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Abstract
In this study, we focus on finding the possible optimal portfolio where there is consumption, stochastic
income, purchasing of life insurance and investment in risky and risk-less investments are made. The
stock follows a jump diffusion process and the bond is linked to inflation making the two risky and we
have the investment position taken also on the money market account. The wealth process is determined
by the different generations of the life of an investor, that is before the investor dies and after the investor
dies. We also look into the optimal portfolio the beneficiaries benefit after the investor dies. We applied
the concept of change of probability measures considering the Girsanov’s and the Radon-Nikodym the-
orems, we found the generator of the Backward Stochastic differential equations defined and employed
the Hamilton-Jacobi-Bellman dynamic programming (HJB) in finding the stochastic optimal controls of
interest.

Keywords: Optimal portfolio, jump diffusion process, Girsanov’s theorem, Radon-Nikodym theorem,
Hamilton-Jacobi-Bellman dynamic programming (HJB), stochastic optimal controls.

1. Introduction

Over the past years life insurance have been studied extensively incorporating the different ways of mak-
ing it sound to the field of applied mathematics and statistics in the financial context life insurance has
also been analyzed, (Hakansson, 1969) and (Lewis, 1989) developed insights into the life insurance de-
mand.They demonstrated how uncertain the nature of mortality is, the utility and strength of bequest
desire, risk aversion, increasing household wealth and intertemporal rates of substitution impact the de-
cision of life insurance and the type of life insurance to purchase. In 2015 Kronborg and Steffensen
(Kronborg and Steffensen, 2015) studied optimal consumption, investment and life insurance with sur-
render option guarantee where an investor’s lifetime was considered in investing with deterministic labour
income and possibly willing to continue to invest in a Black-scholes market and buy life insurance or an-
nuities,they also considered that the savings were not supposed to be negative which is a non-negative
reserve constraint in the context of life insurance and one constraint taken into account was that the sav-
ings did earn a minimum return as an interest rate guarantee. Other references Guambe and Kufakunesu
introduced optimal investment consumption and life insurance with capital constraints. (Huang et al.,
2008) believes that there’s a blinding light between the way financial advisers sell life insurance and how
they sell or promote investment products that they’re presented as if they were a “separation theorem”
that justified their relative invariance. Their aim was to analyze the decision of how much life insurance
a family unit should have to protect against the loss of its breadwinner and how the family can distribute
their financial resources between risky assets and risk free assets.
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Different scholars have in depth researched on the different approaches of studying optimal investment
consumption. They further extended the study by including conditions and constraints considering the
economic downturns eg (inflation), how the assets are to be allocated and how consumption is to occur to
obtain maximal investment benefits. In 2019 (Li and Xia, 2019) studied the optimal investment strategy
under the disordered return and random inflation where in it the optimal portfolio problem was vested in
such a way that the inflation risk was taken into account, the risky asset price is changed by the impacts
of major events which leads to the asset returns disorder at a random time and when investors have partial
information in the financial market, (Maslov and Zhang, 1998) researched on optimal investment strategy
for a risky assets where investment in a portfolio of assets subject to multiplicative Brownian motion, the
strategy providing the maximal typical long term growth rate of the investors capital, determination of the
optimal fraction of capital an investor is supposed to keep in risky assets and the different assets weights
in an optimal portfolio where volatility and average return of an asset are considered to be indicators that
determines its optimal weight.

(Li and Xia, 2019) studied the optimal investment strategy under the disordered return and random infla-
tion on how to adjust the investment strategy in order to cope with the inflation risk as its important to
the investor. The Martingale approach have been previously used by some scholars to study the portfolio
with inflation risk. In 2011 (Siu, 2011) gave the optimal allocation strategy of the long term strategic
assets with the inflation risk. (Brennan and Xia, 2002) studied the dynamic optimal portfolio with in-
flation, (Wachter, 2002) studied Portfolio and Consumption Decisions under Mean-Reverting Returns:
An Exact Solution for Complete Markets. In 2015 the impacts of inflation and the jumps on optimal
asset allocations of an investor under asset prices with a jump environment were investigated by (Fei
et al., 2015). Two optimal consumption and portfolio problems with the financial markets of Markovian
switching and inflation research was carried out by (Fei, 2013). In 2021 (Doctor, 2021) studied appli-
cation of Generalized Geometric Itô-Lévy Process to Investment-Consumption-Insurance Optimization
Problem under Inflation Risk using the martingale approach to maximize the utility of an agent investing
in risky and risk-less assets.

In this study the objective is to use the stochastic programming approach to determine the optimal invest-
ment, consumption and insurance strategy considering the inflation risk and the stock’s diffusion jump
in a finite time interval [0, T]. The stochastic programming approach was also used by (Shapiro, 2008)
on optimization under uncertainty where in it computational complexity and risk averse approaches to
two and multistage stochastic programming problems were discussed in depth but on the recent work
emphasis was on the study of diffusion jumps and BSDE equation in maximizing the portfolio using the
Hamilton-Jacobi-Bellman dynamic programming (HJB) and the BSDE approach. Recommendations on
other alternative approaches refer to (Doctor, 2021) and (Kronborg and Steffensen, 2015) on the martin-
gale approach.
The article is structured as follows. In Section 2, the model framework is presented in detail with the
characteristics of the positions of investment. Section 3 has the solutions to the different generations of
the portfolio problem in obtaining the optimal strategies. Section 4 concludes followed by the references.

