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Framelet-Based image restoration for

impulse noise removal problem

Xiaojuan Yang 1

Abstract

We consider the image recovery problem where the observed image

is simultaneously corrupted by blur and impulse noise. Due to the

edge preserving property of the total variation, and the property of

providing good sparse approximation to piecewise smooth functions of

the wavelet frames, we propose a Framelet-based hybrid regularization

model to significantly lessen staircase artifacts while well preserving

the valuable edge information of the image. We take advantage of an

alternating direction method of multiplier to efficiently find a solution of

this model. Because of the convex of our model, the convergence of our

method can be guaranteed. Experimental results are finally presented

to show the efficiency of our method in terms of the peak-signal-to-noise

ratio, structure similarity index measure and the relative error.

Keywords: total variation, impulse noise, alternating direction

method of multiplier, Framelet.

1 Introduction

Image restoration plays an important role in many applications whose aim is to

recover a clean image from the degraded observation. In this paper, we restrict
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our attention to image deblurring under impulse noise. There are two common

types of impulse noise: salt-and-pepper noise, corrupting a portion of all pixels

with minimal or maximal intensities and leaving the remainder unaffected, and

random-valued noise, the same as salt-and-pepper noise except that corrupted

pixels have random intensity values between minimal and maximal ones.

Assume that u ∈ Rn2
is the true image with pixel value in [0, 255] and

H : Rn2 → Rn2
is a blurring operator. The observed corrupted image g ∈ Rn2

can be formatted as

g = Nimp(Hu)

where Nimp represents the degradation by impulse noise.

The earlier technique for removing impulse noise is a median filter [32],

which is efficient and easy to implement. Some modified versions of the median

filter are given in [2, 25, 31]. Since these filters accomplish the filtering task

via replacing each pixel in the image by average value around it, they cannot

preserve image edges well.

There are some regularization methods that preserve the edge informa-

tion in the restored solution [10]. Bar, Sochen, and Kiryati [1] proposed a

model which is composed of the Mumford-Shah regularizer and the modified

l1 data-fidelity term to deblur the image with impulse noise. Nikolova [28]

proposed a variational model which combines an l1 data-fidelity term and an

edge-preserving regularization term.

Among the edge-preserving regularization techniques, the most commonly

used approach, the total variation (TV) regularization [33], which measures

the l1 norm of the magnitude of the gradient (the first-order difference) of

the image. The advantage of using the TV regularization is that edges of the

image can be well prevered. Yang, Zhang, and Yin [40] proposed an efficient

algorithm (FTVd) for solving a TV-l1 model

min
u

{∥Hu− g∥1 + λ∥u∥TV } (1)

which combines TV regularization and l1 data-fidelity term, where ∥·∥TV is the

discrete TV regularization term. The discrete gradient operator∇ : Rn2 → Rn2

with periodic boundary condition is defined by

(∇u)j,k = ((∇u)xj,k, (∇u)
y
j,k)
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with

(∇u)xj,k =

uj+1,k − uj,k if 1 ≤ j < n,

uj,1 − uj,n if j = n,

(∇u)yj,k =

uj,k+1 − uj,k if 1 ≤ k < n,

u1,k − un,k if k = n,

for j, k = 1, · · · , n. Here uj,k refers to the ((k − 1)n+ j)th entry of the vector

u (it is the (j, k)th pixel location of the image). The discrete total variation

of u is defined by

∥u∥TV =
∑

1≤j,k≤n

√
|(∇u)xj,k|2 + |(∇u)yj,k|2. (2)

The definition in (2) is often referred to as isotropic total variation. The

anisotropic total variation is defined as follows

∥u∥TV =
∑

1≤j,k≤n

|(∇u)xj,k|+ |(∇u)yj,k|.

Dong et al. [19] used a primal-dual approach for the model (1). To reduce

the computational cost, Wu et al. [36] introduced the augmented Lagrangian

method to solve this model at the cost of lower restored quality.

