<—1>f( ; >[G< )]+
- nlg() =, (=1 [A(=0 log(F(x), )]
P 1)( j )[ (o) ,
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where F(z) = 1 — F(z). Using the fact that

0 (_1)m m-+ta

Ywa) =Y "

m=0
and setting ¢,, = (—=1)™/((m + a)m!), we have

) = T |Z V(") o toe(F
x ﬁy*we”mﬂnwwl

(m + a)m!

(38)

(m+a)m!’

m=0

el S (ned) L) og(F(z))]*+-D
(1 —Dl(n —1q)! ]Z_;( j )[F(a)]i-i—j T[=0~ Hog(F(x))]

X Zdm,i—i-j—l(_e_llog(F(x)))m7

m=0

Where d() = C(()H_J ), dm,i—l—j—l = (mco)’l Z;il[(l +] — ].)l —m + l]cldm—l,i—l-j—l-
Now,

9in(®) = 7z 1 b1 ;mZO (n . Z) E;C;Tfj g1 og(F(z))] i Dtm
= log(F(2))]* [F(2)]* (@) S~ = (n—i [
- (i = D(n — i) ()0 = mZ::O( > (a)]+i-1
X [=07 log(F(z))]et+i—D+m
- U b N A G Vil
= (Z—l n—zlz;;( j ) Oé)]l+]
0 a(i+j)+m—1
o Lo e )
n' LS ]de_J 1
— (1 —1)Y n—zlzozo< ) B
INa(t+7)+m lo F a(i+j)+m—1 )
e e [P £ (o),
That is,
= Sy (r ) dinivjr 1 (i + j) +m)
gzn(x) o (Z — 1 n — Z | JZOT;) < ) [F(a)]i"'j

< glasali+ j)+m, B,1,6,0),
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where g(z;a(i+j) +m, 5, A, 6,0) is the GD pdf with parameters \, 3,9, 0, and
shape parameter o* = a(i + j) + m. It follows therefore that

PO = o S (1)

veC j=0 m=0

x I'(« (z+])+m)ﬁ*/\7/‘53</8 +5 1—%),

for j < §, where B(.,.) is the beta function. These moments are often used in
several areas including reliability, insurance and quality control for the predic-
tion of future failures times from a set of past or previous failures.

4.2 Renyi Entropy

Renyi entropy is an extension of Shannon entropy. Renyi entropy is defined to
be

Tn(v) = 1—-v

log(/ooo[(x)\ﬁ,éoze)] )v#lv>0 (39)

Renyi entropy tends to Shannon entropy as v — 1. Let y = [1+ Az ~°]~?. Note
that for @« > 1 and v/6 a natural number,

diote) = ST S (MY (P e

m=0 s,k=0
% [1+)\x—6]—vﬂ vym—l-s—l—va—v—l-k

)\65 i Z k(v a—l)) (v/a—l)
m=0 s,k=0 k
% l,—vé—v[l —|—)\ZL'_5] m+s+k+va)—v.

Now,

[ atptarr = G ST S (M) (e

m=0 s,k=0

% / $_U6_v[1 +>\$—5]—6(m+s+k+va)—vd$‘
0

Let t = [1 4+ Az7°]71, then

[e.9]

l,—vd v 1 + ] B(m~+s+k+va)— Vdr
0
AT vt B(m+s+ktva)—5+6—1 v+3—0—1
= S Y (1—¢)ys—0-1gy
A v—%+46 v v
= TB(ﬁ(m+s+k+va)+5—g,v+5—5>,
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where B(a,b) fo t2=1(1 — ¢)>~1dt is the beta function. Consequently, Renyi
entropy for GD dlstrlbutlon is given by

Ir(v) = 1 i ” log [gzaéﬁvév : i i k(v ‘- 1)> ((U/le - 1) bs,m

m=0 s,k=0

X B(ﬁ(m+s+k+va)+5 5 v+5—6)]

for v >0, v # 1.