2. Model Description and Framework

We suppose that our model is built in a filtered probability space (Ω,F , {Ft},P) which follows the
characteristics of the Brownian motion Bt = {B0

t , B
1
t , B

2
t , 0 ≤ t ≤ T} in a finite time horizon, i.e

0 ≤ t ≤ T. to be considered. The Brownian motions 〈B0
t , B

1
t , B

2
t 〉 are all correlated in a correlation

matrix such that dB0
t · dB1

t , dB
0
t · dB2

t ,dB1
t · dB2

t = ρi,jdt for i, j ∈ {0, 1, 2}, are correlated with the
correlation coefficient −1 ≤ ρ ≤ 1. For ρ = 1 then the Brownian motions are strongly correlated and
for ρ = −1 then they are negatively correlated.
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We take into account an important economic factor inflation, since the value for money in a long term
investment has to be considered as inflation can lead to reduction in the value of investment returns of
an investor. This was also discussed by (Zhang and Zheng, 2019) that inflation could lead to diminution
of financial wealth of the insurer when studying optimal investment Reinsurance policy with stochastic
interest and inflation rates. We can measure inflation by the inflation rate, by considering the consumer
price index (CPI) which includes the consumer price and retail price indices for any change in the index.

The investor inherits in three assets namely, a money market account, an inflation-linked index bond
and stock. The wealth of an insurance policy holder is indicated by a portfolio distributing the wealth
accordingly with π1 being the fraction of the wealth at time t held by the stock, π2 being held in the
inflation-linked index bond which shall be defined in depth along the descriptions and (1 − π1 − π2)
denotes the fraction held in the money market account such that all the fractions held all add up to 1. We
denote the market value of the money market account Rt at a given time t as

dRt = rRtdt, (1)

where r > 0 denote the interest rate to be compounded over t.

The dynamics of the stock follows an Itô Lêvy process;

dSt = St−[αdt+ σdB0
t +

∫
R
γ(t, η)J̃(dη, dt)] (2)

where α, σ and r > 0 are the stock’s drift and volatility rates respectively, γ > −1 and B0
t is the Brown-

ian motion driving the stock. We assume the inequality α − r > 0 is satisfied for economic equilibrium
purposes.

We consider the consumer good1 an investor purchases in their time of life in the economy over a time
interval satisfying a stochastic process:

dQ(t) = Q(t)[Z(t)dt+ %(t)dB1(t)], Q(0) = Q0, (3)

For all t ∈ [0, T ] with B1(t) being a Brownian motion driving the consumption good, %(t) is the volatil-
ity price index rate of the commodity good and Z(t) is the stochastic drift rate representing the expected
inflation rate over time governed by the time dependent Ornstein- Uhlenbeck (OU) process also applied
by (Chaiyapo and Phewchean, 2017) and is given by:

dZ(t) = ς(t)[β(t)− Z(t)]dt+ %̄(t)dB1(t), (4)

where β(t) is the long-run mean of the inflation rate, %̄(t) is the volatility rate and ς(t) is the rate of
mean reversion of the inflation rate. The quantity functions %(t), β(t), ς(t)and %̄(t) are continuous and
deterministic with t ∈ [0, T ]. We have the index bond M(t) which is linked to inflation and has the price
level process

dM(t)

M(t)
= k(t)dt+

dQ(t)

Q(t)
= (k(t) + Z(t))dt+ %(t)dB1(t), (5)

where k(t) is the interest rate at time t.

1Items that individuals and households buy, they include (packaged goods, clothing, beverages, automobiles, and electronics)
for their own use and enjoyment.
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The insured have an incoming source of funds which comes in at different time intervals therefore we
consider it to be random over a given period of time. The income rate at time t is given by ψ(Yt, t) where
Yt is referred to as the state variable which is an Itô process such that

dYt = α1(Yt, t)dt+ σ1(Yt, t)dXt, (6)

and follows the properties of Itô processes. With the assumption that α1(Yt, t) and σ1(Yt, t) satisfies
Lipschitz and growth conditions in Yt and are continuous so we obtain a unique solution.

The policy holder purchases an insurance policy that pays premiums Pt > 0 over a unit time interval,
supposedly on monthly basis which is an Ft adapted and measurable process with∫ T

0
P (s)ds <∞. (7)

We consider the lifetime of the policy holder at t > 0 defined on a probability space (Ω,F ,P). The
insurance is determined by the retirement and the time of death of the policy holder τ which is finite.
The death benefit is paid to the beneficiaries at the time of death of the policy holder. The continuation of
the policy can be renegotiated by the family members when the holder dies based on the predetermined
terms and conditions of the insurance policy. We consider the probability mass function f(tl) to be the
lifetime of the holder, then the cumulative mass function of t is given by

F (tl) = P (t < tl) =

∫ tl

0
f(s)ds,

then the probability that t > tl is the survival function given by

G(tl) = P (t > tl) = 1− F (tl).

The instantaneous force of mortality µ(tl) for a policy holder to be alive at time tl is given by

µ(tl) = lim
∆tl→0

P (tl ≤ t < tl +∆tl|t ≥ tl)
∆tl

= lim
∆tl→0

P (tl ≤ t < tl +∆tl)

∆tlP (t ≥ tl)

f(tl)

1− F (tl)
= − d

dtl
(ln(1− F (tl))),

which is the hazard rate function. The conditional probability of survival of the holder is defined as
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F̄ (tl) = 1− F (tl) = P (t > tl|Ft) = exp(−
∫ tl

0
µ(s)ds). (8)

and the conditional survival probability density of the death of the holder is given by

f(tl) = µ(tl)exp(−
∫ tl

0
µ(s)ds).

With the conditions above, the wealth process is given below where;

St is the price of the stock, Rt being the price of the bond, Wt is the wealth of the investor at time
t ∈ [0, T ] and π1, π2, (1− π1 − π2) are as defined previously.

