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ABSTRACT AND DEFINITIONS

A Fermat prime (see [1] or [2] or [3] or [4] or [5] or [6] or [7] or [8] or [9]) is a prime number of the form Fn = 22
n

+ 1, where n is

an integer ≥ 0. Fermat primes are characterized via divisibility in [6] and [7]. It is known (see [4] or [5] or [8] or [9]) that for every

j ∈ {0, 1, 2, 3, 4}, Fj is a Fermat prime. The Fermat primes problem stipulates that there are infinitely many Fermat primes. That

being so, in this paper, we give the short analytic simple proof of the Fermat primes problem, by reducing this problem into an

equation of three unknowns and by using elementary combinatoric coupled with elementary computation, elementary arithmetic

calculus, elementary divisibility and trivial complex calculus. Moreover, our paper clearly shows that divisibility helps to charac-

terize Fermat primes as we did in [6] and [7], and elementary computation coupled with elementary arithmetic calculus and trivial

complex calculus help to give the simple proof of the Fermat primes problem.
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PROLOGUE. In Section.1, we introduce definitions that are not standard and we present some ele-
mentary properties deduced from these definitions. In Section.2, we prove some properties linked to
trivial complex calculus, elementary divisibility, trivial computation, elementary arithmetic calculus,
and we reduce the Fermat primes problem into an equation of three unknowns [few elementary prop-
erties of Section.2 will remain unproved and will be proved in Section.2’ (Epilogue)]. In Section.3,
using a simple proposition proved in Section.1, and some elementary properties of Section.2, we give
the short proof of the Fermat primes problem. In Section.2’ (Epilogue), we end this article by proving
elementary properties we let unproved in Section.2.

1. INTRODUCTION

In this section, we introduce definitions that are not standard and we present some elementary prop-
erties deduced from these definitions.
Definitions 1.0. For every integer n ≥ 2, we define F(n), fn, and fn.1 as follows:
F(n) = {x; 1 < x < 2nandx is aFermat prime}, fn = max

f∈F(n)
f , and

fn.1 = 2ffnn
∏

f∈F(n)

f

[observing ( see Abstract And Definitions) that 3 and 5 are Fermat prime numbers, then it becomes immediate to deduce that for

every integer n ≥ 3, {3, 5} ⊆ F(n) and fn ≥ 5 and fn.1 ≥ 2× 55 × 3× 5 > 93749].
Using the previous definitions and denotations, let us remark.

Remark 1.1.Let n be an integer ≥ F3 (see Abstract And Definitions for F3); look at F(n), fn,
and fn.1 introduced in Definitions 1.0. Then we have the following five simple properties.
(1.1.0.) −1 + F3 < fn < fn.1; fn.1 is even; fn.1 > 2ffnn > FF3

3 ; and

fn.1 = 2ffnn
∏

f∈F(n)

f.
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(1.1.1.) If fn < n, then: fn = fn−1 and fn.1 = fn−1.1.
(1.1.2.) If fn.1 ≤ 2n, then fn < n and fn.1 = fn−1.1.
(1.1.3) (The direct using of Fermat prime). If the Fermat prime fn is of the form fn < n, then
fn = fn−1 and fn.1 = fn−1.1.
(1.1.4) (The implicite using of Fermat prime). If fn.1 ≤ 2n, then the Fermat prime fn is of the
form fn < n and fn.1 = fn−1.1 .
Proof. Property (1.1.0) is trivial [Indeed, it suffices to use the definition of fn and fn.1, and the fact
that F3 ∈ F(n) ( note that F3 is a Fermat prime ( use Abstract and Definitions ), and observe that
n is an integer ≥ F3)]. Property (1.1.1) is immediate [ Indeed, if fn < n, clearly n > F3 (use the
definition of fn and observe that F3 ∈ F(n), since n is an integer ≥ F3), and so fn < n < 2n − 2 (
since n > F3 (by the previous) and fn < n (via the hypotheses) ); consequently

fn < 2n− 2 (1 .1 ).

Inequality (1.1) immediately implies that F(n) = F(n− 1) and therefore

fn = fn−1 (1 .2 ).

Equality (1.2) immediately implies that fn.1 = fn−1.1. Property (1.1.1) follows]. Property (1.1.2)
is trivial [Indeed, if fn.1 ≤ 2n, then using the previous inequality and the definition of (fn.1, fn) and
the fact that n ≥ F3, it becomes trivial to deduce that

fn < n (1 .3 ).

So fn.1 = fn−1.1 ( use (1.3) and property (1.1.1)). Property (1.1.2) follows]. Property (1.1.3) is the
trivial reformulation of property (1.1.1) and property (1.1.4) is an immediate reformulation of property
(1.1.2). Remark 1.1 follows. 2

Using the definition of fn.1 (use Definitions 1.0) , then the following remark and proposition be-
come immediate.

Remark 1.2. If limn→+∞ fn.1 = +∞, then there are infinitely many Fermat primes.
Proof. Immediate [indeed, it suffices to use the definition of fn.1 (use Definitions 1.0) ]. 2

Proposition 1.3.

If for every integer n ≥ F3, fn.1 > n or 2n− 1 is a Fermat prime or 2n+ 1 is a Fermat prime,

then there are infinitely many Fermat primes.
Proof. Clearly limn→+∞ fn.1 = +∞; therefore there are infinitely many Fermat primes [use the previous

equality and apply Remark 1.2]. 2

Proposition 1.3 clearly says that: if for every integer n ≥ F3, fn.1 > n or 2n − 1 is a Fermat
prime or 2n + 1 is a Fermat prime , then there are infinitely many Fermat primes; this is what we
will do in Section.3, by using only Proposition 1.3, elementary combinatoric, elementary complex
calculus, elementary divisibility, trivial computation, elementary arithmetic calculus and reasoning
by reduction to absurd via the reduction of the Fermat primes problem into an equation of three
unknowns. Proposition 1.3 is stronger than all the investigations that have been done on the Fermat
primes problem in the past. Morerover, the reader can easily see that Proposition 1.3 is easy and is
completely different from all the investigations that have been done on the Fermat primes problem in
the past. So, in Section.3, when we will give the analytic simple proof of the Fermat primes problem,
we will not need strong investigations that have been done on the previous problem in the past.
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2. SOME PROPERTIES LINKED TO TRIVIAL COMPLEX CALCULUS, ELEMENTARY
COMPUTATION AND ELEMENTARY ARITHMETIC CALCULUS; THE REDUCTION OF THE
FERMAT PRIMES PROBLEM INTO AN EQUATION OF THREE UNKNOWNS

In this section, the definitions of F(n), fn, and fn.1 (use Definitions 1.0) are crucial.

Recalls 2.1 ( Real numbers, R, complex numbers and C ). Recall that R is the set all real num-
bers and θ is a complex number if θ = x + iy, where x ∈ R, y ∈ R and i2 = −1; C is the set of all
complex numbers. That being said, we have the following three remarks which will help us when we
will reduce the Fermat primes problem into an elementary equation of three unknowns.
Remark.2.1.0. Let n be an integer ≥ F3 ( recall [use Abstract and Definitions] that F3 = 223 + 1)
and let fn.1 ( use Definitions 1.0); consider (Xn, Yn, Zn, x, y, k ) where

Xn =
4∑
j=1

Xn.j (2 .0 )

and where
Xn.1 = 0 (2 .1 ),

Xn.2 = −8n(16f−3
n.1 + 50f−2

n.1 + 11if−3
n.1 − 13i+ 5ifn.1) + 8fn.1 − 8i− 16 (2 .2 ),

Xn.3 = −8n(34if−2
n.1 − 70if−3

n.1 − 11i+ 5 + 6ifn.1) (2 .3 ),

and
Xn.4 = −8n(11ifn.1 + 7− 50f−1

n.1 + 23if−3
n.1 − 54f−3

n.1) (2 .4 );

Yn = 32n− 8fn.1 + 8i+ 16 (2 .5 ),

Zn = −32n− 8fn.1 + 8i+ 16 (2 .6 ),

x = −8fn.1 + 8i+ 16, y = 32nand k = 16nf−3
n.1 − 16nf−2

n.1 + 16nf−1
n.1 (2 .7 ).

Then
x+ y − Yn = 0 andx− y − Zn = 0

and
x+ 3iyf−1

n.1 + k(6fn.1 − 19− ifn.1 + 11if2
n.1 − 18i) +Xn = 0; k ∈ R.

Proof. Let (Xn, Yn, Zn, x, y, k ) explicited above and consider (Yn, Zn, x, y ); using (2.5) and (2 .6 ) and the first two equalities of
(2.7) , we easily check (by elementary computation) that

x+ y − Yn = 0 and x− y − Zn = 0 (2 .8 ).

That being so, look at (Xn, Yn, Zn, x, y, k ) explicited above and let (Xn, x, y, k ); using the three equalities of (2.7) and (2.j) (
where 0 ≤ j ≤ 4), it becomes very easy to check (by elementary computation and the fact that i2 = −1) that

x+ 3iyf−1
n.1 + k(6fn.1 − 19− ifn.1 + 11if2n.1 − 18i) +Xn = 0; k ∈ R andXn =

4∑
j=1

Xn.j (2 .9 )

( use the three equalities of (2.7) (for x and y and k); and (2.j) (for Xn.j where 1 ≤ j ≤ 4); and (2.0) (for Xn)). Remark.2.1.0

immediately follows ( use (2.8) and (2.9) ).

