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Abstract. Prime numbers are well known ( for simple characterizations
of primes via divisibility, see [11] and [12] and [13] and [14] and [15]), and the
Goldbach conjecture (see [1] or [2] or [3] or [4] or [5] or [6] or [7] or [8] or [9]
or [10] or [16]) states that every even integer e ≥ 4 is of the form e = p+ q,
where q and p are prime. In this paper, we give an original reformulation
of the Goldbach conjecture via complex arithmetic calculus. This reformu-
lation shows that the Goldbach conjecture can be attacked without using
strong investigations that have been on this conjecture in the past.
Keywords. goldbach, goldbachian.
AMS Classification 2000: 05xx and 11xx.

Prologue. This paper is divided into three sections. In Section.1, we in-
troduce definitions that are not standard and we present some elementary
properties deduced from these definitions. In Section.2, using definitions of
Section.1, we give the trivial reformulation of the Goldbach conjecture that
we will use in Section.3. In Section.3, we prove a proposition linked to com-
plex arithmetic calculus and we use it to give an original reformulation of the
Goldbach conjecture via the trivial reformulation of Section.2. This original
reformulation shows that the Goldbach conjecture can be attacked without
using strong investigations that have been on this conjecture in the past, and
by using only complex arithmetic calculus.

1. Non-standard definitions and simple properties.
Definition 1.0. We say that e is goldbach, if e is an even integer ≥ 4 and
is of the form e = p + q, where p and q are prime. Note that the Goldbach
conjecture (see Abstract) states that every even integer e ≥ 4 is goldbach.
Example 1.0.0. 4 is goldbach, since 4 is an even integer ≥ 4 and 4 = 2 + 2,
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where 2 is prime; 6 is goldbach, since 6 is an even integer ≥ 4 and 6 = 3 + 3,
where 3 is prime; 8 is goldbach, since 8 is an even integer ≥ 4 and 8 = 3 + 5,
where 3 and 5 are prime; 10 is goldbach, since 10 is an even integer ≥ 4 and
10 = 3+7, where 3 and 7 are prime; 12 is goldbach, since 12 is an even integer
≥ 4 and 12 = 7 + 5, where 5 and 7 are prime; and 1764 is also goldbach,
because 1764 is an even integer ≥ 4 and is of the form 1764 = 883 + 881,
where 883 and 881 are prime.

That being so, let us define:

Definition 1.1. We say that e is goldbachian, if e is an even integer ≥ 4
and if every even integer v such that 4 ≤ v ≤ e is of the form v = pv + qv,
where pv and qv are prime; in other worlds, we say that e is goldbachian, if e
is an even integer ≥ 4 and if every even integer v with 4 ≤ v ≤ e is goldbach (
see Definition 1.0 for the meaning of goldbach); in other terms again, we say
that e is goldbachian, if e is an even integer ≥ 4 and v is an even integer of
the form 4 ≤ v ≤ e, implies that v is goldbach. Using the previous definition,
then we have the following trivial remarks.
Remark 1.1.0 12 is golbachian. Proof. Indeed, observe (by using Example 1.0.0 of Defi-
nition 1.0) that 12 is an even integer ≥ 4, and every even integer v of the form 4 ≤ v ≤ 12 is goldbach;
consequently 12 is goldbachian.

Remark 1.1.1. If d is goldbachian and if d′ is an even integer of the form
4 ≤ d′ ≤ d, then d′ is also goldbachian. Proof. Immediate and is a trivial consequence of
the definition of goldbachian introduced above.

Remark 1.1.2. 12 and 10 and 8 and 6 and 4 are simultaneously goldbachian.
Proof. Immediate and is a trivial consequence of Remark 1.1.0 and Remark 1.1.1.

Remark 1.1.3. For every integer n ∈ {1, 2, 3, 4, 5}, 2n + 2 is goldbachian .
Proof. Immediate and is a trivial consequence of Remark 1.1.2.