The total wealth process at time t ∈ [0, T ], where T is the time of retirement is given by:

1. Pre-death case
For t < τ ∧ T that is t ∈ [0, τ ∧ T ] we have,

dWt =
[
Wt

(
π1(α− r) + π2(k(t) + Z(t)− r) + r + µ(t)

)
(9)

+ ψ(Yt, t)− µ(t)P (t)− C(t)
]
dt+Wt

[
π1σdB

0
t − π2%(t)dB1

t

]
+ π1Wt

∫
R
γ(t, η)J̃(dη, dt),

2. Post-death case
We have,

dWt =
(
Wt[π1(α− r) + π2(k(t) + Z(t)− r) + r]− C(t) (10)

+ ψ(Yt, t)
)
dt+Wt[σπ1dB

0
t − π2%(t)dB1

t ]

+ π1Wt

∫
R
γ(t, η)J̃(dt, dη)

where τ ∧ T = min {τ, T}, and µ(t)(P (t)−Wt)dt corresponds to the risk premium rate to pay for the
life insurance at time t, ψ(Yt, t) is the stochastic income rate and the consumption rate C(t) which are
non negative and continuous.

3. Portfolio Selection

3.1 Pre-death case

We employ the Stochastic programming approach in finding the suitable investment strategy
(π1, π2, P (t), C(t)) that maximizes the terminal wealth of an investor, the consumption and premiums
to be paid during the minimum time [τ, T ]. Let the hurdle rate be a positive Ft adapted process defined
by Φ(t) and the utility function of the terminal wealth, consumption and premiums be given as U , we
then select a strategy that maximize the performance function given by:
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J(0,W (0), π1, π2, C, P ) := sup
(π1,π2,C,P )∈χ

E

[∫ τ∧T

0
e−

∫ s
0 Φ(u)du (11)

× (U1(C(s)) + U2(P (s)))ds

+ e−
∫ T
0 Φ(u)du(U3(W (T )){τ<T}

]
,

where Ui, i = 1, 2, 3 is the utility function for the consumption, premiums and the terminal wealth of an
investor and χ is a set of admissible strategies that is

χ := {π1, π2, C, P := (π1(t), π2(t), C(t), P (t))t∈[0,T ]}. (12)

At the terminal time t the set (π1, π2, C, P ) is Ft adapted with P as defined in (7) and

∫ T

0
[C(t) + π2

1(t) + π2
2(t)]dt <∞.

Using the conditional probability of survival in (8) we redefine the performance function as:

J(0,W (0), π1, π2, C, P ) := sup
(π1,π2,C,P )∈χ

E

[∫ T

0
e−

∫ s
0 Φ(u)du (13)

× F̄ (s)(U1(C(s)) + U2(P (s)))ds

+ e−
∫ T
0 Φ(u)duF̄ (T )(U3(W (T ))

]
,

therefore we obtain

J(0,W (0), π1, π2, C, P ) := sup
(π1,π2,C,P )∈χ

E

[∫ T

0
e−

∫ s
0 (Φ(u)+µ(u))du(U1(C(s)) (14)

+U2(P (s)))ds+ e−
∫ T
0 (Φ(u)+µ(u))du(U3(W (T ))

]
.

3.2 Conditions on the random parameters considered

We impose conditions since we are dealing with random parameters and diffusion jumps which will
guarantee the unique and existent solutions, they are as follows:

• r 6= α

• The interest rate r, the force of mortality µ(t) and the discount rate Φ(t) are bounded away from
zero, thus there exist ε > 0 such that for ℘ := r, µ, Φ, we have |℘| ≥ ε.

• The exponential integrability conditions are satisfied by the random parameters, that
is E

[
e(Θ

∫ T
0 |℘(t)|dt)

]
<∞, for large Θ as defined by (Guambe and Kufakunesu, 2015).
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3.3 Value Function

The value function is the maximal payoff function, hence in the present problem our value function is an
Ft measurable random process which cannot be obtained by partially differentiating that is always used
but the Hamilton-Jacobi-Bellman (HJB) equation incorporation with the backward stochastic differential
equation (BSDE) and is given by:

V (t,W ) = sup
(π1,π2,C,P )∈χ

J(t, w, π1, π2, C, P ) = J(t, w, π∗1, π
∗
2, C

∗, P ∗), (15)

with (π∗1, π
∗
2, C

∗, P ∗) ∈ χ being the main strategy of interest to be established.

3.4 The HJB equation and the BSDE with the diffusion jump

Incorporating the diffusion jump we consider the following conditions:

• The terminal condition ξ ∈ L2(Ω, {Ft},P,R), where H(T ) = ξ.

• A mapping f (generator) f : Ω × [0, T ]× R× L2
v(R) 7→ R is predictable.

• E[

∫ T

0
|f(t, 0, 0)|2dt] <∞; with |f(t, y, v)−f(t, y, v′)|2 ≤ h(|y−y′|2+

∫
R
|v(η)−v′(η)|2ν(dη)),

thus the BSDE with a diffusion jump is given by:

f(t,H(t), Υ (t))dt =

∫
R
Υ (t, η)J̃(dη, dt)− dH(t). (16)

With the conditions above we are assured that there is a unique solution (H,Υ ) to (16). The parameter
Υ is a control process that controls the process H so it satisfies the first condition above.

The following HJB equation is satisfied by the value function defined above. We let ϕ be defined as
ϕ : Rn 7→ R such that ϕ ∈ C2

◦ (Rn). We assume that partial derivatives ϕt, ϕw, ϕz ,ϕy, ϕh, ϕzz , ϕyy,

ϕwy, ϕwz , ϕyz , ϕww w.r.t t, w, z, y, h exists, where ϕt =
∂ϕ

∂t
, ϕz =

∂ϕ

∂z
, ϕzz =

∂2ϕ

∂z2
, etc., therefore the

generator is given by:

Lπ1,π2,c,p[ϕ(t, w, z, y, h)] = ϕt + ϕw
(
w
[
r + µ(t)

]
+ ψ(Yt, t)− µ(t)P (t)− C(t)

)
(17)

+ ϕyα1(yt, t) +
1

2
ϕyyσ

2
1(Yt, t) + ϕzς(t)[β(t)− Z(t)]