Remark.2.1.1 (Fundamental). Let n be an integer ≥ F3 ( recall [use Abstract and Definitions] that
F3 = 223 + 1) and let fn.1 ( use Definitions 1.0); consider (Xn, Yn, Zn, x, y, k ) where

Xn =
4∑
j=1

Xn.j (2 .10 )
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and where

Xn.1 =
126301if−3

n.1 + 2273418if−4
n.1 − 23837fn.1 − 357566f−1

n.1 + 2010800f−2
n.1 + 2399719f−4

n.1 − 757806f−3
n.1

1331
(2 .11 ),

Xn.2 = −4fn.1(16f−3
n.1 + 50f−2

n.1 + 11if−3
n.1 − 13i+ 5ifn.1) + 8fn.1 − 8i− 16 (2 .12 ),

Xn.3 =
289080

1331
(2 .13 ),

and

Xn.4 = 5fn.1(11ifn.1 + 7− 50f−1
n.1 + 23if−3

n.1 − 54f−3
n.1)− 1003112i

1331
(2 .14 );

Yn = ( 1− ifn.1 )2 + f2
n.1 − 1 (2 .15 ),

Zn = 4( (fn.1 − 1)2 − 1− f2
n.1 + fn.1 ) + ( 2i+ 1 )( 4ifn.1 + 4− 8i ) (2 .16 ),

x = 10− 6fn.1 + ifn.1, y = −10 + 6fn.1 − 3ifn.1, and k = −
35

11
−

618f−1
n.1

121
+

7494f−2
n.1

121
+

126301f−4
n.1

1331
(2 .17 ).

Then
x+ y − Yn = 0 andx− y − Zn = 0

and
x+ 3iyf−1

n.1 + k(6fn.1 − 19− ifn.1 + 11if2
n.1 − 18i) +Xn = 0; k ∈ R.

Proof. Let (Xn, Yn, Zn, x, y, k ) explicited above and consider (Yn, Zn, x, y ); using (2.15) and (2 .16 ) and the first two equalities
of (2.17) , we easily check (by elementary computation and the fact that i2 = −1) that

x+ y − Yn = 0 and x− y − Zn = 0 (2 .18 ).

That being so, look at (Xn, Yn, Zn, x, y, k ) explicited above and let (Xn, x, y, k ); using the three equalities of (2.17) and (2.j) (
where 10 ≤ j ≤ 14), it becomes very easy to check (by elementary computation and the fact that i2 = −1) that

x+ 3iyf−1
n.1 + k(6fn.1 − 19− ifn.1 + 11if2n.1 − 18i) +Xn = 0; k ∈ R andXn =

4∑
j=1

Xn.j (2 .19 )

( use the three equalities of (2.17) (for x and y and k); and (2.j+10) (for Xn.j where 1 ≤ j ≤ 4); and (2.10) (for Xn)). Remark.2.1.1

immediately follows ( use (2.18) and (2.19) ).

Remark.2.1.2 (Fundamental). Let n be an integer ≥ F3 ( recall [use Abstract and Definitions] that
F3 = 223 + 1) and let fn.1 ( use Definitions 1.0); consider (Xn, Yn, Zn, x, y ) where

Xn =
4∑
j=1

Xn.j (2 .20 )

and where

Xn.1 =
126301if−3

n.1 + 2273418if−4
n.1 − 23837fn.1 − 357566f−1

n.1 + 2010800f−2
n.1 + 2399719f−4

n.1 − 757806f−3
n.1

1331
(2 .21 ),

Xn.2 = 0 (2 .22 ),

Xn.3 = 4fn.1(34if−2
n.1 − 70if−3

n.1 − 11i+ 5 + 6ifn.1) +
289080

1331
(2 .23 ),

and

Xn.4 = 9fn.1(11ifn.1 + 7− 50f−1
n.1 + 23if−3

n.1 − 54f−3
n.1)− 1003112i

1331
(2 .24 );

Yn = ( 1− 4i− ifn.1 )2 + f2
n.1 − 1 (2 .25 ),

Zn = 4( (fn.1 + 1)2 − 1− f2
n.1 + fn.1 ) + 4ifn.1 + 4− 8i (2 .26 ),

x = 2fn.1 + ifn.1 − 6− 8i and y = −10− 10fn.1 − 3ifn.1 (2 .27 ).
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Then
x+ y − Yn = 0 andx− y − Zn = 0

and

there exists not k ∈ R such that x+ 3iyf−1
n.1 + k(6fn.1 − 19− ifn.1 + 11if2

n.1 − 18i) +Xn = 0.

Proof. Indeed let (Xn, Yn, Zn, x, y ) explicited above and consider (Yn, Zn, x, y ); using (2.25) and (2.26) and the two equalities
of (2.27), then we easily check (by elementary computation and the fact that i2 = −1) that

x+ y − Yn = 0 and x− y − Zn = 0 (2 .28 ).

That being said, to prove Remark.2.1.2, it suffices to show that

there exists not k ∈ R such that x+ 3iyf−1
n.1 + k(6fn.1 − 19− ifn.1 + 11if2n.1 − 18i) +Xn = 0

Fact.0.
there exists not k ∈ R such that x+ 3iyf−1

n.1 + k(6fn.1 − 19− ifn.1 + 11if2n.1 − 18i) +Xn = 0.

Otherwise ( we reason by reduction to absurd)

Let k ∈ R such that x+ 3iyf−1
n.1 + k(6fn.1 − 19− ifn.1 + 11if2n.1 − 18i) +Xn = 0 (2 .29 ).

It is immediate to see that (2.29) says that

x+ 3iyf−1
n.1 +Xn = −k(6fn.1 − 19− ifn.1 + 11if2n.1 − 18i); k ∈ R andXn =

4∑
j=1

Xn.j (2 .30 )

( use (2.20) for Xn ). Now let (Xn, Yn, Zn, x, y ) explicited above; consider (Xn, x, y) and look at (2.30); using elementary

computation and elementary divisibility coupled with the fact that i2 = −1 and k ∈ R, it becomes very easy to check that (2.30)
immediately implies that

k = kn.1 = kn.2 (2 .31 ),

where

kn.1 =
−23837fn.1 − 357566f−1

n.1 + 2010800f−2
n.1 + 2399719f−4

n.1 − 757806f−3
n.1 + 289080

1331(19− 6fn.1)
+

85fn.1 − 447− 486f−3
n.1

19− 6fn.1
(2 .32 ),

and

kn.2 =
2273418f−4

n.1 + 126301f−3
n.1 − 1003112

1331(fn.1 − 11f2n.1 + 18)
+

123f2n.1 + 106f−1
n.1 − 38− 43fn.1 − 73f−2

n.1

fn.1 − 11f2n.1 + 18
(2 .33 )

( via (2.30), use the two equalities of (2.27) (for x and y); and (2.j+20) (for Xn.j where 1 ≤ j ≤ 4); and (2.20) (for Xn)).

That being so, using (2.31) and (2 .32 ) and (2 .33 ), then we immediately deduce (via elementary computation and the fact that
kn.1 = kn.2 ) that

10996722f−2
n.1 − 11643588f−3

n.1 − 7115526 + 7762392f−1
n.1 = 0 (2 .34 ).

Equality (2 .34 ) is clearly impossible ( since fn.1 > FF3
3 ( use property (1.1.0) of Remark 1.1) and therefore

10996722f−2
n.1 − 11643588f−3

n.1 − 7115526 + 7762392f−1
n.1 < 0

) .So assuming that

there exists k ∈ R such that x+ 3iyf−1
n.1 + k(6fn.1 − 19− ifn.1 + 11if2n.1 − 18i) +Xn = 0

gives rise to a serious contradiction; therefore

there exists not k ∈ R such that x+ 3iyf−1
n.1 + k(6fn.1 − 19− ifn.1 + 11if2n.1 − 18i) +Xn = 0.

Fact.0. follows and Remark.2.1.2 immediately follows.

We will use the previous three Remarks to introduce the notion of tackle which will help us to
reduce the Fermat primes problem into an elementary equation of three unknowns; this notion is
fundamental and crucial for the short complete simple proof of the Fermat primes problem.
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Definition 2.2 ( Fundamental) ( tackle ). Recall ( use Recalls 2.1 ) that R is the set all real
numbers and C is the set of all complex numbers. Clearly

C2 = {(x, y); x ∈ C and y ∈ C} and C2 ×R = {(x, y, k); (x, y) ∈ C2 and k ∈ R}

and
C3 = {(x, y, z); (x, y) ∈ C2 and z ∈ C}.

Now let n be an integer ≥ F3 and look at fn.1 ( use Definitions 1.0); we say that (φ(n), ν(n), ε(n) ) ∈ C3

tackles (1, 3if−1
n.1) around 6fn.1− 19− ifn.1 + 11if2

n.1− 18i, if there exists (x, y, k) ∈ C2×R such that

x+3iyf−1
n.1 +k(6fn.1−19− ifn.1 +11if2

n.1−18i)+φ(n) = 0where x+y−ν(n) = 0 andx−y−ε(n) = 0.

We will see that the definition of tackle introduced above helps to reduce the Fermat primes prob-
lem into an elementary equation of three unknowns. Before, let us define:

Definitions 2.3 (Fundamental). Let n be an integer ≥ F3 ( recall [use Abstract and Definitions]
that F3 = 223 + 1) and let fn.1 ( see Definitions 1.0); now consider (φn, νn, εn ), where

φn =
4∑
j=1

φn.j (2 .35 )

and where

φn.1 =
126301if−3

n.1 + 2273418if−4
n.1 − 23837fn.1 − 357566f−1

n.1 + 2010800f−2
n.1 + 2399719f−4

n.1 − 757806f−3
n.1

1331
(2 .36 ),

φn.2 = ((2n+ 1)2 − 1− f2n.1 − 2fn.1)(16f−3
n.1 + 50f−2

n.1 + 11if−3
n.1 − 13i+ 5ifn.1) +

(fn.1 − 2n)

2
(8fn.1 − 8i− 16) (2 .37 ),

φn.3 = ((2n+ 1)2 − 1− f2
n.1 + 2fn.1)(34if−2

n.1 − 70if−3
n.1 − 11i+ 5 + 6ifn.1) +

289080

1331
(2 .38 ),

and

φn.4 = ((2n+ 1)2 − 1− f2
n.1 + 7fn.1)(11ifn.1 + 7− 50f−1

n.1 + 23if−3
n.1 − 54f−3

n.1)− 1003112i

1331
(2 .39 );

νn = ( ifn.1 − 4in− 4i+ 1 )2 − 1 + f2
n.1 (2 .40 ),

and
εn = 4( (2n+ 1)2 − 1− f2

n.1 + fn.1 ) + ( ifn.1 − 2in+ 1 )( 4ifn.1 + 4− 8i ) (2 .41 ).