We known that staircase artifacts may appear in the reconstructed im-

age with the TV regularization. One approach reducing the staircase effect

is adding a higher order regularization term to the original ROF model by

[9]. The other is based on wavelet frames. It is well known that images, es-

pecially natural images, can be regarded as piecewise smooth functions, and

wavelet frames can usually provide good sparse approximations to piecewise

smooth functions. The ability to approximate images sparsely is an important

characteristic of wavelets, see [27]. Therefore, the framelet-based models can

significantly improve image restoration quality [11, 3, 4, 5]. Dong et al. [18]

employed the framelet-based regularization. Li et al. [26] combined a framelet-

based regularization to deblurred images with mixed Gaussian-impulse noise.

Our method is related to the sparse approximation of images by wavelets.

There are mainly three formulations utilizing the sparseness of the wavelet

frame coefficients, namely analysis based approach, synthesis based approach,

and balanced approach. Chen [6] combine the synthesis based approach and
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TV regularization to create a model for image deblurring under impulse noise.

In our work, we combine the ideas behind TV regularization and framelet in

a different way. We will focus on the analysis approach because it provides

a direct link to the local geometry of u [7]. The analysis approach is often

modeled as a regularization term as follows

R(u) = ∥Wu∥1,

where W is the analysis operator and Wu is the corresponding wavelet frame

coefficients. We combine framelet and TV regularization together to propose

the following model

min
u

{∥Hu− g∥1 + α∥u∥TV + β∥Wu∥1}. (3)

Throughout this paper, we only focus on the use of the isotropic formulation

of TV. Actually, it is also suitable for anisotropic TV. For ease of notation, we

denote the isotropic formulation of TV as follow

∥u∥TV :=
∑

∥u∥2 =
∑√

|(∇u)x|2 + |(∇u)y|2, (4)

where Σ denotes the summation taken over all pixels.

The computational challenge of (3) comes mainly from the non-differentiability

of the TV norm and l1 regularized terms. In order to solve the compound

regularization model, we use the alternating direction method of multipliers

(ADMM) [40, 37, 34, 38]. Experimental results demonstrate the efficiency of

our method for preserving both the structure details and the sharp edges.

The paper is organized as follows. In Section 2, we give some preliminaries

of framelets and examples of framelets used in this paper. In Section 3, we

present the detailed algorithm for the model (3). Some numerical experiments

are given to illustrate the performance of the proposed algorithm in Section 4.

2 Framelets

In this section, we present some preliminaries of tight framelets. For simplicity,

we only present the univariate framelets and the framelets for two variables

can be constructed by tensor product of univariate framelets. As for the details

about how to construct the tight framelets and the detailed frame theory, the

interested reader can find further details in [11, 12, 17].
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A system X ⊂ L2(R) is called a tight frame of L2(R) if

f =
∑
g∈X

< f, g > g, ∀f ∈ L2(R). (5)

This is equivalent to

∥f∥22 =
∑
g∈X

| < f, g > |2 ∀f ∈ L2(R), (6)

where < ·, · > and ∥ · ∥2 =< ·, · > 1
2 are the inner product and norm of L2(R).

We can see that an orthonormal basis is a tight frame, since the identities (5)

and (6) hold for arbitrary orthonormal bases in L2(R). Hence tight frames

are generalization of orthonormal bases that bring in the redundancy which is

often useful in applications such as denoising, see, e.g., [16].

For given Ψ := {ψ1, · · · , ψq} ⊂ L2(R), the corresponding wavelet (or affine)

system X(Ψ) generated by Ψ is defined by the collection of dilations and shifts

of Ψ as

X(Ψ) = {2k/2ψl(2
kx− j) : 1 ≤ l ≤ q; k, j ∈ Z}.

When X(Ψ) forms a tight frame of L2(R), each function ψl, l = 1, · · · , q, is
called a (tight) framelet and the whole X(Ψ) is called a tight wavelet frame.