5 Maximum Likelihood Estimation

Consider a random sample x1, 2o, ...... , T, from the gamma-Dagum distribu-
tion. The likelihood function is given by

L\ B,6,0,0) = 931?5 H{ SO 4 a0

X [— log (1 —(1+ Ax;‘s)—ﬁﬂ w {1 -1+ A:c;‘*)—ﬁ] (1/9)_1}.

Now, the log-likelihood function denoted by ¢ is

{ = 10g[L()\7 57 5a Qa Oé)]

= nlog(A) + nlog(B) + nlog(d —0—1) Zlog ;)

+ (=8-1) Zlog + 2270 + (a— 1) Zlog{ 10g< (1+>\37@-_6))]

+ (% _ 1) 3 log [1 (4 )\x;‘s)} ~ nalog() — nlog(I'(a)).  (40)

1=1

The entries of the score function are given by

n -5

ol n T,
-k 51 i
152 A+( b );1—1—)\ =0

B+ Az ) tar?
* (a_l);(l—(l%—)\x =B log(1 — (1 + Ax;2)=8)

~ B+ ;%) Pt
1> Z log(1 —(1+ )\x_(s) Ay’ (41)

=1
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ol n -
— = —— Y log(1+z;”

n

(14 Aa*) P log(1 + A *)(—1)
O T ) P ol - (14 A )

=1

1 "L (1+ )\3:;5)_5 log(1 + /\x;‘s)
i (5 - 1) 2. L=+ A28 2

=1

ol N "z 0 log(z;70)(—1)
% g—;log(xi)%—(—ﬁ—l); 14z,

n Az; 0 log(Az; )
+ (a—1) Zzl -+ /\Ii—é)_ﬂ)(log(l -1+ )\xi—f;)—ﬁ))’ (43)

% — _”11:(((;)‘) —nlog(a) + glog ( —log (1 —(1+ Ax;5)—5)>, (44)

and
ov no 1 & N
%:—7—6—2210g(—log(1—(1+)\$i5) B)) (45)
i=1

The equations obtained by setting the above partial derivatives to zero
are not in closed form and the values of the parameters A, (3,0, a, 0 must
be found by using iterative methods. The maximum likelihood estimates of
the parameters, denoted by A is obtained by solving the nonlinear equation

o o0 o e ot

(5% 967 98 Do’ %)T = 0, using a numerical method such as Newton-Raphson

procedure. The Fisher information matrix is given by I(A) = [Ig, 9,]5x5 =

E(—%afaj), i,7 = 1,2,3,4,5, can be numerically obtained by MATHLAB or

MAPLE software. The total Fisher information matrix nI(A) can be approx-
imated by

0%

Aym | - ,j=1,2,3,4,5. 4
1(8)~ | - 5 i=123.45 (46)

A:J 5X5

For a given set of observations, the matrix given in equation is obtained
after the convergence of the Newton-Raphson procedure in MATHLAB soft-
ware.
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5.1 Asymptotic Confidence Intervals

In this section, we present the asymptotic confidence intervals for the parame-
ters of the GD distribution. The expectations in the Fisher Information Matrix
(FIM) can be obtained numerically. Let A = (X,B,g,d,é) be the maximum
likelihood estimate of A = (A, 3,0, a, #). Under the usual regularity conditions
and that the parameters are in the interior of the parameter space, but not
on the boundary, we have: /n(A — A) N N5(0,171(A)), where I(A) is the
expected Fisher information matrix. The asymptotic behavior is still valid if
I(A) is replaced by the observed information matrix evaluated at A, that is
J(A). The multivariate normal distribution N5(0, J(A)~!), where the mean
vector 0 = (0,0,0,0,0)7, can be used to construct confidence intervals and
confidence regions for the individual model parameters and for the survival
and hazard rate functions. A large sample 100(1 — 7)% confidence intervals
for A\, 5,0,0 and « are:

A+ Zy\[ 1 (A), B:i:Zn I5(A), 6+ Zy\/I;5'(A)

LA, 0+ Zn\/I(A),

(A), I (A), I, (A) and I;'(A) are the di-

at”z

g
respectively, where [ )\/\( ), I
A), a

is the upper g percentile of a standard

—1

BB
agonal elements of I '(A), and Z
normal distribution.