It is immediate that for every integer n ≥ F3, (φn, νn, εn ) is well defined and gets sense. Now
using the notion of tackle ( use Definition 2.2 ), then the following Theorem immediately implies
the Fermat primes problem.
Theorem.F. Let n be an integer ≥ F3 and let fn.1 (use Definitions 1.0); look at (φn, νn, εn ) introduced
in Definitions 2.3. Then at least one of the following four properties is satisfied by n.
(A0). 2n− 1 is a Fermat prime.
(A1). fn.1 ≥ 2n and 2n+ 1 is a Fermat prime.
(A2). fn.1 ≥ 2n+ 4.
(A3). (φn, νn, εn ) tackles (1, 3if−1

n.1) around 6fn.1 − 19− ifn.1 + 11if2
n.1 − 18i ( use Definition 2.2 for

the meaning of tackle ) .
We will simply prove Theorem.F in Section.3. But before, let us remark.

Remark.2.3.1 (fundamental: the using of Remark.2.1.1) . Let n be an integer ≥ F3 and
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let fn.1 ( use Definitions 1.0); now look at (φn, νn, εn ) introduced in Definitions 2.3. If fn.1 = 2n+ 2,
then (φn, νn, εn ) tackles (1, 3if−1

n.1) around 6fn.1 − 19 − ifn.1 + 11if2
n.1 − 18i ( use Definition 2.2 for

the meaning of tackle ).
This Remark is explicite using of Remark.2.1.1. We will prove Remark.2.3.1 in Epilogue (Section.2’).

Remark.2.3.2 (fundamental: reduction of the Fermat primes problem into a trivial equa-
tion of three unknowns ; the using of Remark.2.1.2) . Let n be an integer ≥ F3 and let fn.1
( use Definitions 1.0); now look at (φn, νn, εn ) introduced in Definitions 2.3. If fn.1 = 2n, then
(φn, νn, εn ) does not tackle (1, 3if−1

n.1) around 6fn.1− 19− ifn.1 + 11if2
n.1− 18i ( use Definition 2.2 for

the meaning of tackle ).
We will prove Remark.2.3.2 in Epilogue (Section.2’) and we will see that Remark.2.3.2 reduces the
Fermat primes problem into a simple equation of three unknowns. Indeed we will see in Epilogue (Sec-
tion.2’) that Remark.2.3.2 clearly says that, if fn.1 = 2n, we will have a simple equation of three un-
knowns which implies that (φn, νn, εn ) does not tackle (1, 3if−1

n.1) around 6fn.1−19−ifn.1+11if2
n.1−18i.

We will use Remark.2.3.2 in Theorem 3.6 (Section.3) to immediately deduce the Fermat primes prob-
lem. Now using Definitions 2.3, then we have the following elementary Proposition.

Proposition 2.4.Let n be an integer ≥ 1 + F3 and let fn.1 ( use Definitions 1.0); now look at
(φn, νn, εn) introduced in Definitions 2.3, and via (φn, νn, εn ), consider (φn−1, νn−1, εn−1 ) ( this

consideration gets sense, since n ≥ 1 + F3, and therefore n − 1 ≥ F3) . If fn.1 ≤ 2n, then
(φn−1 − φn, νn−1 − νn, εn−1 − εn ) tackles (1, 3if−1

n.1) around 6fn.1 − 19− ifn.1 + 11if2
n.1 − 18i.

This Proposition is explicite using of Remark.2.1.0. We will prove Proposition 2.4 in Epilogue (Sec-
tion.2’).

Having made the previous, we are now ready to give the analytic simple proof of the Fermat primes
problem.

3.THE SHORT ANALY TIC PROOF OF THE FERMAT PRIMES PROBLEM

In this Section, the definitions of F(n), fn and fn.1 (use Definitions 1.0), the definition of F3 ( recall

[see Abstract and Definitions] that F3 = 223 + 1), the definition of tackle (use Definition 2.2) and the
definition of (φn, νn, εn) (use Definitions 2.3), are fundamental and crucial.

Now the following Theorem immediately implies the Fermat primes problem.

Theorem 3.1. Let n be an integer ≥ F3 and let fn.1 (use Definitions 1.0); look at (φn, νn, εn) in-
troduced in Definitions 2.3. Then at least one of the following four properties is satisfied by n.
(A0). 2n− 1 is a Fermat prime.
(A1). fn.1 ≥ 2n and 2n+ 1 is a Fermat prime.
(A2). fn.1 ≥ 2n+ 4.
(A3). (φn, νn, εn) tackles (1, 3if−1

n.1) around 6fn.1 − 19− ifn.1 + 11if2
n.1 − 18i.

It is immediate that Theorem 3.1 is exactly Theorem.F stated in Section.2 just after Definitions
2.3. We are going to prove simply Theorem 3.1. But before, let us remark.

Remark 3.2. Let n be an integer ≥ F3 and let fn.1. We have the following four elementary
properties.
(3.2.0.) If fn.1 ≥ 2n+ 4, then Theorem 3.1 is satisfied by n.
(3.2.1.) If fn.1 = 2n+ 2, then Theorem 3.1 is satisfied by n.
(3.2.2.) If n ≤ 10 + F3, then Theorem 3.1 is satisfied by n.

(3.2.3.) Let the Fermat prime fn ( use Definitions 1.0). If fn ≥ 2n−10, then Theorem 3.1 is satisfied
by n.

Proof. Property (3.2.0) is trivial ( indeed if fn.1 ≥ 2n+ 4, then property A2 of Theorem 3.1 is clearly

satisfied by n). Property (3.2.1) is immediate (indeed let n be an integer ≥ F3, observing (via the hypotheses) that
fn.1 = 2n+ 2, then
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(φn, νn, εn) tackles (1, 3if−1
n.1) around 6fn.1 − 19− ifn.1 + 11if2n.1 − 18i (3 .1 )

( use Remark 2.3.1). (3.1) clearly says that property A3 of Theorem 3.1 is satisfied; therefore Theorem 3.1 is satisfied by n.

Property (3.2.1) follows). Property (3.2.2) is immediate ( indeed, observing (by using property (1.1.0) of Remark 1.1)

that fn.1 > FF3
3 , and remarking (via the hypotheses) that n ≤ 10 + F3 (recall [see Abstract and Definitions] that F3 = 22

3
+ 1) ,

then, using the previous two inequalities, it becomes trivial to deduce that

fn.1 > FF3
3 > 2(10 + F3) + 6 > 2n+ 4 (3 .2 );

so

fn.1 > 2n+ 4 (3 .3 )

( use (3.2) ). Theorem 3.1 is clearly satisfied by n( use inequality (3.3) and property (3.2.0)). Property (3.2.3) is simple

( indeed if fn ≥ 2n− 10, then using the preceding inequality and the definition of ( fn,fn.1 ), we immediately deduce that

fn.1 > ffnn > −1 + (2n− 10)2n−10 (3 .4 ).

Remarking that n ≥ F3 and using (3.4), then we easily deduce that

fn.1 > −1 + (2n− 10)2n−10 > 2n+ 4 (3 .5 );

so

fn.1 > 2n+ 4 (3 .6 )

( use (3.5) ). Theorem 3.1 is clearly satisfied by n ( use inequality (3.6) and property (3.2.0)).2
Using Remark 3.2, let us Remark.

Remark 3.3. Suppose that Theorem 3.1 is false; then there exists an integer n ≥ F3 such that
n does not satisfied Theorem 3.1. ( Proof. Immediate.2)

From Remark 3.3, let us define:

Definitions 3.4 (Fundamental). (i). We say that n is a counter-example to Theorem 3.1, if n ≥ F3

and if n does not satisfied Theorem 3.1 ( observe that if Theorem 3.1 is false, then such a n exists, via Remark 3.3 ) .
(ii). We say that n is a minimum counter-example to Theorem 3.1, if n is a counter-example to
Theorem 3.1 with n minimum (observe that if Theorem 3.1 is false, then such a n exists, by using (i) ).

The previous simple remarks and definitions made, we now prove simply Theorem 3.1.

Proof of Theorem 3.1. Otherwise ( we reason by reduction to absurd,), let n be a minimum

counter-example to Theorem 3.1 (such a n exists ( use Remark 3.3 and Definitions 3.4 )). We observe the follow-
ing.

Observation.3.1.i. Look at (n, fn.1) (recall n is a minimum counter-example to Theorem 3.1). Then
n > 10 + F3 and fn.1 ≤ 2n+ 2.

Clearly n > 10 + F3 (Otherwise n ≤ 10 + F3 and Theorem 3.1 is satisfied by n [ use the previous inequality and

apply property (3.2.2) of Remark 3.2]; a contradiction, since n does not satisfy Theorem 3.1); and clearly fn.1 ≤ 2n + 2

(Otherwise
fn.1 > 2n+ 2;

noticing that fn.1 and 2n+ 2 are even [ fn.1 is even (use the definition of fn.1) and 2n+ 2 is trivially even], then we immediately

deduce that the previous inequality implies that fn.1 ≥ 2n + 2 + 2; so fn.1 ≥ 2n + 4 and Theorem 3.1 is satisfied by n [use the

preceding inequality and apply property (3.2.0) of Remark 3.2]; we have a contradiction since n does not satisfy Theorem 3.1).
Observation.3.1.i follows.
Observation.3.1.ii. Look at n (recall n is a minimum counter-example to Theorem 3.1). Then

(φn, νn, εn) does not tackle (1, 3if−1
n.1) around 6fn.1 − 19− ifn.1 + 11if2

n.1 − 18i.

Immediate, since n is a counter-example to Theorem 3.1 and in particular, n does not satisfy
property A3 of Theorem 3.1.
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Observation.3.1.iii. Look at n and let fn.1. Then

fn.1 ≤ 2n and fn.1 = fn−1.1.