The construction of framelet Ψ, which are desirably (anti)symmetric and

compactly supported functions, are usually based on a multiresolution analysis

(MRA) that is generated by some refinable function ϕ with refinement mask

a0 satisfying the refinement equation

ϕ̂(2·) = â0ϕ̂(·),

where ϕ̂ is the Fourier transform of Ψ, and â0 which is 2π periodic is the Fourier

transform of a0. The idea of an MRA-based construction of framelet Ψ is to

find masks al, which are finite sequence, such that

ψ̂l(2·) = âlϕ̂(·), l = 1, · · · , q,

where âl which is 2π periodic is the Fourier transform of al. The sequence

a1, · · · , aq are called wavelet frame masks, or the high filters of the system,

and the refinement mask a0 is called low pass filter. The unitary extension

principle (UEP) of [35] asserts that the system X(Ψ) generated by a finite
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set Ψ forms a tight frame in L2(R) provided that the masks a0, a1, · · · , aq are

finitely supported and their Fourier series satisfy

q∑
l=0

|âl(ξ)|2 = 1 and

q∑
l=0

âl(ξ)âl(ξ + ν) = 0,

for all ν ∈ {0, π}\{0} and ξ ∈ [−π, π], the framelets we adopt in this paper are

constructed from piecewise linear B-spline first given in [35]. The refinement

mask is â0(ξ) = cos2(ξ/2), whose corresponding lowpass filter is â0 =
1
4
[1, 2, 1].

Those two framelet masks are â1(ξ) = −
√
2i
2
sin2(ξ/2) and â2(ξ) = sin2(ξ/2)

whose corresponding lowpass filters are â1 =
√
2
4
[1, 0,−1] and â2 =

1
4
[−1, 2,−1],

respectively. We can see that the masks a1 and a2 correspond to the first

order and second order diffreence operators respectively, up to a scaling. The

associated refinable function and framelets are given in Figure 1.
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Figure 1: Piecewise linear framelets.

The numerical computation of the wavelet framelet transform is done by

using the WF decomposition algorithm given in [20]. We conduct the decom-

position algorithm without downsampling by means of refinement and framelet

masks. We denote the fast framelet transform as W and the inverse framelet

transform as W T , which is the adjoint operator of W . The frame coefficients

of u can be computed by x = Wu, and we will have the perfect reconstruction

formula u = W Tx, i.e., u = W TWu. Hence W is a tight frame if and only if

W TW = I, where I is the identity matrix. Unlike the orthonormal case, we

emphasize that WW T ̸= I in general.
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3 Numerical Algorithm

As the proposed model is a convex optimization problem, there are efficient

solvers for finding a global minimizer of (3). The solvers include the Bregman

method [22], proximal splitting methods [14], primal-dual methods [15, 21],

and ADMM [23]. Here we just adopt the ADMM.

We begin by reformulating (3) as the following constrained optimization

problem

min
u

{∥z∥1 + α
∑

∥x∥2 + β∥y∥1}, subject to Hu− g = z,∇u = x,Wu = y.

(7)

The resulting augmented Lagrangian function is given by

L(z, x, y, u, λ1, λ2, λ3) = ∥z∥1 + α
∑

∥x∥2 + β∥y∥1 +
γ1
2
∥z − (Hu− g)∥22

− λT1 (z − (Hu− g)) +
γ2
2
∥x−∇u∥22 − λT2 (x−∇u)

+
γ3
2
∥y −Wu∥22 − λT3 (y −Wu),

(8)

where λ1, λ2, and λ3 are the vectors corresponding to the Lagrange multi-

pliers to the linear constraints, and γ1, γ2, and γ3 are the penalty parameter

of the alternating direction method of multipliers to control the speed of the

convergence; see, for instance, [29]. The ADMM iteration associated to the

minimizing L in (8) with respect to (z, x, y, u) and with the updates of the

multipliers λ1, λ2, and λ3 is described as follows


(zk+1, xk+1, yk+1, uk+1) = argminz,x,y,u L(z, x, y, u, λ

k
1, λ

k
2, λ

k
3),

λk+1
1 = λk1 − ξγ1(z

k+1 − (Huk+1 − g)),

λk+1
2 = λk2 − ξγ2(u

k+1 −∇uk+1),

λk+1
3 = λk3 − ξγ3(y

k+1 −Wuk+1).