Note that goldbachian implies goldbach; so there is no confusion between
goldbachian and goldbach. Having defined goldbach and goldbachian, then it
comes:

Definitions 1.2. For every integer n ≥ 2, we define G(n), gn, G(n + 1)
and gn+1 as follows:
G(n) = {g; 1 < g ≤ 2n, and g is goldbachian}, and gn = max

g∈G(n)
g. Using the

definitions of G(n) and gn, then it becomes trivial to deduce that for every
integer n ≥ 1, we clearly have
G(n + 1) = {g; 1 < g ≤ 2n + 2, and g is goldbachian}, and gn+1 = max

g∈G(n+1)
g.

It is immediate that G(n) ⊆ G(n + 1) for every integer n ≥ 2, and therefore
gn ≤ gn+1 for every integer n ≥ 2. Using the previous definitions, then we
have the following trivial remarks.
Remark 1.2.0 If n ≥ 2, then G(n) ⊆ G(n+1) and gn ≤ gn+1. Proof. Immediate
(it suffices to use the definitions of G(n), G(n+ 1), gn and gn+1).

Remark 1.2.1. If gn+1 6= 2n + 2, then G(n + 1) = G(n) and gn+1 = gn.
Proof. Immediate and is a trivial consequence of the definition of (G(n), gn,G(n + 1), gn+1) introduced
above.
Remark 1.2.2. If gn+1 ≤ 2n, then G(n + 1) = G(n) and gn+1 = gn. Proof.
Observe that gn+1 6= 2n+ 2 and use Remark 1.2.1.

2



Remark 1.2.3. For every integer n ∈ {1, 2, 3, 4, 5}, we have gn+1 = 2n+ 2.
Proof. Immediate and is a trivial consequence of Remark 1.1.3 and the definition of gn+1.

Now using the definitions of G(n+1) and gn+1, then the following Propo-
sition becomes trivial.

Proposition 1.3. Let n be an integer ≥ 2. We have the following seven
trivial properties.
(1.3.0.) gn+1 is even and gn+1 ≤ 2n+ 2.

(1.3.1.) gn+1 = 2n + 2, if and only if, 2n + 2 is goldbachian ( in other

words, gn+1 6= 2n+ 2, if and only if, 2n+ 2 is not goldbachian ).
(1.3.2.) gn ≤ gn+1.
(1.3.3.) If gn+1 < 2n+ 2, then 2n+ 2 is not goldbachian.
(1.3.4.) If 2n+ 2 ≤ e and if e is goldbachian, then 2n+ 2 is goldbachian.
(1.3.5.) (An implicite using of the Goldbach formula). If gn+1 < 2n+ 2, then
2n + 2 is not goldbachian and there exists an integer e such that 1 ≤ e ≤ n
and 2e+2 can not be of the form 2e+2 = pe+qe, where pe and qe are prime.
(1.3.6.) (An explicite using of the Goldbach formula). gn+1 = 2n + 2, if and
only if, for every integer n′ such that 1 ≤ n′ ≤ n, we have 2n′+ 2 = pn′ + qn′,
where pn′ and qn′ are prime.
Proof. Properties (1.3.0) and (1.3.1) are immediate (it suffices to use the definition of gn+1). Property
(1.3.2) is trivial (it suffices to use the definition of gn+1 via the definition of gn); and property (1.3.3) is
a trivial consequence of property (1.3.1). Property (1.3.4) is an immediate consequence of Remark 1.1.1

of Definition 1.1. Property (1.3.5) is trivial ( it suffices to use property (1.3.3) and the definition of

goldbachian (see Definition 1.1) ), and property (1.3.6) is an immediate consequence of the definition of

goldbachian and the definition of gn+1 ( see Definition 1.1 for goldbachian and Definitions 1.2 for gn+1).
�

We will use gn+1 to give the trivial reformulation of the Goldbach conjec-
ture.