Firstly, we are going to show that fn.1 ≤ 2n. Fact: fn.1 ≤ 2n. Otherwise

fn.1 > 2n (3 .7 );

remarking that fn.1 and 2n are even ( fn.1 is even [use the definition of fn.1] and 2n is trivially even), then inequal-

ity (3.7) immediately implies that fn.1 ≥ 2n+2. Note ( by Observation.3.1.i ) that fn.1 ≤ 2n+2. Now
using the previous two inequalities, then we immediately deduce that fn.1 = 2n + 2; so Theorem 3.1
is satisfied by n ( use the previous equality and apply property (3.2.1) of Remark 3.2), and we have a contradiction,
since n does not satisfied Theorem 3.1. So

fn.1 ≤ 2n (3 .8 ).

Now we show that fn.1 = fn−1.1. Indeed using (3.8) and property (1.1.2) of Remark 1.1, then we
immediately deduce that fn.1 = fn−1.1. Observation.3.1.iii follows.
Observation.3.1.iv. Let (φn, νn, εn) ( use Definitions 2.3 ) and via (φn, νn, εn), consider (φn−1, νn−1, εn−1)

( this consideration gets sense, since n > 10 + F3 [ use Observation.3.1.i], and so n− 1 > 9 + F3 > 1 + F3 ). Then

(φn−1 − φn, νn−1 − νn, εn−1 − εn ) tackles (1, 3if−1
n.1) around 6fn.1 − 19− ifn.1 + 11if2

n.1 − 18i.

Indeed observing ( by Observation.3.1.iii ) that fn.1 ≤ 2n and noticing (by Observation.3.1.i ) that
n > 10 + F3, then using the previous two inequalities, we easily deduce that all the hypotheses
of Proposition 2.4 are satisfied and therefore the conclusion of Proposition 2.4 is satisfied; conse-
quently (φn−1−φn, νn−1−νn, εn−1− εn ) tackles (1, 3if−1

n.1) around 6fn.1−19− ifn.1 + 11if2
n.1−18i.

Observation.3.1.iv follows.
Observation.3.1.v. Look at n (recall n is a minimum counter-example) and consider n− 1 (this consid-

eration gets sense, since n > 10 + F3 [use Observation.3.1.i], and so n− 1 > 9 + F3 > 1 + F3).

Then property A0 of Theorem 3.1 is not satisfied by n− 1.

Otherwise ( we reason by reduction to absurd )

2(n− 1)− 1 is a Fermat prime (3 .9 )

( such a 2(n− 1)− 1 exists, since property A0 of Theorem 3.1 is satisfied by n− 1 ). Now let the Fermat prime fn ( use

Definitions 1.0 ); observing ( by Observation.3.1.i ) that n > 10 + F3 and using (3.9), then we easily deduce
that

fn ≥ 2n− 3 > 2n− 10 (3 .10 ).

Clearly
fn > 2n− 10 (3 .11 )

( use (3.10)). Now using (3.11) and property (3.2.3) of Remark 3.2, we deduce that Theorem 3.1
is satisfied by n and we have a contraction, since n does not satisfy Theorem 3.1. Observation.3.1.v
follows.
Observation.3.1.vi. Let n (recall n is a minimum counter-example to Theorem 3.1) and consider n−1
(this consideration gets sense, since n > 10 + F3 [use Observation.3.1.i], and so n− 1 > 9 + F3 > F3 ).

Then property A1 of Theorem 3.1 is not satisfied by n− 1.
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Otherwise ( we reason by reduction to absurd )

fn−1.1 ≥ 2(n− 1) and 2(n− 1) + 1 is a Fermat prime (3 .12 )

( such a 2(n− 1) + 1 exists, since property A1 of Theorem 3.1 is satisfied by n− 1 ). Now let the Fermat prime fn ( use

Definitions 1.0 ); observing (by Observation.3.1.i ) that n > 10 + F3 and using (3.12), then we immediately
deduce that

fn ≥ 2(n− 1) + 1 > 2n− 10 (3 .13 ).

Clearly
fn > 2n− 10 (3 .14 )

( use (3.13)). Now using (3.14) and property (3.2.3) of Remark 3.2, we deduce that Theorem 3.1 is
satisfied by n and we have a contradiction, since n does not satisfy Theorem 3.1. Observation.3.1.vi
follows.
Observation.3.1.vii. Look at (n, fn.1) (recall n is a minimum counter-example to Theorem 3.1) and
consider n− 1 (this consideration gets sense, since n > 10 + F3 [use Observation.3.1.i], and so n− 1 > 9 + F3 > F3).

Then property A2 of Theorem 3.1 is not satisfied by n− 1.

Otherwise ( we reason by reduction to absurd )

fn−1.1 ≥ 2(n− 1) + 4 (3 .15 )

( inequality (3.15) exists, since property A2 of Theorem 3.1 is satisfied by n − 1 ). It is immediate to see that (3.15)
clearly says

fn−1.1 ≥ 2n+ 2 (3 .16 ).

Observing ( by Observation.3.1.iii ) that fn.1 = fn−1.1 and using the preceding equality, then we immedi-
ately deduce that (3.16) clearly says that

fn.1 ≥ 2n+ 2 (3 .17 ).

Now observing (by Observation.3.1.i ) that
fn.1 ≤ 2n+ 2 (3 .18 ),

then using (3.17) and (3.18), we immediately deduce that

fn.1 = 2n+ 2 (3 .19 ).

Using (3.19) and property (3.2.1) of Remark 3.2, we immediately deduce that Theorem 3.1 is satisfied
by n; we have a contraction, since n does not satisfy Theorem 3.1. Observation.3.1.vii follows.
Observation.3.1.viii. Look at (φn, νn, εn) ( use Definitions 2.3 and recall n is a minimum counter-example to Theorem

3.1 ), and via (φn, νn, εn), consider (φn−1, νn−1, εn−1) (this consideration gets sense, since n > 10 + F3 [ use

Observation.3.1.i], and so n− 1 > 9 + F3 > F3 ). Then

(φn−1, νn−1, εn−1 ) tackles (1, 3if−1
n.1) around 6fn.1 − 19− ifn.1 + 11if2

n.1 − 18i.

Indeed look at n ( recall n is a minimum counter-example to Theorem 3.1 ), and via n, consider n − 1 (this

consideration gets sense, since n > 10 + F3 [use Observation.3.1.i], and so n− 1 > 9 + F3 > F3 ); then, by the minimality
of n, we immediately deduce that n− 1 is not a counter-example to Theorem 3.1; so

Theorem 3.1 is satisfied by n− 1 (3 .20 ).
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Clearly
property A3 of Theorem 3.1 is satisfied by n− 1 (3 .21 )

( use (3.20) and Observation.3.1.v and Observation.3.1.vi and Observation.3.1.vii ). So

(φn−1, νn−1, εn−1) tackles (1, 3if−1
n−1.1) around 6fn−1.1 − 19− ifn−1.1 + 11if2

n−1.1 − 18i (3 .22 )

( use (3.21) and property A3 of Theorem 3.1 ). Now observing ( by Observation.3.1.iii ) that fn.1 = fn−1.1 and
using the preceding equality, then we easily deduce that (3.22) clearly says that

(φn−1, νn−1, εn−1 ) tackles (1, 3if−1
n.1) around 6fn.1 − 19− ifn.1 + 11if2

n.1 − 18i.

Observation.3.1.viii follows.
Observation.3.1.ix. Look at n and let (φn, νn, εn) ( use Definitions 2.3 ). Then

(φn, νn, εn ) tackles (1, 3if−1
n.1) around 6fn.1 − 19− ifn.1 + 11if2

n.1 − 18i.

Indeed using Observation.3.1.iv and the definition of tackle ( use Definition 2.2 ), then we immediately
deduce that

there exists (x, y, k ) ∈ C2 ×R such that x+ 3iyf−1
n.1 + k(6fn.1 − 19− ifn.1 + 11if2n.1 − 18i) + (φn−1 − φn) = 0 (3 .23 )

where
x+ y − (νn−1 − νn) = 0 and x− y − (εn−1 − εn) = 0 (3 .24 ).

That being so, using Observation.3.1.viii and the definition of tackle ( use Definition 2.2 ), then we
immediately deduce that

there exists (x′, y′, k′) ∈ C2 ×R such that x′ + 3iy′f−1
n.1 + k′(6fn.1 − 19− ifn.1 + 11if2n.1 − 18i) + φn−1 = 0 (3 .25 )

where
x′ + y′ − νn−1 = 0 and x′ − y′ − εn−1 = 0 (3 .26 ).

Now using equality of (3 .25 ), then we immediately deduce that equality of (3.23) clearly says that

x− x′ + 3i(y − y′)f−1
n.1 + (k − k′)(6fn.1 − 19− ifn.1 + 11if2

n.1 − 18i)− φn = 0 (3 .27 ).

It is trivial to see that equality (3.27) clearly says that

x′ − x+ 3i(y′ − y)f−1
n.1 + (k′ − k)(6fn.1 − 19− ifn.1 + 11if2

n.1 − 18i) + φn = 0 (3 .28 ).

Using the two equalities of (3.26), then we immediately deduce that the two equalities of (3.24) clearly
say that

(x− x′) + (y − y′) + νn = 0 and (x− x′)− (y − y′) + εn = 0 (3 .29 ).

It is trivial to see that (3.29) clearly says that

(x′ − x) + (y′ − y)− νn = 0 and (x′ − x)− (y′ − y)− εn = 0 (3 .30 ).

Now observing that (x, y, k ) ∈ C2×R ( use (3.23) ) and since (x′, y′, k′ ) ∈ C2×R ( use (3.25) ), then it
becomes trivial to deduce that (3.28) and (3.30) clearly say that

there exists (x′′, y′′, k′′) ∈ C2 ×R such that x′′ = x′ − x and y′′ = y′ − y and k′′ = k′ − k (3 .31 )

where

x′′+y′′−νn = 0, x′′−y′′−εn = 0 andx′′+3iy′′f−1
n.1+k′′(6fn.1−19−ifn.1+11if2

n.1−18i)+φn = 0 (3 .32 ).
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Clearly
(φn, νn, εn ) tackles (1, 3if−1

n.1) around 6fn.1 − 19− ifn.1 + 11if2
n.1 − 18i

( use (3.31) and (3.32) and the definition of tackle introduced in Definition 2.2 ). Observation.3.1.ix follows.
These simple observations made, then it becomes trivial to see that Observation.3.1.ix clearly

contradicts Observation.3.1.ii. Theorem 3.1 follows.2
Now the Fermat primes problem directly results via the following.