(9)

Since the variables z, x, y and u are decoupled, this allows us to solve them

more easily on their corresponding subproblems in the ADMM. We now inves-

tigate these subproblems one by one for the impulsive noise removal problem.

In step 1, we solve the variable z in the subproblem. This subproblem

corresponds to the following optimization problem

min
z
{∥z∥1 +

γ1
2
∥z − (Huk − g)∥22 − (λk1)

T (z − (Huk − g))}. (10)
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We can directly obtain the solution of (10) by using one-dimensional shrinkage

operator

zk+1 = sgn(Huk − g +
λk1
γ1

) ◦max{|Huk − g +
λk1
γ1

| − 1

γ1
, 0}, (11)

where sgn refers to 1 if the entry is greater than or equal to zero, and −1 if

the entry is negative, and ◦ represents the point-wise product.

In step 2, we solve the variable x in the subproblem. This subproblem

corresponds to the following optimization problem

min
x

{α
∑

∥x∥2 +
γ2
2
∥x−∇uk∥22 − (λk2)

T (x−∇uk)}. (12)

The minimizer of the subproblem (12) can be obtained by using two-dimensional

shrinkage formula

xk+1 =
∇uk + λk

2

γ2

∥∇uk + λk
2

γ2
∥
max{∥∇uk + λk2

γ2
∥ − α

γ2
, 0}, (13)

where the convention 0 · (0/0) = 0 is followed.

In step 3, we solve the variable y in the subproblem. This subproblem

corresponds to the following optimization problem

min
y

{β∥y∥1 +
γ3
2
∥y −Wuk∥22 − (λk3)

T (y −Wuk)}. (14)

Similarity, the minimizer of the subproblem (14) can be obtained by using

two-dimensional shrinkage formula

yk+1 = sgn(Wuk +
λk3
γ3

) ◦max{∥Wuk +
λk3
γ3

∥ − β

γ3
, 0}. (15)

In step 4, we solve the variable u in the subproblem. This subproblem

corresponds to the following optimization problem

min
u

{γ1
2
∥zk+1 − (Hu− g)∥22 − (λk1)

T (zk+1 − (Hu− g))

+
γ2
2
∥xk+1 −∇u∥22 − (λk2)

T (xk+1 −∇u) + γ3
2
∥yk+1 −Wu∥22 − (λk3)

T (yk+1 −Wu)}.
(16)

The minimizer can be obtained by equivalently solving a linear system

(γ1H
TH + γ2∇T∇+ γ3I)u

= γ1H
T (g + zk+1)−HTλk1 + γ2∇Txk+1 −∇Tλk2 + γ3W

Tyk+1 −W Tλk3,

(17)
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where we have used W TW = I.

Note that H and ∇ have block circulant with circulant blocks (BCCB)

structure when periodic boundary conditions are used [37, 39, 30]. We know

that the computations with BCCB matrices can be very efficient by using fast

Fourier transforms (FFTs). We can write

uk+1 = F−1(ζ) (18)

with

ζ =
A

B
, (19)

where

A = γ1F(HT )(F(g) + F(zk+1)−F(λk1)) + γ2F(∇T )(F(xk+1)−F(λk2))

+ γ3F(W T )(F(y)−F(λk3)),

B = γ1F(HT )F(H) + γ2F(∇T )F(∇) + γ3I.

Based on the above analysis, we obtain the following algorithm for solving

the impulse noise removal problem.