2. The trivial reformulation of the Goldbach conjecture.
Theorem 2.1. The following are equivalent.
(1). For every integer n′ ≥ 1,we have 2n′ + 2 = pn′ + qn′, where pn′ and qn′
are prime.
(2) The Goldbach conjecture is true [i.e. every even integer e ≥ 4 is of
the form e = pe + qe, where pe and qe are prime].
(3) For every integer n ≥ 1, 2n+ 2 is goldbachian.
(4) For every integer n ≥ 1, we have gn+1 = 2n+ 2.
Proof. (1)⇒ (2)] Immediate [since property (2) is only the obvious reformu-
lation of property (1)] ; (2)⇒ (3)] Immediate [it suffices to use the meaning
of the Goldbach conjecture and the definition of goldbachian];
(3) ⇒ (4)] Immediate [it suffices to use the definition of goldbachian and
the definition of gn+1]; (4) ⇒ (1)] Immediate, by using property (1.3.6) of
Proposition 1.3. �

Theorem 2.1 is the trivial reformulation of the Goldbach conjecture. The-
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orem 2.1 will help us in Section.3 to give an original reformation of the
Goldbach conjecture via complex arithmetic calculus. Before, we need the
following elementary combinatoric remark.

Remark 2.2.Let n be an integer ≥ 1; consider G(n+ 1) and gn+1 (see Defi-
nitions 1.2). We have the following four properties.
(2.2.0.) gn+1 is even and 4 ≤ gn+1 ≤ 2n+ 2.
(2.2.1.) If gn+1 6= 2n+ 2, then: n > 5 and gn+1 = gn.
(2.2.2.) (An implicite using of the Goldbach formula). If gn+1 6= 2n + 2,
then: n > 5 and gn+1 = gn and there exists an integer e such that 1 ≤ e ≤ n
and 2e+ 2 can not be of the form 2e+ 2 = p+ q, where p and q are prime.
(2.2.3.) (Another implicite using of the Goldbach formula). If gn+1 ≤ 2n,
then: n > 5 and gn+1 = gn and there exists an integer e such that 1 ≤ e ≤ n
and 2e+ 2 can not be of the form 2e+ 2 = p+ q, where p and q are prime.
Proof. Property (2.2.0) is immediate. Indeed, it is immediate (by using the definition of gn+1) that
gn+1 is even. It is trivial that 4 is goldbachian (use Remark 1.1.2 of Definition 1.1 ) and 4 = 2(1 + 1);
so 4 ∈ G(n + 1) and therefore gn+1 ≥ 4. It is immediate that gn+1 ≤ 2n + 2 (use the definition of
gn+1). Now using the previous two inequalities, then it becomes trivial to deduce that 4 ≤ gn+1 ≤ 2n+2.
Property (2.2.0) folows. Property (2.2.1) is also immediate. Indeed, if gn+1 6= 2n+2, clearly n > 5 (since
gn+1 = 2n+ 2 for n ∈ {1, 2, 3, 4, 5}, by using Remark 1.2.3 of Definitions 1.2), and clearly

G(n+ 1) = G(n) and gn+1 = gn

(observe that gn+1 6= 2n+ 2 and use Remark 1.2.2 of Definitions 1.2). Property (2.2.1) follows. Property

(2.2.2) is only the trivial reformulation of property (2.2.1), by using the definition of gn+1 and gn (see

Definitions 1.2). Propoperty (2.2.3) is an immediate consequence of propoperty (2.2.2) ( Indeed observe

that gn+1 6= 2n+ 2 and use propoperty (2.2.2) ). Remark 2.2 immediately follows. �

We will use Remark 2.2 in Section.3 to give an original reformulation of
the Goldbach conjecture via complex arithmetic calculus.

3. Properties linked to complex arithmetic calculus and an origi-
nal reformation of the Goldbach conjecture.
In this section, we prove a proposition linked to complex arithmetic calculus
and we use it to give an original reformulation of the Goldbach conjecture.
This original reformulation via complex arithmetic calculus shows that the
Goldbach conjecture can be attacked without using strong investigations that
have been done on this conjecture in the past. Before, we need the following
last definition.

Definition 3.0 (Fundamental). Let n be an integer ≥ 1 and let gn+1

( see Definitions 1.2); then φn is defined as follows.