Corollary 3.5. Let n be an integer ≥ F3 and let fn.1 (use Definitions 1.0); look at (φn, νn, εn)
introduced in Definitions 2.3. Then

There exists j ∈ {−1, 1} such that 2n+ j is aFermat prime or fn.1 > 2n

or
(φn, νn, εn) tackles (1, 3if−1

n.1) around 6fn.1 − 19− ifn.1 + 11if2
n.1 − 18i.

Proof. Indeed let n be an integer ≥ F3 and let fn.1 (use Definitions 1.0); look at (φn, νn, εn ) introduced in Definitions 2.3. Then
using Theorem 3.1, we immediately deduce that

at least one of properties A0 and A1 and A2 and A3 of Theorem 3.1 is satisfied by n (3 .33 ).

We are going to observe four cases.
Case.0. If property A0 of Theorem 3.1 is satisfied by n, then 2n− 1 is a Fermat prime and fn.1 > 2n . Clearly

2n− 1 is a Fermat prime (3 .34 )

( use Theorem 3.1 and observe that property A0 of Theorem 3.1 is satisfied by n ). Now let the Fermat prime fn ( use

Definitions 1.0), then using (3.34) and the definition of fn , we immediately deduce that

fn ≥ 2n− 1 (3 .35 ).

Now look at fn.1( see Definitions 1.0), then using (3.35) and the definition of fn.1, we immediately deduce that

fn.1 > 2ffnn > (2n− 1)2n−1 (3 .36 ).

Remarking (via the hypothesis ) that n ≥ F3 and using (3.36), then we immediately deduce that

fn.1 > (2n− 1)2n−1 > 2n (3 .37 ).

So fn.1 > 2n ( use (3.37) ) and 2n− 1 is a Fermat prime ( use (3.34) ) . Case.0 follows.
Case.1. If property A1 of Theorem 3.1 is satisfied by n, then 2n+ 1 is a Fermat prime. Clearly

fn.1 ≥ 2n and 2n+ 1 is a Fermat prime (3 .38 )

( use Theorem 3.1 and observe that property A1 of Theorem 3.1 is satisfied by n ). (3.38) immediately implies that 2n+ 1
is a Fermat prime. Case.1 follows.
Case.2. If property A2 of Theorem 3.1 is satisfied by n, then fn.1 > 2n. Clearly

fn.1 ≥ 2n+ 4 (3 .39 )

( use Theorem 3.1 and observe that property A2 of Theorem 3.1 is satisfied by n ). (3.39) immediately implies that
fn.1 > 2n. Case.2 follows.
Case.3. If property A3 of Theorem 3.1 is satisfied by n, then (φn, νn, εn) tackles (1, 3if−1

n.1) around 6fn.1−19−ifn.1+11if2n.1−18i.
Indeed use Theorem 3.1 and observe that property A3 of Theorem 3.1 is satisfied by n. Case.3 follows.

Now using (3.33) and Case.0 or (3.33) and Case.1 or (3.33) and Case.2 or (3.33) and Case.3, then we immediately deduce
that

There exists j ∈ {−1, 1} such that 2n+ j is a Fermat prime or fn.1 > 2n or

(φn, νn, εn) tackles (1, 3if−1
n.1) around 6fn.1 − 19− ifn.1 + 11if2n.1 − 18i.

Corollary 3.5 follows. 2
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Theorem 3.6. For every integer, n ≥ F3, fn.1 > 2n or there exists j ∈ {−1, 1} such that 2n+ j is
a Fermat prime .

Proof. Otherwise ( we reason by reduction to absurd), let n be a minimun counter-example; clearly

fn.1 ≤ 2n and there exists not j ∈ {−1, 1} such that 2n+ j is a Fermat prime (3 .40 ).

Now let let (φn, νn, εn ) (use Definitions 2.3); then using (3.40) and Corollary 3.5, it follows that

(φn, νn, εn ) tackles (1, 3if−1
n.1) around 6fn.1 − 19− ifn.1 + 11if2n.1 − 18i (3 .41 ).

We observe the following.
Observation.3.6.1. n > 10 + F3.

Otherwise n ≤ 10 + F3; now observing (by using property (1.1.0) of Remark 1.1) that fn.1 > FF3
3 and using the previous two

inequalities, then it becomes trivial to deduce that fn.1 > FF3
3 > 2(10 + F3) + 8 > 2n + 4; so fn.1 > 2n + 4 and the previous

inequality contradicts (3.40). Observation.3.6.1 follows.
Observation.3.6.2. fn.1 = fn−1.1.

Indeed, remarking (by (3.40)) that fn.1 ≤ 2n, then, using the preceding inequality and property (1.1.2) of Remark 1.1, we
immediately deduce that fn.1 = fn−1.1. Observation.3.6.2 follows

Observation.3.6.3. Let the Fermat prime fn ( use Definitions 1.0). Then fn < 2n− 10.
Otherwise

fn ≥ 2n− 10 (3 .42 ).

Now using (3.42) and the definition of fn.1, we immediately deduce that

fn.1 > 2ffnn > (2n− 10)2n−10 (3 .43 ).

Remarking (by Observation.3.6.1 ) that n > 10 + F3 and using (3.43), then we immediately deduce that

fn.1 > (2n− 10)2n−10 > 2n (3 .44 );

so

fn.1 > 2n (3 .45 )

( use (3.44) ) and inequality (3.45) contradicts (3.40). Observation.3.6.3 follows.

Observation.3.6.4. There exists not j ∈ {−1, 1} such that 2(n− 1) + j is a Fermat prime.
Otherwise

let j ∈ {−1, 1} such that 2(n− 1) + j is a Fermat prime (3 .46 ),

and let the Fermat prime fn ( use Definitions 1.0). Then using (3.46) and the definition of fn, we immediately deduce that

fn ≥ 2n− 3 (3 .47 ).

Remarking (by Observation.3.6.1 ) that n > 10 + F3 and using (3 .47 ), then we immediately deduce that fn > 2n − 10; the
preceding inequality contradicts Observation.3.6.3. Observation.3.6.4 follows.
Observation.3.6.5. fn.1 = 2n.

Indeed look at n, and via n, consider n − 1 ( this consideration gets sense, since n > 10 + F3 (use Observation.3.6.1), and

therefore n− 1 > 9 + F3 > F3). Then, by the minimality of n, n− 1 is not a counter-example to Theorem 3.6; consequently

fn−1.1 > 2(n− 1) or there exists j ∈ {−1, 1} such that 2(n− 1) + j is a Fermat prime (3 .48 ).

Clearly
fn−1.1 > 2(n− 1) (3 .49 )

( use (3.48) and Observation.3.6.4 ) and inequality(3.49) clearly says that

fn−1.1 > 2n− 2 (3 .49 ′).

Note that

fn.1 = fn−1.1 (3 .50 )

( use Observation.3.6.2 ). Now using (3 .49 ′) and (3.50), then we immediately deduce that

fn.1 > 2n− 2 (3 .51 ).
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Noticing that fn.1 and 2n − 2 are even ( fn.1 is even [use the definition of fn.1] and 2n − 2 is trivially even), then it becomes

trivial to deduce that inequality (3.51) implies that fn.1 ≥ 2n− 2 + 2; the preceding inequality clearly says that

fn.1 ≥ 2n (3 .52 ).

Clearly fn.1 = 2n ( use (3.52) and inequality of (3.40)). Observation.3.6.5 follows.

Observation.3.6.6 (the using of Remark.2.3.2 of Section.2). Look at fn.1 and consider (φn, νn, εn ) (use Definitions 2.3). Then

(φn, νn, εn ) does not tackle (1, 3if−1
n.1) around 6fn.1 − 19− ifn.1 + 11if2n.1 − 18i.

Indeed observing (by Observation.3.6.5) that fn.1 = 2n and using Remark.2.3.2 (Section.2), then we immediately deduce that

(φn, νn, εn ) does not tackle (1, 3if−1
n.1) around 6fn.1 − 19− ifn.1 + 11if2n.1 − 18i.

Observation.3.6.6 follows.

These simple observations made, then it becomes trivial to see that Observation.3.6.6 contradicts (3.41). Theorem 3.6 follows.2

Theorem 3.6 immediately implies the Fermat primes problem.

Theorem 3.7 (The Proof of the Fermat primes problem). There are infinitely many Fermat primes.
[Proof. Use Theorem 3.6 and Proposition 1.3. 2]

2′. EPILOGUE

Our simple article clearly shows that divisibility helps to characterize Fermat primes as we did in
[6] and [7], and elementary complex calculus coupled with elementary arithmetic calculus and trivial
computation help to give a simple analytic proof of problem posed by the Fermat primes. Now we end
this article by proving properties that we let unproved in Section.2.

Proof of Remark.2.3.1 (the using of Remark.2.1.1). Indeed, observing (via the hypotheses) that fn.1 = 2n + 2
and using the preceding equality, we easily deduce that

fn.1 − 2n = 2; ifn.1 − 4in− 4i+ 1 = 1− ifn.1; 2n+ 1 = fn.1 − 1; and ifn.1 − 2in+ 1 = 2i+ 1 (2 .42 ).