Algorithm 1 ADMM for the problem (3)

1. Input: g,H, α > 0, β > 0, ϵ > 0, λ1 > 0, λ2 > 0, and λ3 > 0.

2. Initialization:u0 = g, x0 = ∇u0, y0 =Wu0, λ1 = λ2 = λ3 = 0.

3. For k = 0, 1, · · · , do:
4. Compute (zk+1, xk+1, yk+1, uk+1) as an minimizer of the Lagrangian

function with Lagrange multipliers λ1, λ2 and λ3, i.e.,

compute z: zk+1 = sgn(Huk − g +
λk
1

γ1
) ◦max{|Huk − g +

λk
1

γ1
| − 1

γ1
, 0};

compute x: xk+1 =
∇uk+

λk2
γ2

∥∇uk+
λk2
γ2

∥
max{∥∇uk + λk

2

γ2
∥ − α

γ2
, 0};

compute y: yk+1 = sgn(Wuk +
λk
3

γ3
) ◦max{∥Wuk +

λk
3

γ3
∥ − β

γ3
, 0};

compute u: uk+1 = F−1(ζ) with ζ in (19);

update λ1: λk+1
1 = λk1 − ξγ1(z

k+1 − (Huk+1 − g));

update λ2: λk+1
2 = λk2 − ξγ2(u

k+1 −∇uk+1);

update λ3: λk+1
3 = λk3 − ξγ3(y

k+1 −Wuk+1).

if ∥uk − uk−1∥/∥uk−1∥ < ϵ;

return

End if

5. End For

6. Output u = uk+1.
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In the Algorithm 1, ϵ > 0 is a given tolerance.

4 Numerical experiments

In this section, we illustrate the performance of the proposed algorithm and

compare it with the FTVd algorithm [40]. We use three test images of size n×
m: Cameraman (256×256), Lena (256×256) and Einstein (256×256), which

are shown in Figure 2, and the pixels of all images are scaled to between 0 and

255. In our experiments, we consider two different blurring operators: a 7× 7

(a) Cameraman (b) Lena (c) Einstein

Figure 2: Original images.

Gaussian blur with standard deviation 5 and a Average blur 9 (generated by

the MATLAB function fspecial). We generate the blurry image with periodic

boundary condition and corrupt the blurry image with impulse noise. As

observed in [40], the influence of boundary conditions on image quality is

negligible since the sizes of the tested images are much larger than those of

the tested blurring kernels. For much discussions about boundary conditions,

see [30].

The quality of the restored images is measured by Peak-signal-to-noise ratio

(PSNR), Structural similarity index (SSIM) and the Relative error (ReErr).

They are defined as follows:

PSNR = 20 log10
255

1
mn

∥u− f ∗∥2
,

SSIM =
(2µ∗

fµu + C1)(2σf∗u + C2)

(µ2
f∗ + µ2

u + C1)(σ2
f∗ + σ2

u + C2)
,
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ReErr = ∥u−f∗∥2
∥f∗∥2 .

Where f ∗ is the orginal image, and u is the restored image. µf∗ and µu are

averages of f ∗ and u, respectively. σf∗ and σu are the variance of f ∗ and u,

respectively. σf∗u is the covariance of f ∗ and u. The positive constants C1 and

C2 can be thought of as stabilizing constants for near-zero denominator values.

In general, a high PSNR-value or a small ReErr-value indicate the restoration

is more accurate. However, we know that the PSNR-value or a small ReErr-

value are not always in agreement with visual perception. The SSIM index is a

well-known quality metric used to measure the similarity between two images.

The SSIM map is whiter, the restored image is closer to the clean image.

The stopping criterion is the relative difference successively (RDS) of the

restored image, which is commonly used in [40, 13, 24] and is defined by

RDS(uk+1, uk) = ∥uk+1−uk∥2
∥uk+1∥2 .

We stop all methods when RDS < 1× 10−3.

All the experiments were performed using MATLAB 7.7.0 on a computer

equipped with an Intel (R) Core (TM) 2.60 GHz processor, with 4.00 GB of

RAM, and running Windows XP.

4.1 Deblurring image with salt-pepper noise

In the first experiment, the image is blurred by a 7 × 7 Gaussian blur with

standard deviation 5 and then corrupt with salt-and pepper noise with noise

levels 20%, 30%, 40%, 50% and 60%.