We can use the likelihood ratio (LR) test to compare the fit of the GD
distribution with its sub-models for a given data set. For example, to test
0 = a = 1, the LR statistic is w = 2[In(L(\, 3,8, &, 0)) — In(L(X, 8,6, 1, )l
where ), B, 5, & and 6, are the unrestricted estimates, and A, 3, and & are
the restricted estimates. The LR test rejects the null hypothesis if w > Xe,
where x? denote the upper 100¢% point of the x* distribution with 2 degrees

of freedom.

6 Applications

In this section, we present examples to illustrate the flexibility of the GD dis-
tribution and its sub-models for data modeling. We also compare the four
parameter GD sub-model to the gamma-exponentiated Weibull (GEW) distri-
bution [I7]. The pdf of GEW is given by

ka5 i kol k k ol k o1
— .l )" 1) _ _e (%)
et~ () o] s )] o

for a, 6, A\, k > 0.
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Table 1: Descriptive Statistics

Data N Mean  Median Mode SD Variance  Skewness Kurtosis ~ Min. Max.

Air Conditioning System 188  92.07 54.00  14.00  107.92 11646.00 2.16 5.19 1.0 603.0
Baseball Player Salary 818 3.260059  1.151 0.4 4.36406  19.04505  2.09955602 5.12663081 0.4 33

Bladder 128 9.365625  6.395 2.02  10.50833 110.42497 3.32566967 16.1537298 0.08 79.05

The maximum likelihood estimates (MLEs) of the GD parameters A, £,
0, a;, and 6 are computed by maximizing the objective function via the sub-
routine NLMIXED in SAS. The estimated values of the parameters (standard
error in parenthesis), -2log-likelihood statistic, Akaike Information Criterion,
AIC = 2p—2In(L), Bayesian Information Criterion, BIC' = pln(n) —21In(L),
and Consistent Akaike Information Criterion, AICC = AIC + 22(7”—;;1}, where

~

L = L(A) is the value of the likelihood function evaluated at the parameter

estimates, n is the number of observations, and p is the number of estimated

parameters are presented in Table 3] and [4 Also, presented are values of the
i—1

Kolmogorov-Smirnov statistic, K'S = mari<i<,{Gap(v:) — =, % —Gepl(xy)},

; 2
and the sum of squares SS = 2?21 {GGD (z(); S\,B,S,é,d) — (%)] .

These statistics are used to compare the distributions presented in these ta-
bles. Plots of the fitted densities and the histogram of the data are given in
Figures [4] and [5] Probability plots (Chambers et al. [I]) are also presented
in Figures 4 and |5, For the probability plot, we plotted G, (z(;); N, 3,6.,0, Q)

—0.37
]—, j=1,2,---,n, where z(;, are the ordered values of the
n +0.25

observed data. Table 1 gives the descriptive statistics for the data sets.

The first example consists of the salaries of 818 professional baseball players
for the year 2009 (USA TODAY). Estimates of the parameters of GD distribu-
tion and its related sub-models (standard error in parentheses), AIC, AICC,
BIC,KS and SS for baseball player salaries data are give in Table [2|

against

Table 2: Estimates of Models for Baseball Player Salaries Data Set

Estimates Statistics
Model A i ) a f  -2ogL AIC AICC BIC S§
GD(\,B,0,0,0) 0.000024 09.9919 74586 0525 16.2026 28845 28945 28946 2918.0 8.4755

(0000004361)  (0.1127)  (0.04404) (0.05415) (1.4405)
ZB-D\Pdal)  OO0R16  987s8¢ L5113 81357 1 BT 32097 32098 3286 65759
(0000473)  (0.000063) (0.1338)  (0.598)

ZB-BunrlI(1.500,1) 1 L7986 LI 08104 1 33063 33723 33723 33864 5.9665
(04834)  (0.05463) (0.17%6)