Now look at (φn, νn, εn ) introduced in Definitions 2.3 and let (φn.2, φn.3, φn.4) explicited in Definitions 2.3. Clearly

φn.2 = −4fn.1(16f−3
n.1 + 50f−2

n.1 + 11if−3
n.1 − 13i+ 5ifn.1) + 8fn.1 − 8i− 16 (2 .43 )

( use (2.37) of Definitions 2.3 and the third equality of (2.42) (observe [via the third equality of (2.42)] that (fn.1 − 1)2 =

f2n.1 − 2fn.1 + 1) and the first equality of (2.42) (observe [via the first equality of (2.42)] that
(fn.1−2n)

2
= 1) ), and

φn.3 =
289080

1331
(2 .44 )

( use (2.38) of Definitions 2.3 and the third equality of (2.42) (observe [via the third equality of (2.42)] that (fn.1 − 1)2 =

f2n.1 − 2fn.1 + 1)), and

φn.4 = 5fn.1(11ifn.1 + 7− 50f−1
n.1 + 23if−3

n.1 − 54f−3
n.1)−

1003112i

1331
(2 .45 )

( use (2.39) of Definitions 2.3 and the third equality of (2.42) (observe [via the third equality of (2.42)] that (fn.1 − 1)2 =

f2n.1 − 2fn.1 + 1)). That being said let (νn, εn) explicited in Definitions 2.3; clearly

νn = ( 1− ifn.1 )2 − 1 + f2n.1 (2 .46 )

( use (2 .40 ) of Definitions 2.3 and the second equality of (2.42) ) and clearly

εn = 4( (fn.1 − 1)2 − 1− f2n.1 + fn.1 ) + ( 2i+ 1 )( 4ifn.1 + 4− 8i ) (2 .47 )

( use (2.41) of Definitions 2.3 and the last two equalities of (2.42) ). That being so, let (x′, y′, k′) such that

x′ = 10− 6fn.1 + ifn.1; y′ = −10 + 6fn.1 − 3ifn.1; and k′ = −
35

11
−

618f−1
n.1

121
+

7494f−2
n.1

121
+

126301f−4
n.1

1331
(2 .48 ).
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Let (φn, νn, εn, x′, y′, k′ ) where (x′, y′, k′) is explicted in (2.48) and where (φn, νn, εn) is introduced in Definitions 2.3 ( use

(2.35) for φn; and (2.40) for νn; and (2 .41 ) for εn; and (2.48) for (x′, y′, k′)). Now look at (Xn, Yn, Zn, x, y, k) introduced in
Remark.2.1.1; clearly

(Xn, Yn, Zn, x, y, k ) = (φn, νn, εn, x
′, y′, k′ ) (2 .49 )

( firstly, we prove that Xn = φn . Indeed observe that

Xn.j = φn.j for 1 ≤ j ≤ 4 (2 .49 .0 )

[Xn.1 = φn.1 (use (2.11) of Remark.2.1.1 and (2.36) of Definitions 2.3); Xn.2 = φn.2 (use (2.12) of Remark.2.1.1 and (2.43));
Xn.3 = φn.3 (use (2.13) of Remark.2.1.1 and (2.44)); and Xn.4 = φn.4 (use (2.14) of Remark.2.1.1 and (2.45)). The prevous
four equalities immediately imply that Xn.j = φn.j for 1 ≤ j ≤ 4]. (2.49.0) immediately implies that

Xn =

4∑
j=1

Xn.j = φn =

4∑
j=1

φn.j [use(2 .10 ) of Remark.2.1.1 and (2 .35 ) of Definitions 2.3 and (2 .49 .0 )] (2 .49 .1 ).

Note thatYn = νn [use(2 .15 ) of Remark.2.1.1 and (2 .46 )] andZn = εn [use(2 .16 ) of Remark.2.1.1 and (2 .47 )] (2 .49 .2 ).

Finally, note that (x, y, k) = (x′, y′, k′) [use(2 .17 ) of Remark.2.1.1 and (2 .48 )] (2 .49 .3 ).

Now using (2.49.1) and (2.49.2) and (2.49.3), we immediately deduce that (Xn, Yn, Zn, x, y, k ) = (φn, νn, εn, x′, y′, k′ )).

That being so, using (2.49) and Remark.2.1.1 , it becomes trivial to deduce that (φn, νn, εn, x′, y′, k′ ) satisfies all the hypotheses
of Remark.2.1.1; therefore (φn, νn, εn, x′, y′, k′ ) satisfies the conclusion of Remark.2.1.1; so

x′ + y′ − νn = 0 and x′ − y′ − εn = 0 (2 .50 )

and
x′ + 3iy′f−1

n.1 + k′(6fn.1 − 19− ifn.1 + 11if2n.1 − 18i) + φn = 0; k′ ∈ R (2 .51 )

( use Remark.2.1.1 where we replace (Xn, Yn, Zn, x, y, k ) by (φn, νn, εn, x′, y′, k′ )). Clearly (φn, νn, εn ) tackles (1, 3if−1
n.1) around

6fn.1−19−ifn.1+11if2n.1−18i ( use (2.50) and (2.51) and the notion of tackle introduced in Definition 2.2 [observe that (x′, y′) ∈ C2

and k′ ∈ R; so (x′, y′, k′) ∈ C2 ×R] ). Remark.2.3.1 follows.

Proof of Remark.2.3.2 (reduction of the Fermat primes problem into a trivial equation of three un-
knowns ; the using of Remark.2.1.2). Indeed, observing (via the hypotheses) that fn.1 = 2n and using the preceding
equality, we easily deduce that

fn.1 − 2n = 0; ifn.1 − 4in− 4i+ 1 = 1− 4i− ifn.1; 2n+ 1 = fn.1 + 1; and ifn.1 − 2in+ 1 = 1 (2 .52 ).

Now look at (φn, νn, εn ) introduced in Definitions 2.3 and let (φn.2, φn.3, φn.4) explicited in Definitions 2.3. Clearly

φn.2 = 0 (2 .53 )

( use (2.37) of Definitions 2.3 and the third equality of (2.52) (observe [via the third equality of (2.52)] that (fn.1 + 1)2 =

f2n.1 + 2fn.1 + 1) and the first equality of (2.52) (observe [via the first equality of (2.52)] that
(fn.1−2n)

2
= 0) ), and

φn.3 = 4fn.1(34if−2
n.1 − 70if−3

n.1 − 11i+ 5 + 6ifn.1) +
289080

1331
(2 .54 )

( use (2.38) of Definitions 2.3 and the third equality of (2.52) (observe [via the third equality of (2.52)] that (fn.1 + 1)2 =

f2n.1 + 2fn.1 + 1)), and

φn.4 = 9fn.1(11ifn.1 + 7− 50f−1
n.1 + 23if−3

n.1 − 54f−3
n.1)−

1003112i

1331
(2 .55 )

( use (2.39) of Definitions 2.3 and the third equality of (2.52) (observe [via the third equality of (2.52)] that (fn.1 + 1)2 =

f2n.1 + 2fn.1 + 1) ). That being said let (νn, εn) explicited in Definitions 2.3; clearly

νn = ( 1− 4i− ifn.1 )2 − 1 + f2n.1 (2 .56 )

( use (2 .40 ) of Definitions 2.3 and the second equality of (2.52) ) and clearly

εn = 4( (fn.1 + 1)2 − 1− f2n.1 + fn.1 ) + 4ifn.1 + 4− 8i (2 .57 )
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( use (2.41) of Definitions 2.3 and the last two equalities of (2.52) ). That being so, let (x′, y′) such that

x′ = 2fn.1 + ifn.1 − 6− 8i and y′ = −10− 10fn.1 − 3ifn.1 (2 .58 ).

Let (φn, νn, εn, x′, y′ ) where (x′, y′) is explicted in (2.58) and where (φn, νn, εn) is introduced in Definitions 2.3 ( use (2.35) for

φn; and (2.40) for νn; and (2 .41 ) for εn; and (2.58) for (x′, y′)). Now look at (Xn, Yn, Zn, x, y ) introduced in Remark.2.1.2;
clearly

(Xn, Yn, Zn, x, y ) = (φn, νn, εn, x
′, y′ ) (2 .59 )

( Firstly, we prove that Xn = φn . Indeed observe that

Xn.j = φn.j for 1 ≤ j ≤ 4 (2 .59 .0 )

[Xn.1 = φn.1 (use (2.21) of Remark.2.1.2 and (2.36) of Definitions 2.3); Xn.2 = φn.2 (use (2.22) of Remark.2.1.2 and (2.53) );
Xn.3 = φn.3 (use (2.23) of Remark.2.1.2 and (2.54)); and Xn.4 = φn.4 (use (2.24) of Remark.2.1.2 and (2.55)). The prevous
four equalities immediately imply that Xn.j = φn.j for 1 ≤ j ≤ 4]. (2.59.0) immediately implies that

Xn =

4∑
j=1

Xn.j = φn =

4∑
j=1

φn.j [use(2 .20 ) of Remark.2.1.2 and (2 .35 ) of Definitions 2.3 and (2 .59 .0 )] (2 .59 .1 ).

Note thatYn = νn [use(2 .25 ) of Remark.2.1.2 and (2 .56 ) ] andZn = εn [use(2 .26 ) of Remark.2.1.2 and (2 .57 )] (2 .59 .2 ).

Finally, note that (x, y) = (x′, y′) [use(2 .27 ) of Remark.2.1.2 and (2 .58 )] (2 .59 .3 ).

Now using (2.59.1) and (2.59.2) and (2.59.3) , we immediately deduce that (Xn, Yn, Zn, x, y ) = (φn, νn, εn, x′, y′ )).

That being so, using (2.59) and Remark.2.1.2 , it becomes trivial to deduce that (φn, νn, εn, x′, y′ ) satisfies all the hypotheses of
Remark.2.1.2; therefore (φn, νn, εn, x′, y′ ) satisfies the conclusion of Remark.2.1.2; so

x′ + y′ − νn = 0; x′ − y′ − εn = 0 (2 .60 )

and there exists not k′ ∈ R such that x′ + 3iy′f−1
n.1 + k′(6fn.1 − 19− ifn.1 + 11if2n.1 − 18i) + φn = 0 (2 .61 )

( use Remark.2.1.2 where we replace (Xn, Yn, Zn, x, y ) by (φn, νn, εn, x′, y′ )). Clearly (φn, νn, εn ) does not tackle (1, 3if−1
n.1)

around 6fn.1−19−ifn.1+11if2n.1−18i ( use (2.60) and (2.61) and the notion of tackle introduced in Definition 2.2). Remark.2.3.2
follows.