+
1

2
ϕzz%̄

2(t)− ϕwyρ%(t)σ1(Yt, t)w − ϕwz%̄(t)%(t)w

+ ϕyzρσ1(Yt, t)%̄(t) + sup
π1∈R
{1

2
ϕwwσ

2π2
1w

2 + ϕwwπ1(α− r)

− ϕwzσ%(t)ρw2π1 + ϕwyσ(t)σ1(Yt, t)wπ1

+ ϕwzρ%̄(t)σ(t)wπ1}+ sup
π2∈R
{1

2
ϕww%

2(t)π2
2w

2

+ ϕwwπ2(k(t) + Z(t)− r)} − ϕhf(t,H(t), Υ (t))

+

∫
R

[ϕ(t, w + π1wγ(t, η), z, y, h)− ϕ(t, w, z, y, h)

− π1wγ(t, η)ϕw]ν(dη) +

∫
R

[ϕ(t, w, z, y, h+ Υ (t, η))

− ϕ(t, w, z, y, h)− Υ (t, η)ϕw]ν(dη),

7



in consideration with the following equations;

dYt = α1(Yt, t)dt+ σ1(Yt, t)dXt (18)

dZ(t) = ς(t)[β(t)− Z(t)]dt+ %̄(t)dB1(t) (19)

dWt =
(
Wt

[
π1(α− r) + π2(k(t) + Z(t)− r) + r + µ(t)

]
+ ψ(Yt, t) (20)

− µ(t)P (t)− C(t)
)
dt+Wt

[
π1σdB

0
t − π2%(t)dB1

t

]
+ π1Wt

∫
R
γ(t, η)ν(dη, dt)

We define a function G as follows:

G(t, w, π1, π2, c, p) = Lπ1,π2,c,p[ϕ(t, w, z, y, h)] + U(c) + U(p). (21)

U(x) is defined as the utility function, therefore in general differentiating equation (21) with respect to
π1, π2, c, p and equating the derivatives to zero gives the following general optimal controls:

The proportion of wealth of an investor invested in stock π∗1 is given by;

∂G(·)
∂π1

= ϕwwσ
2π1w

2 + ϕww(α− r)− ϕwzσ%(t)ρw2 (22)

+ ϕwyσ(t)σ1(Yt, t)w + ϕwzρ%̄(t)σ(t)w

+

∫
R

[ϕπ1(t, w + π1wγ(η, t), z, y,H(t))− wγ(t, η)ϕw]ν(dη) = 0

π∗1 is the solution of the above equation.

To obtain the proportion invested in the inflation linked bond π∗2 we have;

∂G(·)
∂π2

= ϕww%
2(t)π2w

2 + ϕww(k(t) + Z(t)− r) = 0,

π∗2 = − ϕw
ϕww

[
(k(t) + Z(t)− r)

w%2(t)

]
. (23)

In general we have the optimal consumption process c∗ and premiums p∗ to be paid are given as;

∂G(·)
∂c

= −wϕw + U
′
(c) = 0 (24)

U
′
(c) = wϕw.

∂G(·)
∂p

= −µ(t)wϕw + U
′
(p) = 0 (25)

U
′
(p) = µ(t)wϕw.

We consider the CRRA utility defined as follows:

U(x) =


xλ

λ
, if λ ∈ R \ {0}

lnx, if λ = 0.
(26)

8



3.4.1 The Power Utility

Suppose we have the type of a constant relative risk aversion (CRRA) utility function given by the power
utility;

U(x) =
xλ

λ
, λ ∈ R \ {0}. (27)

We choose the value function as,

ϕ(w) =
wλ

λ
e(1−λ)H(t), λ ∈ R \ {0}. (28)

Consider the following differentials;

ϕwz(w) = 0 (29)

ϕwy(w) = 0 (30)

ϕw(w) = wλ−1e−(λ−1)H(t) (31)

ϕww(w) =
wλ−2

λ− 1
e−(λ−1)H(t) (32)

ϕπ1(w) = (w + π1wγ(η, t))λ−1wγ(η, t)e−(λ−1)H(t) (33)

Substituting (29), (30), (31), (32), and π∗1 into (22), (23), (24) and (25) then we have the following opti-
mal strategies;

The optimal proportion of wealth invested in stock π∗1(t) is the solution of the following equation:

wλ

λ− 1
e−(λ−1)H(t)σ2π1 +

∫
R

[(w + π1wγ(η, t))λ−1wγ(η, t)e−(λ−1)H(t) (34)

−wλγ(η, t)e−(λ−1)H(t)]ν(dη) = −wλe−(λ−1)H(t)(α− r)

For the proportion of wealth invested in the inflation linked bond π∗2(t) we have;

π∗2 =
(λ− 1)

%(t)

[
(k(t) + Z(t)− r)

%(t)

]
(35)

We have the optimal consumption process c∗(t) given as;

c∗(t) = w

λ

(λ− 1) e−H(t). (36)

The investor pays premiums p∗(t) as given by;

p∗(t) = [µ(t)wλ
] 1

(λ− 1) e−H(t). (37)
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With the optimal strategies in section (3.4.1), substituting π∗1 , (35), (36) and (37) into equation (21) we
obtain the following;

0 =
(1− λ)

λ
e(1−λ)H(t)

{
wλ
[
λ

(
(r + µ)

(1− λ)
+

1

w(1− λ)
ψ(Yt, t) (38)

− e−H(t)

(1− λ)
(µλw)

1

λ− 1 − e−H(t)

(1− λ)
w

1

λ− 1 − 1

2
σ2(π∗1)2

+ π∗1
(α− r)
(1− λ)

+
1

(%(t))2
((λ− 1)(k(t) + Z(t)− r))2

(1

2
+

1

(λ− 1)2

))
− f(t,H(t), Υ (t)) +

1

(1− λ)