ZB-Fisk(\Loa,1) 0008731 T L9669 54912 1 8205 375 30275 3AL6 63701
(0.005115) (01193)  (0621)

Plots of the fitted densities and the histogram, observed probability vs
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predicted probability, and empirical survival function for the baseball player
salaries data are given in Figure [3|

The LR test statistic of the hypothesis Hy: GD against H,: ZB-D, Hy:
GD against H,: ZB-Burrlll and Hy: GD against H,: ZB-Fisk are 317.2 (p-
value < 0.0001), 481.8 (p-value < 0.0001) and 337 (p-value < 0.0001). We
can conclude that there is a significant difference between GD and ZB-D, ZB-
Burrlll and ZB-Fisk distributions. The values of the statistics AIC, AICC
and BIC shows that GD is the best fit for baseball salary data. Note that
ZB-Burrlll gives the smallest SS value.

Table 3: Estimates of Models for Air Conditioning System Data Set

Estimates Statistics
Model A B 0 @ 0 —2log L AIC AICC BIC SS KS
GD 2.1816 31.0783 0.538 0.1856 0.05384  2065.1 2075.1 20754 2091.2 0.0334 0.0401
(0.8567)  (7.1966)  (0.05068) (0.0188) (0.034)
ZB-D 10.611 14.8939 0.9507 0.1885 1 2084.7  2092.7 2092.9 2105.7 0.5144 0.0982
(1.9869)  (1.0488)  (0.0375) (0.0194)
ZB-BurrIll 1 51.7658 0.7498 0.2579 1 2101.5  2107.5 2107.6 2117.2 0.3876 0.0786
- (1.0861)  (0.0327) (0.02906)
7ZB-Fisk 102.03 1 1.2902 1.2013 1 2078.5  2084.5 2084.6 2094.2 0.0797 0.0467
(51.2069) - (0.07275) (0.1991)
D 118.02 1.1792 1.2873 1 1 20774 2083.4 2083.5 2093.1 0.0687 0.0421
(71.3654)  (0.2375)  (0.09666)
k @ o A
GEW 0.2651 1.3363 0.05339 0.0007 23384  2346.4 2346.6 2359.3 8.4196 0.3863

(0.001118)  (0.4333) (0.003965) (0.000001897)

The second example consists of the number of successive failures for the air
conditioning system of each member in a fleet of 13 Boeing 720 jet airplanes
(Proschan [I§]). Initial value for GD model in SAS code are A = 1.2, =
14,0 = 1,a = 0.9,0 = 0.01. Estimates of the parameters of GD distribution
and its related sub-models (standard error in parentheses), AIC, AICC, BIC,
KS and SS for air conditioning system data are give in Table[3] The asymptotic
covariance matrix of the MLEs of the GD model parameters, which is the
inverse of the observed Fisher information matrix I7'(A) is given by:

0.7339  —6.1407 0.02873 —0.00537 0.006472
—6.1407  51.7908 —0.2362 0.04324 —0.05223
0.02873  —0.2362 0.002568 0.00014  0.001453

—0.00537 0.04324  0.00014 0.000353 0.000194
0.006472  —0.05223 0.001453 0.000194 0.001156

and the 95% confidence intervals for the model parameters are given by \ €
(2.1816£1.6791), B € (31.0783+14.1053), § € (0.5380+£0.0993), o € (0.1856+
0.03685), and € € (0.05384 + 0.06664), repectively.
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Plots of the fitted densities and the histogram, observed probability vs
predicted probability, and empirical survival function for the air conditioning
system data are given in Figure [4

The LR test statistic of the hypothesis Hy: ZB-D against H,: GD, Hy:
ZB-Burrlll against H,: GD and Hy: ZB-F against H,: GD are 19.6 (p-value
< 0.0001), 36.4 (p-value < 0.0001) and 13.4 (p-value = 0.0012). We can
conclude that there is a significant difference between GD and ZB-D, ZB-
BurrIIl and ZB-Fisk distributions. Considering the statistics (—2log(L), AIC,
BIC, KS and the values of SS given in Table 2, we observe that the GD
distribution gives a better fit than the ZB-D, ZB-Burrlll, ZB-F, D, and GEW
distributions. The value of the KS statistics (smaller is better) confirms that
the GD model yields a better fit than the other models in Table 3.