Remark.2.3.2 reduces the Fermat primes problem into a simple equation of three unknowns. In-
deed Remark.2.3.2 clearly says that, if fn.1 = 2n, we will have a simple equation of three unknowns
which implies that (φn, νn, εn ) does not tackle (1, 3if−1

n.1) around 6fn.1− 19− ifn.1 + 11if2
n.1− 18i. We

used Remark.2.3.2 in Theorem 3.6 (Section.3) to immediately deduce the Fermat primes problem.
Now it remains us to prove Proposition 2.4. To prove Proposition 2.4, we need four elementary remarks.

Remark 2.5. Let n be an integer ≥ F3 and let fn.1 ( use Definitions 1.0). If fn.1 ≤ 2n, then fn.1 =
fn−1.1. Proof. Indeed observing (via the hypotheses) that

fn.1 ≤ 2n (2 .62 ),

clearly fn.1 = fn−1.1 (use inequality (2 .62 ) and property (1.1.2) of Remark 1.1 ). Remark 2.5 follows.2

Remark 2.6.Let n be an integer ≥ 1+F3 and let fn.1 ( use Definitions 1.0 ). Look at (φn.1, φn.2, φn.3, φn.4 )
introduced in Definitions 2.3, and via (φn.1, φn.2, φn.3, φn.4 ), consider (φn−1.1, φn−1.2, φn−1.3, φn−1.4 )

( this consideration gets sense, since n ≥ 1 +F3, and therefore n− 1 ≥ F3 ). If fn.1 ≤ 2n, then we have the following
four properties.
(2.6.1) φn−1.1 − φn.1 = 0.
(2.6.2)φn−1.2 − φn.2 = −8n(16f−3

n.1 + 50f−2
n.1 + 11if−3

n.1 − 13i+ 5ifn.1) + 8fn.1 − 8i− 16.

(2.6.3)φn−1.3 − φn.3 = −8n(34if−2
n.1 − 70if−3

n.1 − 11i+ 5 + 6ifn.1).

(2.6.4)φn−1.4 − φn.4 = −8n(11ifn.1 + 7− 50f−1
n.1 + 23if−3

n.1 − 54f−3
n.1).

Proof. (2.6.1) Indeed let φn−1.1; clearly

φn−1.1 =
126301if−3

n−1.1 + 2273418if−4
n−1.1 − 23837fn−1.1 − 357566f−1

n−1.1

1331
+ φ′n−1.1 (2 .62 ′)

where

φ′n−1.1 =
2010800f−2

n−1.1 + 2399719f−4
n−1.1 − 757806f−3

n−1.1

1331
(2 .62 ′′)
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( use (2.36) of Definitions 2.3 ). So

φn−1.1 =
126301if−3

n.1 + 2273418if−4
n.1 − 23837fn.1 − 357566f−1

n.1 + 2010800f−2
n.1 + 2399719f−4

n.1 − 757806f−3
n.1

1331
(2 .63 )

( use (2 .62 ′) and (2 .62 ′′) and notice [ by observing that fn.1 ≤ 2n and by using Remark 2.5 ] that fn.1 = fn−1.1). Clearly

φn−1.1 = φn.1 (2 .64 )

( use (2.36) of Definitions 2.3 and (2.63) ) and so φn−1.1 − φn.1 = 0 ( use (2 .64 )). Property (2.6.1) immediately follows.

(2.6.2) Indeed let φn−1.2; clearly

φn−1.2 = ((2(n− 1) + 1)2 − 1− f2n−1.1 − 2fn−1.1)(16f−3
n−1.1 + 50f−2

n−1.1 + 11if−3
n−1.1 − 13i+ 5ifn−1.1) + γn (2 .65 )

where

γn =
(fn−1.1 − 2(n− 1))

2
(8fn−1.1 − 8i− 16) (2 .65 ′)

( use (2.37) of Definitions 2.3 ). So

φn−1.2 = ((2(n−1) + 1)2−1− f2n.1−2fn.1)(16f−3
n.1 + 50f−2

n.1 + 11if−3
n.1−13i+ 5ifn.1) +

(fn.1 − 2(n− 1))

2
(8fn.1−8i−16) (2 .66 )

( use (2.65) and (2 .65 ′) and notice [ by observing that fn.1 ≤ 2n and by using Remark 2.5 ] that fn.1 = fn−1.1). Clearly

φn−1.2 = ((2n+ 1)2 − 1− f2n.1 − 2fn.1)(16f−3
n.1 + 50f−2

n.1 + 11if−3
n.1 − 13i+ 5ifn.1) +

(fn.1 − 2n)

2
(8fn.1 − 8i− 16) + φ′n−1.2 (2 .67 )

where
φ′n−1.2 = −8n(16f−3

n.1 + 50f−2
n.1 + 11if−3

n.1 − 13i+ 5ifn.1) + 8fn.1 − 8i− 16 (2 .67 ′)

( use the first member of (2.66) and observe [by elementary computation and by using the first member of (2.66)] that

((2(n− 1) + 1)2 − 1− f2n.1 − 2fn.1) = ((2n+ 1)2 − 1− f2n.1 − 2fn.1)− 8n,

and remark [by elementary computation and by using the second member of (2.66) ] that

(fn.1 − 2(n− 1))

2
=

(fn.1 − 2n)

2
+ 1

). So

φn−1.2 = φn.2 − 8n(16f−3
n.1 + 50f−2

n.1 + 11if−3
n.1 − 13i+ 5ifn.1) + 8fn.1 − 8i− 16 (2 .68 )

( use (2.37) of Definitions 2.3 and (2.67) and (2 .67 ′) ). Clearly

φn−1.2 − φn.2 = −8n(16f−3
n.1 + 50f−2

n.1 + 11if−3
n.1 − 13i+ 5ifn.1) + 8fn.1 − 8i− 16

( use (2.68)). Property (2.6.2) immediately follows.

(2.6.3) Indeed let φn−1.3; clearly

φn−1.3 = ((2(n− 1) + 1)2 − 1− f2n−1.1 + 2fn−1.1)(34if−2
n−1.1 − 70if−3

n−1.1 − 11i+ 5 + 6ifn−1.1) +
289080

1331
(2 .69 )

( use (2.38) of Definitions 2.3 ). So

φn−1.3 = ((2(n− 1) + 1)2 − 1− f2n.1 + 2fn.1)(34if−2
n.1 − 70if−3

n.1 − 11i+ 5 + 6ifn.1) +
289080

1331
(2 .70 )

( use (2.69) and notice [ by observing that fn.1 ≤ 2n and by using Remark 2.5 ] that fn.1 = fn−1.1). Clearly

φn−1.3 = ((2n+ 1)2 − 1− f2n.1 + 2fn.1)(34if−2
n.1 − 70if−3

n.1 − 11i+ 5 + 6ifn.1) +
289080

1331
+ φ′n−1.3 (2 .71 )

where
φ′n−1.3 = −8n(34if−2

n.1 − 70if−3
n.1 − 11i+ 5 + 6ifn.1) (2 .72 )
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( use (2.70) and observe [by elementary computation ] that ((2(n−1)+1)2−1−f2n.1 +2fn.1) = ((2n+1)2−1−f2n.1 +2fn.1)−8n

). So

φn−1.3 = φn.3 − 8n(34if−2
n.1 − 70if−3

n.1 − 11i+ 5 + 6ifn.1) (2 .73 )

( use (2.71) and (2.72) and (2.38) of Definitions 2.3) and clearly

φn−1.3 − φn.3 = −8n(34if−2
n.1 − 70if−3

n.1 − 11i+ 5 + 6ifn.1)

( use (2.73)). Property (2.6.3) immediately follows.

(2.6.4) Indeed let φn−1.4; clearly

φn−1.4 = ((2(n− 1) + 1)2 − 1− f2n−1.1 + 7fn−1.1)(11ifn−1.1 + 7− 50f−1
n−1.1 + 23if−3

n−1.1 − 54f−3
n−1.1)−

1003112i

1331
(2 .74 )

( use (2.39) of Definitions 2.3 ). So

φn−1.4 = ((2(n− 1) + 1)2 − 1− f2n.1 + 7fn.1)(11ifn.1 + 7− 50f−1
n.1 + 23if−3

n.1 − 54f−3
n.1)−

1003112i

1331
(2 .75 )

( use (2.74) and notice [ by observing that fn.1 ≤ 2n and by using Remark 2.5 ] that fn.1 = fn−1.1). Clearly

φn−1.4 = ((2n+ 1)2 − 1− f2n.1 + 7fn.1)(11ifn.1 + 7− 50f−1
n.1 + 23if−3

n.1 − 54f−3
n.1)−

1003112i

1331
+ φ′n−1.4 (2 .76 )

where
φ′n−1.4 = −8n(11ifn.1 + 7− 50f−1

n.1 + 23if−3
n.1 − 54f−3

n.1) (2 .77 )

( use (2.75) and observe [by elementary computation and by using (2.75)] that

((2(n− 1) + 1)2 − 1− f2n.1 + 7fn.1) = ((2n+ 1)2 − 1− f2n.1 + 7fn.1)− 8n

). So

φn−1.4 = φn.4 − 8n(11ifn.1 + 7− 50f−1
n.1 + 23if−3

n.1 − 54f−3
n.1) (2 .78 )

( use (2.76) and (2.77) and (2.39) of Definitions 2.3 ) and clearly

φn−1.4 − φn.4 = −8n(11ifn.1 + 7− 50f−1
n.1 + 23if−3

n.1 − 54f−3
n.1)

( use (2.78) ). Property (2.6.4) follows and Remark 2.6 immediately follows.2

Remark 2.7.Let n be an integer ≥ 1 + F3 and let fn.1 ( use Definitions 1.0). Look at ( νn, εn )

introduced in Definitions 2.3, and via ( νn, εn ), consider ( νn−1, εn−1 ) ( this consideration gets sense,

since n ≥ 1 + F3, and therefore n− 1 ≥ F3). If fn.1 ≤ 2n, then we have the following two properties.
(2.7.1.) νn−1 − νn = 32n− 8fn.1 + 8i+ 16.
(2.7.2.) εn−1 − εn = −32n− 8fn.1 + 8i+ 16.
Proof. Indeed let ( νn−1, εn−1 ); clearly

νn−1 = ( ifn−1.1 − 4i(n− 1)− 4i+ 1 )2 − 1 + f2n−1.1 (2 .79 )

( use (2 .40 ) of Definitions 2.3 ) and

εn−1 = 4( (2(n− 1) + 1)2 − 1− f2n−1.1 + fn−1.1 ) + ( ifn−1.1 − 2i(n− 1) + 1 )( 4ifn−1.1 + 4− 8i ) (2 .80 )

( use (2 .41 ) of Definitions 2.3 ). So

νn−1 = ( ifn.1 − 4i(n− 1)− 4i+ 1 )2 − 1 + f2n.1 (2 .81 )

( use (2.79) and notice [ by observing that fn.1 ≤ 2n and by using Remark 2.5 ] that fn.1 = fn−1.1) and

εn−1 = 4( (2(n− 1) + 1)2 − 1− f2n.1 + fn.1 ) + ( ifn.1 − 2i(n− 1) + 1 )( 4ifn.1 + 4− 8i ) (2 .82 )
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( use (2.80) and notice ( by observing that fn.1 ≤ 2n and by using Remark 2.5 ) that fn.1 = fn−1.1). That being said, we now

prove easily property (2.7.1) and property (2.7.2).