{∫
R

[(1 + π∗1γ(t, η))λ − 1

− λπ∗1γ(t, η)]ν(dη) +

∫
R

[e(λ−1)γ(t,η) − 1− γ(t, η)

w
]ν(dη)

}]

+ w

λ2

λ− 1 e
−λH(t)

(1− λ)

(
1 + µ

λ

λ− 1
)}

Note that
1− λ
λ

e(1−λ)H(t) 6= 0 for λ /∈ {0, 1} we have ;

0 = wλ
[
λ

(
(r + µ)

(1− λ)
+

1

w(1− λ)
ψ(Yt, t)−

e−H(t)

(1− λ)
(µλw)

1

λ− 1 (39)

− e−H(t)

(1− λ)
w

1

λ− 1 − 1

2
σ2(π∗1)2 + π∗1

(α− r)
(1− λ)

+
(λ− 1)2

(%(t))2
(k(t) + Z(t)− r)2

×
(1

2
+

1

(λ− 1)2

))
− f(t,H(t), Υ (t)) +

1

(1− λ)

{∫
R

[(1 + π∗1γ(t, η))λ

− 1− λπ∗1γ(t, η)]ν(dη) +

∫
R

[e(λ−1)γ(t,η) − 1− γ(t, η)

w
]ν(dη)

}]

+ w

λ2

λ− 1 e
−λH(t)

(1− λ)

(
1 + µ

λ

λ− 1
)
,

then we have;

f(t,H(t), Υ (t)) =

[
λ

(
(r + µ)

(1− λ)
+

1

w(1− λ)
ψ(Yt, t)−

e−H(t)

(1− λ)
(µλw)

1

λ− 1 (40)

− e−H(t)

(1− λ)
w

1

λ− 1 − 1

2
σ2(π∗1)2 + π∗1

(α− r)
(1− λ)

+
(λ− 1)2

(%(t))2

× (k(t) + Z(t)− r)2

×
(1

2
+

1

(λ− 1)2

))
+

1

(1− λ)

{∫
R

[(1 + π∗1γ(t, η))λ

− 1− λπ∗1γ(t, η)]ν(dη) +

∫
R

[e(λ−1)γ(t,η) − 1− γ(t, η)

w
]ν(dη)

}]

− w

λ

λ− 1 e−λH(t)

λ(1− λ)

(
1 + µ

λ

λ− 1
)
,

10



for λ ∈ (0, 1).

We observe that equation (40) is the generator of the equation (16), we consider the conditions stated by
(Guambe and Kufakunesu, 2015), conditions "(C1 to C3)". In finding the unique solution (H,Υ ) we let
P be a probability measure on (Ω,Ft) such that we have a function L(ω) that can define a new measure
through the relation dQ(ω) = L(ω)dP. The probability measures P and Q are equivalent written P ∼ Q
whenever ∀ ω ∈ Ω P(ω) > 0 iff Q(ω) > 0. Q is considered a probability measure on (Ω,Ft) if the
probability measure P is defined and if the function L have the following properties;
K1 : L(t) ≥ 0 a.s w.r.t P.

K2 :

∫
Ω
L(t)dP(t) = 1.

Given the equivalent probability measures above on the σ−algebra F we obtain

dQ
dP

= L, (41)

L is referred to as the Radon-Nikodym derivative and is given by;

dL(t)

L(t)
=

∫
R

[
w(e(1−λ)Υ (s,η) − 1)

(1− λ)Υ (s, η)
− 1

]
J̃(ds, dη) (42)

The Girsanov’s theorem explains the variability of the stochastic process under the new equivalent mea-
sure to the original probability measure, in this case we consider the change from probability measure P
to Q. We let

ν(t, η) =
w(e(1−λ)Υ (t,η) − 1)

(1− λ)Υ (t, η)
− 1. (43)

Using the Girsanov’s theorem we define the (Q,Ft) compensated jump measure J̃Q(dt, dη) as;

J̃Q(dt, dη) = J(dt, dη)− (ν(t, η) + 1)ν(dη)dt,

Therefore in the probability measure Q we have equation (16) with the generator (40) is given as;

dH(t) = −

{
λ(r + µ)

(1− λ)
+
λψ(Yt, t)

w(1− λ)
− λ

2
σ2(π∗1)2 + π∗1

λ(α− r)
(1− λ)

(44)

+ (k(t) + Z(t)− r)2λ(λ− 1)2

(%(t))2

(1

2
+

1

(λ− 1)2

)
+

λ

(1− λ)

{∫
R

[(1 + π∗1γ(t, η))λ − 1− λπ∗1γ(t, η)]ν(dη)

}

−
(
λ(µλw)

1

λ− 1

(1− λ)
+
λw

1

λ− 1

(1− λ)

)
e−H(t)

+ w

λ

λ− 1

(
1 + µ

λ

λ− 1
)
e−λH(t)

λ(1− λ)

}
dt+

∫
R
Υ (t, η)J̃Q(dη, dt)

H(T ) = 0.