There are three parameters and five parameters in the algorithm FTVd

and the proposed algorithm respectively. In order to have fair comparisons,

we determine the best parameters such that the SSIM index is biggest. The

FTVd algorithm used in this paper for comparison is FTVd v4.1, which is

the latest version for FTVd. For the noise levels 20%, 30%, 40%, 50% and

60%, the parameters (µ, β1, β2) are tuned to get the best results, and they

are set to be (13, 1, 20), (13, 1, 20), (13, 1, 20), (13, 1, 20), (8, 1, 20) for the Ein-

stein image, (25, 1, 20), (25, 1, 20), (13, 1, 20), (13, 5, 20), (10, 5, 20) for the Lena

image and (25, 1, 20), (25, 1, 20), (25, 1, 20), (25, 1, 20), (10, 1, 20) for the Cam-

eraman image respectively. For Algorithm 1, we set (α, β, γ1, γ2, γ3) to be

(0.003, 0.008, 15, 0.05, 0.15), (0.003, 0.008, 15, 0.05, 0.15), (0.003, 0.008, 5, 0.05, 0.15),
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(0.05, 0.009, 15, 0.05, 0.05), (0.05, 0.02, 15, 0.15, 0.05) for the Einstein image,

(0.003, 0.008, 15, 0.05, 0.15), (0.05, 0.009, 15, 0.15, 0.15), (0.05, 0.009, 15, 0.15, 0.15),

(0.05, 0.008, 15, 0.15, 0.15), (0.03, 0.02, 5, 0.05, 0.05) for the Lena image, and

(0.003, 0.008, 15, 0.15, 0.15), (0.01, 0.009, 15, 0.05, 0.15), (0.003, 0.02, 15, 0.15, 0.15),

(0.03, 0.02, 5, 0.15, 0.15), (0.03, 0.02, 10, 0.05, 0.05) for the Cameraman image,

for the noise levels 20%, 30%, 40%, 50% and 60%, respectively. The restored

Einstein images by all two methods are shown in Figure 3(f)-(o) and the SSIM

maps of the restored images in Figure 3(p)-(y).

Table 1

PSNR(dB) values, SSIM and ReErr for various methods for the test images

corrupted by salt-and-pepper noise levels from 20% to 60%, blurred by

Gaussian kernel of size 7× 7 and standard deviation 5.

Images Noise levels
FTVd Proposed method

PSNR SSIM ReErr PSNR SSIM ReErr

20% 31.184 0.819 0.057 34.332 0.902 0.041

30% 30.916 0.812 0.059 32.737 0.878 0.048

Einstein 40% 30.337 0.800 0.063 31.715 0.845 0.058

50% 29.404 0.783 0.070 30.702 0.835 0.063

60% 26.415 0.745 0.099 28.333 0.786 0.082

20% 28.776 0.867 0.077 32.288 0.934 0.052

30% 28.398 0.857 0.081 29.302 0.885 0.073

Lena 40% 27.946 0.847 0.085 28.715 0.871 0.078

50% 26.925 0.818 0.096 27.899 0.853 0.085

60% 25.986 0.792 0.107 26.691 0.818 0.104

20% 29.952 0.869 0.074 32.804 0.937 0.048

30% 28.125 0.857 0.081 31.833 0.914 0.059

Cameraman 40% 27.952 0.842 0.090 30.162 0.883 0.082

50% 27.042 0.817 0.102 28.530 0.834 0.095

60% 24.792 0.786 0.114 23.915 0.781 0.120

In the second experiment, the image is blurred by a Average blur 9 and then

corrupt with salt-and pepper noise with noise levels 20%, 30%, 40%, 50% and

60%. For all the noise levels, the parameters (µ, β1, β2) in FTVd v4.1 are set to

be (13, 1, 20) for the Einstein image, (25, 120), (25, 1, 20), (25, 1, 20), (13, 1, 20),