(2.7.1.) Indeed observing ( by elementary computation and the fact that i2 = −1) that

( ifn.1 − 4i(n− 1)− 4i+ 1 )2 − 1 + f2n.1 = ( ifn.1 − 4in− 4i+ 1 )2 − 1 + f2n.1 + 32n− 8fn.1 + 8i+ 16 (2 .83 )

then clearly
νn−1 = ( ifn.1 − 4in− 4i+ 1 )2 − 1 + f2n.1 + 32n− 8fn.1 + 8i+ 16 (2 .84 )

( use (2.81) and (2.83)). So

νn−1 = νn + 32n− 8fn.1 + 8i+ 16 (2 .85 )

( use (2.84) and (2.40) of Definitions 2.3 ) and clearly

νn−1 − νn = 32n− 8fn.1 + 8i+ 16

( use (2.85) ) . Property (2.7.1.) follows.

(2.7.2.) Indeed observing ( by elementary computation and the fact that i2 = −1) that

4( (2(n− 1) + 1)2 − 1− f2n.1 + fn.1 ) = 4( (2n+ 1)2 − 1− f2n.1 + fn.1 )− 32n (2 .86 )

and
( ifn.1 − 2i(n− 1) + 1 )( 4ifn.1 + 4− 8i ) = ( ifn.1 − 2in+ 1 )( 4ifn.1 + 4− 8i ) + 2i( 4ifn.1 + 4− 8i ) (2 .87 ),

then clearly

εn−1 = 4( (2n+ 1)2 − 1− f2n.1 + fn.1 ) + ( ifn.1 − 2in+ 1 )( 4ifn.1 + 4− 8i )− 32n+ 2i( 4ifn.1 + 4− 8i ) (2 .88 )

( use (2.82) and (2.86) and (2.87) ). So

εn−1 = εn − 32n+ 2i( 4ifn.1 + 4− 8i ) (2 .89 )

( use (2.88) and (2 .41 ) of Definitions 2.3 ). Clearly

εn−1 − εn = −32n− 8fn.1 + 8i+ 16

( use (2.89) and observe [ by elementary computation and the fact that i2 = −1] that

−32n+ 2i( 4ifn.1 + 4− 8i ) = −32n− 8fn.1 + 8i+ 16

). Property (2.7.2) follows and Remark 2.7 immediately follows. 2

Remark 2.8.Let n be an integer ≥ 1 + F3 and let fn.1 ( use Definitions 1.0). Look at φn intro-
duced in Definitions 2.3, and via φn, consider φn−1 ( this consideration gets sense, since n ≥ 1 +F3, and therefore

n− 1 ≥ F3 ). Then

φn−1 − φn =
4∑
j=1

(φn−1.j − φn.j).

Proof. Indeed let φn; clearly

φn−1 =

4∑
j=1

φn−1.j (2 .90 )

( use (2 .35 ) of Definitions 2.3 ). So

φn−1 − φn =

4∑
j=1

φn−1.j − (

4∑
j=1

φn.j) (2 .91 )

( use (2 .90 ) and (2 .35 ) of Definitions 2.3 ) and clearly

φn−1 − φn =

4∑
j=1

(φn−1.j − φn.j)
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( use (2 .91 ) ). Remark 1.8 follows.2

Now using the previous four Remarks, then Proposition 2.4 becomes elementary to prove.

Proof of Proposition 2.4 ( the using of Remark.2.1.0 ). Indeed look ( φn−1 − φn, νn−1 − νn, εn−1 − εn ). Clearly

φn−1 − φn =

4∑
j=1

(φn−1.j − φn.j) (2 .92 )

( use Remark 2.8) , where

φn−1.1 − φn.1 = 0 (2 .93 )

( use property (2.6.1) of Remark 2.6) , and

φn−1.2 − φn.2 = −8n(16f−3
n.1 + 50f−2

n.1 + 11if−3
n.1 − 13i+ 5ifn.1) + 8fn.1 − 8i− 16 (2 .94 )

( use property (2.6.2) of Remark 2.6) , and

φn−1.3 − φn.3 = −8n(34if−2
n.1 − 70if−3

n.1 − 11i+ 5 + 6ifn.1) (2 .95 )

( use property (2.6.3) of Remark 2.6) , and

φn−1.4 − φn.4 = −8n(11ifn.1 + 7− 50f−1
n.1 + 23if−3

n.1 − 54f−3
n.1) (2 .96 )

( use property (2.6.4) of Remark 2.6) , and

νn−1 − νn = 32n− 8fn.1 + 8i+ 16 (2 .97 )

( use property (2.7.1) of Remark 2.7) , and

εn−1 − εn = −32n− 8fn.1 + 8i+ 16 (2 .98 )

( use property (2.7.2) of Remark 2.7) . That being so, let (x′, y′, k′) such that

x′ = −8fn.1 + 8i+ 16; y′ = 32n; and k′ = 16nf−3
n.1 − 16nf−2

n.1 + 16nf−1
n.1 (2 .99 ).

Now let (φn−1 − φn, νn−1 − νn, εn−1 − εn, x′, y′, k′ ) where (x′, y′, k′) is explicted in (2.99) and where

(φn−1 − φn, νn−1 − νn, εn−1 − εn)

is explicited above ( use (2.92) for φn−1−φn; and (2.97) for νn−1−νn; and (2 .98 ) for εn−1−εn). Now look at (Xn, Yn, Zn, x, y, k )
introduced in Remark.2.1.0; clearly

(Xn, Yn, Zn, x, y, k ) = (φn−1 − φn, νn−1 − νn, εn−1 − εn, x′, y′, k′ ) (2 .100 )

( Firstly, we prove that Xn = φn−1 − φn . Indeed observe that

Xn.j = φn−1.j − φn.j for 1 ≤ j ≤ 4 (2 .100 .0 )

[Xn.1 = φn−1.1 − φn.1 (use (2.1) of Remark.2.1.0 and (2.93)); Xn.2 = φn−1.2 − φn.2 (use (2.2) of Remark.2.1.0 and (2.94));
Xn.3 = φn−1.3−φn.3 (use (2.3) of Remark.2.1.0 and (2.95)); and Xn.4 = φn−1.4−φn.4 (use (2.4) of Remark.2.1.0 and (2.96)).
The prevous four equalities immediately imply that Xn.j = φn−1.j − φn.j for 1 ≤ j ≤ 4]. (2.100.0) immediately implies that

Xn =

4∑
j=1

Xn.j = φn−1 − φn =

4∑
j=1

(φn−1.j − φn.j) [use(2 .0 ) of Remark.2.1.0 and (2 .92 ) and (2 .100 .0 )] (2 .100 .1 ).

Note thatYn = νn−1 − νn [use(2 .5 ) of Remark.2.1.0 and (2 .97 )] andZn = εn−1 − εn [use(2 .6 ) and (2 .98 )] (2 .100 .2 ).

Finally, note that (x, y, k) = (x′, y′, k′) [use(2 .7 ) of Remark.2.1.0 and (2 .99 )] (2 .100 .3 ).

Now using (2.100.1) and (2.100.2) and (2.100.3), we immediately deduce that

(Xn, Yn, Zn, x, y, k ) = (φn−1 − φn, νn−1 − νn, εn−1 − εn, x′, y′, k′ )
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). That being so, using (2.100) and Remark.2.1.0 , it becomes trivial to deduce that (φn−1−φn, νn−1− νn, εn−1− εn, x′, y′, k′ )
satisfies all the hypotheses of Remark.2.1.0; therefore (φn−1 − φn, νn−1 − νn, εn−1 − εn, x′, y′, k′ ) satisfies the conclusion of
Remark.2.1.0; so

x′ + y′ − (νn−1 − νn) = 0 and x′ − y′ − (εn−1 − εn) = 0 (2 .101 )

and
x′ + 3iy′f−1

n.1 + k′(6fn.1 − 19− ifn.1 + 11if2n.1 − 18i) + φn−1 − φn = 0; k′ ∈ R (2 .102 )

( use Remark.2.1.0 where we replace (Xn, Yn, Zn, x, y, k ) by (φn−1 − φn, νn−1 − νn, εn−1 − εn, x′, y′, k′ )). Clearly

(φn−1 − φn, νn−1 − νn, εn−1 − εn) tackles (1, 3if−1
n.1) around 6fn.1 − 19− ifn.1 + 11if2n.1 − 18i ( use (2.101) and (2.102) and the

notion of tackle introduced in Definition 2.2 [observe that (x′, y′) ∈ C2 and k′ ∈ R; so (x′, y′, k′) ∈ C2 × R] ). Proposition 2.4

immediately follows. 2
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