11



The solution of the above equation (44) is represented below as:

∫ T

t
dH(s) = −

∫ T

t

{
λ(r + µ)

(1− λ)
+
λψ(Ys, s)

w(1− λ)
− λ

2
σ2(π∗1)2 (45)

+ π∗1
λ(α− r)
(1− λ)

+
(k(s) + Z(s)− r)2λ(λ− 1)2

(%(s))2

(1

2
+

1

(λ− 1)2

)
+

λ

(1− λ)

{∫
R

[(1 + π∗1γ(s, η))λ − 1− λπ∗1γ(s, η)]ν(dη)

}}
ds

+

∫ T

t

∫
R
Υ (s, η)J̃Q(dη, ds)

With H(T ) = 0 the solution reduces to;

H(t) = −
∫ T

t

{
λ(r + µ)

(1− λ)
+
λψ(Ys, s)

w(1− λ)
− λ

2
σ2(π∗1)2 (46)

+ π∗1
λ(α− r)
(1− λ)

+
(k(s) + Z(s)− r)2λ(λ− 1)2

(%(s))2

(1

2
+

1

(λ− 1)2

)
+

λ

(1− λ)

{∫
R

[(1 + π∗1γ(s, η))λ − 1− λπ∗1γ(s, η)]ν(dη)

}}
ds

+

∫ T

t

∫
R
Υ (s, η)J̃Q(dη, ds)

defined by (Łukasz Delong, 2013) in consideration to the special condition that

w

λ

λ− 1

(
1 + µ

λ

λ− 1
)
e−λH(t)

λ(1− λ)
= 0. Note that since,

w

λ

λ− 1 e−λH(t)

λ(1− λ)
6= 0 implies that

1 + µ

λ

λ− 1 = 0. Thus

µ(t) = (−1)

λ− 1

λ = µ?, µ? a constant (47)

for some λ. The above equation (47) is the hazard rate function of a policy holder to be alive at a certain
time t. Therefore the policy holder’s conditional probability of survival as;

F̄ (tl) = e−µ
?tl (48)

the conditional survival probability density of the death of the policy holder given by;

f(tl) = µ?e−µ
?tl (49)

Theorem 3.1. In an Itô Lêvy setting the optimal investment-consumption-insurance strategy with the con-

ditions imposed on random parameters considered in the model with the power utility U(w) =
wλ

λ
; λ ∈

R \ {0} and value function ϕ(t, w, z, y, h) =
wλ

λ
e(1−λ)H(t) are:

12



π∗1(t) is the solution of the following equation:

(
σ2π1

λ− 1
+

∫
R

[(1 + π1γ(η, t))λ−1γ(η, t)− γ(η, t)]ν(dη) + (α− r)
)

= 0; for (50)

wλe−(λ−1)H(t) 6= 0

π∗2 =
(λ− 1)

%(t)

[
(k(t) + Z(t)− r)

%(t)

]
, c∗(t) = w

λ

(λ− 1) e−H(t) and

p∗(t) = [µ(t)wλ
] 1

(λ− 1) e−H(t).

3.4.2 The Logarithmic Utility

We consider the exponential utility function defined by equation (26) where λ = 0 therefore;

U(x) = lnx, 0 < x <∞

We define the value function ϕ(w) as;

ϕ(w) = eH(t) lnw. (51)

Consider the following differentials

ϕwz(w) = 0 (52)

ϕwy(w) = 0 (53)

ϕw(w) =
eH(t)

w
(54)

ϕww(w) = −e
H(t)

w2
(55)

ϕπ1(w) =
eH(t)γ(η, t)

(1 + π1γ(η, t))
. (56)

With the above differentials we obtain the controls as follows;

π∗1 is the proportion of wealth invested in stock and lies in (0, 1), is the solution of the following equation;

eH(t)
[
σ2π1 −

∫
R

[
γ
( −π1γ

(1 + π1γ)

)]
ν(dη)

]
= eH(t)(α− r), (57)

since eH(t) 6= 0, we have;

[
σ2π1 −

∫
R

[
γ
( −π1γ

(1 + π1γ)

)]
ν(dη)

]
= (α− r). (58)

We have the optimal proportion π∗2(t) given by;

π∗2(t) =

[
(k(t) + Z(t)− r)

%2(t)

]
(59)

13



We have the optimal consumption process c∗(t) and the premium p∗(t) given by;

c∗ = e−H(t) (60)

For p∗ we have

p∗ =
e−H(t)

µ(t)
(61)

Taking the controls in example 2, substituting π∗1 , (59), (60), (61) into (21) we obtain the following;

0 = eH(t) lnw

{
1

lnw

(
(r + µ) +

Ψ(Yt, t)

w
− 2e−H(t)

w
− σ2(π∗1)2

2
(62)

+ π∗1(α− r) +
(k(t) + Z(t)− r)2

2%2
− f(t,H(t), Υ (t))

+

∫
R

[ln(1 + π∗1wγ(t, η))− π∗1γ(t, η)]ν(dη)

+

∫
R

[lnw(eγ(t,η) − 1)− γ(t, η)

w
]ν(dη)− e−H(t)

(
2H(t)− lnµ

))}

Taking into consideration that eH(t) lnw 6= 0 therefore we have ;

f(t,H(t), Υ (t)) =
1

lnw

(
(r + µ) +

Ψ(Yt, t)

w
− 2e−H(t)

w
− σ2(π∗1)2

2
(63)

+ π∗1(α− r)
)

+
(k(t) + Z(t)− r)2

2%2 lnw

+
1

lnw

(∫
R

[ln(1 + π∗1wγ(t, η))− π∗1γ(t, η)]ν(dη)

+

∫
R

[lnw(eγ(t,η) − 1)− γ(t, η)

w
]ν(dη)

)
− e−H(t)

lnw

(
2H(t)− lnµ

)
.