Table 4: Estimates of Models for Remission Times Data Set

Estimates Statistics
Model A B ) o 0 —2log L AIC AICC BIC SS KS
GD 36.5904 4.6432 1.6783 0.1763 0.827 818.9 828.9 8294 843.2 0.0153 0.0345
(20.0777)  (0.6152)  (0.2154)  (0.02128) (0.3848)
7ZB-D 14.4218 5.6739 1.4787 0.1932 1 821.4 829.4  829.7 840.8 0.0422 0.0457
(4.9839)  (0.5272)  (0.1038)  (0.02313) -
ZB-BurrlIl 1 14.0701 0.955 0.3086 1 846.8 852.8 853.0 861.4 0.3641 0.0945
- (0.8515)  (0.054)  (0.04013) -
7B-Fisk 78.8617 1 1.9597 0.6595 1 819.6 825.6  825.8 834.1 0.0205 0.0396
(47.7597) - (0.1721)  (0.1125) -
D 0.04426 56.2014 0.7713 1 1 884.2 890.2 8904 898.8  0.9490 0.1382
(0.02063)  (25.1544)  (0.04672)
k @ ) A
GEW 0.9718 1.8349 0.03244 1.9013 1154.7  1162.7 1163.0 1174.1 25.4662 0.6689

(0.008578)  (0.9136)  (0.002901) (0.002509)

The third example represents the remission times (in months) of a random
sample of 128 bladder cancer patients (Lee and Wang, [10]). Initial value
for GD model in SAS code are A = 7,8 = 1,6 = 0.84,a = 0.21,0 = 0.3.
Estimates of the parameters of GD distribution and its related sub-models
(standard error in parentheses), AIC, AICC, BIC and SS for remission times
data are give in Table[d The asymptotic covariance matrix of the MLEs of the
GD model parameters, which is the inverse of the observed Fisher information
matrix I;*(A) is given by:

403.11  —11.7265 3.5502  —0.1583  2.8776
—11.7265 0.3785  —0.1238 0.002601 —0.1345

3.5502  —0.1238  0.0464 —0.00018 0.06253
—0.1583  0.002601 —0.00018 0.000453 0.000548

28776  —0.1345 0.06253 0.000548  0.148

Plots of the fitted densities and the histogram, observed probability vs
predicted probability, and empirical survival function for the remission times
data are given in Figure 5]
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The LR test statistic of the hypothesis Hy: ZB-D against H,: GD and
Hy: ZB-Burrlll against H,: GD are 2.5 (p-value = 0.1138) and 27.9 (p-value
< 0.0001). We can conclude that there is a significant difference between GD
and ZB-BurrlIl distributions. Note that the GD distribution gives smaller
AIC, AICC, BIC, SS and the value of KS statistic shows that this model
yields a better fit than its sub-models and the GEW distribution.

7 Concluding Remarks

A new class of generalized Dagum distribution called the gamma-Dagum dis-
tribution is proposed and studied. The GD distribution has the GB, GF, ED
and D distributions as special cases. The density of this new class of distri-
butions can be expressed as a linear combination of Dagum density functions.
The GD distribution possesses hazard function with flexible behavior. We also
obtain closed form expressions for the moments, mean and median deviations,
distribution of order statistics and entropy. Maximum likelihood estimation
technique is used to estimate the model parameters. Finally, the GD model is
fitted to real data sets to illustrate the usefulness of the distribution.
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Fitted PDF The Graph of Observed vs Expected Probability
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Figure 3: Fitted densities, probability plots of the baseball player salaries data
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Fitted PDF for Airconditioning System Data The Graph of Observed vs Expected Probability
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Figure 4: Fitted densities, probability plots of the air conditioning system data
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Fitted PDF The Graph of Observed vs Expected Probability
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Figure 5: Fitted densities, probability plots of remission times data
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