φn = ( ig3
n+1 − 2ing2

n+1 + 2n )2, i2 = −1.
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It is immediate that for every integer n ≥ 1, φn is well defined and
gets sense. Now using Definition 3.0, then we have the following elementary
Proposition linked to complex arithmetic calculus.

Proposition 3.1 Let n be an integer ≥ 2 and let gn+1 ( see Definitions
1.2); now look at φn introduced in Definition 3.0, and via φn, consider φn−1

( this consideration gets sense, since n ≥ 2, and therefore n − 1 ≥ 1). If
gn+1 6= 2n+ 2, then we have the following two simple properties.
(3.1.0.) (Implicite using of the Goldbach formula). gn+1 = gn and there
exists an integer e such that 1 ≤ e ≤ n and 2e + 2 can not be of the form
2e+ 2 = p+ q, where p and q are prime.
(3.1.1.)

φn−1−φn = −4g5
n+1− 4g4

n+1− 4ig3
n+1− 8ig2

n+1− 8n+ 4 + 8ng4
n+1 + 16ing2

n+1.

Proof. (3.1.0). Indeed observing (by the hypotheses) that gn+1 6= 2n+ 2, clearly gn+1 = gn and there
exists an integer e such that 1 ≤ e ≤ n and 2e+ 2 can not be of the form 2e+ 2 = p+ q, where p and q
are prime. (use property (2.2.2) of Remark 2.2). Property (3.1.0) follows.
(3.1.1). Indeed, look at φn, and observe (by Definition 3.0) that

φn = ( ig3n+1 − 2ing2n+1 + 2n )2 (3 .1 ).

Now let n− 1 and look at φn−1; then using equality (3.1), it becomes trivial to deduce that

φn−1 = ( ig3n − 2i(n− 1)g2n + 2(n− 1) )2 (3 .2 ).

Noticing ( by property (3.1.0) ) that gn+1 = gn and using the preceding equality, then it becomes trivial
to deduce that equality (3.2) clearly says that

φn−1 = ( ig3n+1 − 2i(n− 1)g2n+1 + 2(n− 1) )2 (3 .3 ).

It is elementary to see that equality (3.3) clearly says that

φn−1 = ( ig3n+1 − 2ing2n+1 + 2n + 2ig2n+1 − 2)2 (3 .4 ).

Look at equality (3.4); observing ( by elementary computation) that

( ig3n+1 − 2ing2n+1 + 2n + 2ig2n+1 − 2)2 = λn (3 .5 ),

where

λn = ( ig3n+1 − 2ing2n+1 + 2n )2 + 2(2ig2n+1 − 2)( ig3n+1 − 2ing2n+1 + 2n ) + (2ig2n+1 − 2)2 (3 .5 ′),

then, using equalities (3.5) and (3 .5 ′) it becomes trivial to deduce that equality (3.4) says that

φn−1 = ( ig3n+1 − 2ing2n+1 + 2n )2 + 2(2ig2n+1 − 2)( ig3n+1 − 2ing2n+1 + 2n ) + (2ig2n+1 − 2)2 (3 .6 ).
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Using equality (3.1), then it becomes elementary do deduce that equality (3.6) says that

φn−1 = φn + 2(2ig2n+1 − 2)( ig3n+1 − 2ing2n+1 + 2n ) + (2ig2n+1 − 2)2 (3 .7 ).

Observing ( by elementary computation and the fact that i2 = −1) that

2(2ig2n+1 − 2)( ig3n+1 − 2ing2n+1 + 2n ) + (2ig2n+1 − 2)2 = λ′n (3 .8 ),

where
λ′n = −4g5n+1 − 4g4n+1 − 4ig3n+1 − 8ig2n+1 − 8n+ 4 + 8ng4n+1 + 16ing2n+1 (3 .8 ′),

then, using equalities (3.8) and (3 .8 ′), it becomes trivial to deduce that equality (3.7) says that

φn−1 = φn − 4g5n+1 − 4g4n+1 − 4ig3n+1 − 8ig2n+1 − 8n+ 4 + 8ng4n+1 + 16ing2n+1 (3 .9 ).