We have the generator above, equation (63) for the BDSE with diffusion jump in equation (16). We use
the definition of equivalent measures defined in section (3.4.1) in finding the unique solution (H, γ). We
define the Radon-Nikodym derivative given by;

dL(t)

L(t)
=

∫
R

[
w lnw(eγ − 1)

γ(t, η)
− 1

]
J̃(ds, dη). (64)

In consideration to the Girsanov’s theorem we consider the change of probability measure P to Q.We
suppose that

ν(η, t) :=
w lnw(eγ − 1)

γ(t, η)
− 1 (65)

14



then we have the compensated random measure defined under the probability measure Q, we then have
the BSDE in equation (16) given by;

dH(t) =

{
1

lnw

(
(r + µ) +

Ψ(Yt, t)

w
− σ2(π∗1)2

2
+ π∗1(α− r) (66)

+
(k(t) + Z(t)− r)2

2%2
+

∫
R

[ln(1 + π∗1wγ(t, η))− π∗1γ(t, η)]ν(dη)

)
+ e−H(t)

[
−2

wlnw
−
(
2H(t) + lnµ

)
lnw

]}
dt+

∫
R
Υ (t, η)J̃Q(dη, dt)

The solution of the above equation (66) is given by:

H(t) = E

{∫ T

t
ln

[
1 +

∫ s

t

(
−2

w lnw

)
dũ

]
× 1

lnw

(
(r + µ) (67)

+
Ψ(Yt, t)

w
− σ2(π∗1)2

2
+ π∗1(α− r) +

(k(t) + Z(t)− r)2

2%2

+

∫
R

[ln(1 + π∗1wγ(t, η))− π∗1γ(t, η)]ν(dη)

)}

whenever

• µ(t) = e−2H(t).

• 1 + π∗1wγ > 0; for π∗1 >
−1

wγ
and wγ 6= 0.

Theorem 3.2. The optimal investment-consumption-insurance strategy in an Itô Lêvy setting with the
considered conditions on random parameters in the model where we have the logarithmic utility
U(w) = lnw; for λ = 0 and the value function given by ϕ(t, w, z, y, h) = lnweH(t), we have the
strategies given by:

p∗ =
e−H(t)

µ(t)
, c∗ = e−H(t) , π∗2 =

[
(k(t) + Z(t)− r)

%2(t)

]
(68)

and, π∗1(t) is the solution of the following equation:

σ2π1 −
∫
R

[
γ(η, t)

( w

(w + π1wγ(η, t))
− 1
)]
ν(dη)− (α− r) = 0. (69)

3.5 Post-death case

In these section we present the case when the investor dies at time τ after the retirement time T , that is
τ > T . Note that here the investor does not pay premiums thus p = 0. We have the wealth process as
given by equation (10) and the beneficiaries obtain a share as given by the following;

W (τ) +
p(τ)

π̃(τ)
, (70)
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where π̃(τ) is the premium insurance ratio,
p(τ)

π̃(τ)
is the insurance benefit and W (τ) is the wealth of the

investor in their time of life to their time of death τ . We have the investment-consumption strategy for
the beneficiaries given by

χ := (π̄1, π̄2, ca) (71)

where π̄1, π̄2 are the proportions of wealth to be obtained by the beneficiaries from stock and the inflation
linked bond respectively and ca is the consumption rate after the investor dies. It is as well defined by;

∫ T

0
ca(s)ds <∞ (72)

The performance function is given below as:

J(0,W (0), π̄1, π̄2, ca) := sup
(π̄1,π̄2,ca)∈χ

Et,w

[∫ T

t
e−

∫ τ∧T
0 Φ(u)du (73)

× (U1(ca(s)))ds+ e−
∫ T
t Φ(u)du(U2(W (T )){τ>T}

]
,

where U1 and U2 are the utility functions for the consumption of the beneficiaries and the terminal wealth
of an investor respectively. The set (π̄1, π̄2, ca) isFt adapted. The performance function is then redefined
using the probability of survival as:

J(0,W (0), π̄1, π̄2, ca) := sup
(π̄1,π̄2,ca)∈χ

Et,w

[∫ T

t
e−

∫ τ∧T
0 (Φ(u)+µ(u))du (74)

× (U1(ca(s)))ds

+ e−
∫ T
t (Φ(u)+µ(u))du(U2(W (T ))

]
.

We consider the conditions imposed on the parameters in section (3.2). The defined function below is
given as:

Ḡ = sup
π̄∗1 ,π̄

∗
2 ,c
∗
a

{Lπ̄1,π̄2,ca [ϕ(t, w, z, y, h)] + U(ca)} (75)

We assume that the partial derivatives ϕt, ϕw, ϕz, ϕy, ϕh, ϕzz, ϕyy, ϕwy, ϕwz, ϕyz, ϕww w.r.t t, w, z, y, h

exists, where ϕt =
∂ϕ

∂t
, ϕz =

∂ϕ

∂z
, ϕzz =

∂2ϕ

∂z2
, etc. exists, then we have the generator of the wealth

process is defined below as:
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Lπ̄1,π̄2,ca [ϕ(t, w, z, y, h)] = ϕt + ϕw
(
w
[
r + µ

]
+ ψ − ca

)
+ ϕyα1 (76)

+
1

2
ϕyyσ

2
1 + ϕzς[β − Z] +

1

2
ϕzz%̄

2

− ϕwyρ%(t)σ1w − ϕwz%̄%w + ϕyzρσ1%̄

+ sup
π̄1∈R
{1

2
ϕwwσ

2π̄2
1w

2 + ϕwwπ̄1(α− r)

− ϕwzσ%ρw
2π̄1 + ϕwyσσ1wπ̄1

+ ϕwzρ%̄σwπ̄1}+ sup
π̄2∈R
{1

2
ϕww%

2π̄2
2w

2

+ ϕwwπ̄2(k + Z − r)} − ϕhf(t,H, Υ )

+

∫
R

[ϕ(t, w + π̄1wγ(t, η), z, y, h)− ϕ(t, w, z, y, h)

− π̄1wγ(t, η)ϕw]ν(dη) +

∫
R

[ϕ(t, w, z, y, h+ Υ (t, η))

− ϕ(t, w, z, y, h)− Υ (t, η)ϕw]ν(dη),

considering the equations (18), (19) and (10). We obtain the optimal controls π̄∗1, π̄
∗
2, c
∗
a by differentiating

(75) with respect to π̄1, π̄2 and ca and equating them to zero.
The proportion π∗1 of wealth held from the invested stock is given by;

∂G(·)
∂π̄1

= ϕwwσ
2π̄1w

2 + ϕww(α− r)− ϕwzσ%ρw2 (77)

+ ϕwyσσ1w + ϕwzρ%̄σw

+

∫
R

[ϕπ̄1(t, w + π̄1wγ(η, t), z, y,H(t))− wγ(t, η)ϕw]ν(dη) = 0

π̄∗1 is the solution of the above equation.

We get the proportion of wealth held in the inflation linked bond π̄∗2 as;

∂G(·)
∂π̄2

= ϕww%
2π̄2w

2 + ϕww(k + Z − r) = 0,

π̄∗2 = − ϕw
ϕww

[
(k + Z − r)

w%2

]
. (78)

We have the optimal consumption process c∗a to be consumed as;

∂G(·)
∂ca

= −wϕw + U
′
(ca) = 0 (79)

U
′
(ca) = wϕw,

given that U
′
(ca) is the differential of the utility function w.r.t ca.

The following theorems states the solutions above given a specific utility function U(w) and a specific
value function ϕ(t, w, z, y, h). The steps are omitted as they are obtained exactly like those in the pre-
death case.
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Theorem 3.3. Given a power utility function U(w) =
wλ

λ
; for λ ∈ R\{0} and the value function

ϕ(t, w, z, y, h) =
wλ

λ
e−(λ−1)H(t), the optimal investment-consumption strategy of the beneficiaries in

an Itô Lêvy setting with the conditions given on the parameters are given by;
π̄∗1(t) is the solution of the following equation:

(
σ2π̄1

λ− 1
+

∫
R

[(1 + π̄1γ(η, t))λ−1γ(η, t)− γ(η, t)]ν(dη) + (α− r)
)

= 0; for (80)

wλe−(λ−1)H(t) 6= 0

π̄∗2 =
(λ− 1)

%(t)

[
(k(t) + Z(t)− r)

%(t)

]
, c∗a(t) = w

λ

(λ− 1) e−H(t).

Theorem 3.4. The optimal investment-consumption strategies of the beneficiaries in an Itô Lêvy setting
with the considered conditions on random parameters with the logarithmic utility U(w) = lnw; for
λ = 0 and the value function ϕ(t, w, z, y, h) = lnweH(t), we have the strategies given by:

c∗a = e−H(t) , π̄∗2 =

[
(k(t) + Z(t)− r)

%2(t)

]
(81)

and π̄∗1(t) is the solution of the following equation:

σ2π̄1 −
∫
R

[
γ(η, t)

( 1

(1 + π̄1γ(η, t))
− 1
)]
ν(dη)− (α− r) = 0. (82)

The theorems above are obtained similarly as the theorems 3.1 and 3.2 respectively. Substituting π̄∗1 and
the strategies above into (75) we obtain the generators of the BSDE equation (16) with the considered
utility functions and value functions.

f(t,H(t), Υ (t)) =

{
λ

[
1

1− λ
(
(r + µ) +

ψ(y, t)

w
+ π∗1(α− r)

)
− σ2(π∗1)2

2
(83)

− 3

2

(
k + z − r

%

)2]}
− 1

1− λ

(
λe−H(t) − w

1

λ− 1 e−H(2λ−1)

)
+

1

(1− λ)

{∫
R

[(1 + π∗1γ(t, η))λ − 1− λπ∗1γ(t, η)]ν(dη)

+

∫
R

[e(λ−1)γ(t,η) − 1− γ(t, η)

w
]ν(dη)

}]
,

and,

f(t,H(t), Υ (t)) =
1

lnw

(
(r + µ) +

Ψ(Yt, t)

w
− 2e−H(t)

w
− σ2(π∗1)2

2
(84)

+ π∗1(α− r)
)

+
(k(t) + Z(t)− r)2

2%2 lnw

+
1

lnw

(∫
R

[ln(1 + π∗1wγ(t, η))− π∗1γ(t, η)]ν(dη)

+

∫
R

[lnw(eγ(t,η) − 1)− γ(t, η)

w
]ν(dη)

)
− 1

lnw

(
H(t) +

1

w

)
e−H(t).
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respectively.

4. Conclusion

The paper entirely focused on the study of optimal investment-consumption-insurance strategy in an Itô
Lêvy setting with diffusion jumps. The wealth process is determined at different generations of the life of
an investor, where investment position is taken on both risky and risk-less assets. The assets comprises of
stock with a diffusion jump, bond, and a money market account. Inflation as the most important economic
factor is taken into account as it affects the wealth of an investor at any given time, thus the inflation is
linked to the bond which makes the bond risky. The investor’s incoming source of funds is taken to be
a stochastic process that also contributes to his/her’s wealth. The investor’s consumption is finite and
does not exceed the limit of what they have. We managed to employ both the BSDE with jumps and the
HJB equation in finding the optimal investment strategies π∗1, π

∗
2, c
∗, and p∗ with the different conditions

imposed on the parameters throughout the paper. When the investor dies the proportions invested are then
the proportions that beneficiaries can decide whether to sell or buy looking at the market the investment
has been made on, and the insurance pays out the benefit they have agreed on with the holder in their
time of life. The beneficiaries can either continue with the investment by increasing or decreasing the
fractions looking at the level of risk in each one of them and continue to consume the proportion that
will allow the investment to go on. With the use and understanding of the theorems employed, that is the
Radon-Nikodym theorem and the Girsanov’s theorem, the consideration of the utility functions and value
functions chosen, the power and logarithmic functions gave us the optimal strategies given by theorems
(3.1) and (3.2).
The study can further be improved by using other approaches or techniques in finding the optimal strate-
gies. The study on diffusion jumps could help in giving a function on the solution of π∗1 to improve the
solutions obtained. Different assumptions can be made on the values of the parameters and the utility
functions chosen and compare the solutions obtained. One can consider the different times of life of an
investor and choose a more specific insurance an investor buys.
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