Using equality (3.9), then we immediately deduce that

φn−1 − φn = −4g5n+1 − 4g4n+1 − 4ig3n+1 − 8ig2n+1 − 8n+ 4 + 8ng4n+1 + 16ing2n+1.

Property (3.1.1) follows and Proposition 3.1 immediately follows. �

Having proved the previous simple Proposition linked to complex arith-
metic calculus, we are now ready to give an original reformulation of the
Goldbach conjecture.

Theorem 3.2 ( An original reformulation of the Goldbach conjecture). The
following are equivalent.
(1) The Goldbach conjecture is true [i.e. every even integer e ≥ 4 is of
the form e = p+ q, where p and q are prime].
(2) For every integer n ≥ 2

φn−1−φn 6= −4g5
n+1− 4g4

n+1− 4ig3
n+1− 8ig2

n+1− 8n+ 4 + 8ng4
n+1 + 16ing2

n+1.

Proof. (1) ⇒ (2)]. Observe ( by remarking that the Goldbach conjecture is
true and by using Theorem 2.1) that

For every integer n ≥ 1, we have gn+1 = 2n+ 2 (3 .10 ).

Using the definition of gn+1, then it becomes trivial to deduce that (3.10)
clearly implies that

For every integer n ≥ 2, we have gn = 2n (3 .11 ).

Now look at φn introduced in Definition 3.0; then using equality of (3.10), it
becomes trivial to deduce that

φn = ( 2ig2
n+1 + 2n )2 (3 .12 ).
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That being so, consider φn−1 ( this consideration gets sense, since n ≥ 2,
and therefore n− 1 ≥ 1), then using equality of (3.11), it becomes trivial to
deduce that

φn−1 = ( ig3
n − 2i(n− 1)g2

n + 2(n− 1) )2 = ( 2n+ 2ig2
n − 2 )2 (3 .13 ).

Using equalities (3.12) and (3.13), then it becomes trivial to check ( by
elementary computation and the fact that i2 = −1 and by using (3.10) and
(3.11)) that

φn−1−φn 6= −4g5
n+1− 4g4

n+1− 4ig3
n+1− 8ig2

n+1− 8n+ 4 + 8ng4
n+1 + 16ing2

n+1.

(1)⇒ (2)] Otherwise ( we reason by reduction to absurd), let n be an integer
≥ 1 such that

gn+1 6= 2n+ 2 (3 .14 )

( observe that such a n exists, by remarking that the Goldbach conjecture is
false and by using Theorem 2.1). Clearly

n > 5 (3 .15 )

( use (3.14) and property (2.2.1) of Remark 2.2). Using (3.14) and (3.15),
then it becomes immediate to deduce all the hypotheses of Proposition 1.3
are satisfied for such a n; therefore, all the conclusion of Proposition 1.3 are
satisfied for such a n; in particular, property (3.1.1) of Proposition 1.3 is
satisfied for such a n. Consequently

φn−1−φn = −4g5
n+1− 4g4

n+1− 4ig3
n+1− 8ig2

n+1− 8n+ 4 + 8ng4
n+1 + 16ing2

n+1,

and the previous equality gives rise to a serious contradiction. �
Theorem 3.2 is an original reformulation of the Goldbach conjecture via

complex arithmetic calculus and is stronger than all the investigations that
have been done on the Goldbach conjecture in the past. Indeed, The-
orem 3.2 clearly says that: if for every integer n ≥ 2, φn−1 − φn 6=
−4g5

n+1 − 4g4
n+1 − 4ig3

n+1 − 8ig2
n+1 − 8n + 4 + 8ng4

n+1 + 16ing2
n+1, then the

Goldbach conjecture immediately follows. Visibly, Theorm 3.2 is not related
to all the investigations that have been done on the Goldbach conjecture in the
past and can be trasformed to attack the Goldbach conjecture in an original
way.
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