(13, 1, 20) for the Lena image, and (25, 1, 20) for the Cameraman image. For

the proposed Algorithm 1, we set (α, β, γ1, γ2, γ3) to be (0.003, 0.008, 15, 0.05, 0.15),

(0.003, 0.008, 15, 0.05, 0.15), (0.01, 0.008, 15, 0.15, 0.15), (0.006, 0.02, 15, 0.05, 0.15),

(0.01, 0.009, 10, 0.15, 0.05) for the Einstein image, (0.01, 0.009, 15, 0.15, 0.15),

(0.01, 0.009, 15, 0.15, 0.15), (0.01, 0.009, 15, 0.15, 0.15), (0.003, 0.008, 15, 0.15, 0.05),
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Figure 3: Recovered images of different methods on the Einstein image

corrupted by Gaussian blur G([7, 7], 5) and salt-and-pepper noise with noise

levels from 20% to 60%.
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(0.006, 0.009, 10, 0.05, 0.05) for the Lena image and (0.003, 0.009, 15, 0.15, 0.15),

(0.003, 0.009, 15, 0.15, 0.15), (0.005, 0.02, 10, 0.15, 0.15), (0.009, 0.02, 10, 0.15, 0.15),

(0.005, 0.009, 5, 0.15, 0.05) for the Cameraman image for the noise levels 20%, 30%,

40%, 50% and 60% respectively. The restored Lena images by all two methods

are shown in Figure 4(f)-(o) and the SSIM maps of the restored images in

Figure 4(p)-(y).

Table 2

PSNR(dB) values, SSIM and ReErr for various methods for the test images

corrupted by salt-and-pepper noise levels from 20% to 60%, blurred by

Average kernel of size 9.

Images Noise levels
FTVd Proposed method

PSNR SSIM ReErr PSNR SSIM ReErr

20% 30.452 0.798 0.062 34.127 0.890 0.043

30% 30.141 0.790 0.064 33.276 0.878 0.047

Einstein 40% 29.816 0.781 0.067 32.394 0.850 0.054

50% 28.621 0.763 0.077 31.040 0.824 0.062

60% 27.381 0.737 0.088 29.015 0.785 0.074

20% 28.095 0.847 0.083 30.860 0.909 0.061

30% 27.647 0.835 0.088 30.240 0.899 0.066

Lena 40% 27.184 0.821 0.093 29.524 0.883 0.073

50% 26.740 0.809 0.098 29.240 0.853 0.087

60% 25.954 0.786 0.109 27.404 0.818 0.100

20% 29.316 0.851 0.084 32.231 0.927 0.053

30% 27.960 0.843 0.088 30.703 0.914 0.061

Cameraman 40% 28.343 0.832 0.094 28.721 0.879 0.077

50% 26.935 0.811 0.103 27.591 0.850 0.089

60% 24.957 0.770 0.122 25.188 0.800 0.113

4.2 Deblurring image with random-valued noise

In the third experiment, the image is blurred by a 7 × 7 Gaussian blur with

standard deviation 5 and then corrupt with random-valued noise with noise

levels 20%, 30%, 40%, 50% and 60%.

For the algorithm FTVd v4.1, the parameters (µ, β1, β2) are tuned to get

the best results, and they are set to be (13, 1, 20) for the Einstein image for al-

l the noise levels. The parameters (µ, β1, β2) are set to be (10, 1, 20), (10, 1, 20),

(13, 1, 20), (13, 1, 20), (10, 1, 20) for the Lena image, and the parameters (µ, β1, β2)

are set to be (25, 10, 20), (13, 5, 20), (13, 5, 20), (10, 1, 20), (4, 5, 10) for the Cam-

eraman image. For the proposed Algorithm 1, we set (α, β, γ1, γ2, γ3) to be
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Figure 4: Recovered images of different methods on the Lena image

corrupted by Average(9) and salt-and-pepper noise with noise levels from

20% to 60%.
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(0.003, 0.008, 15, 0.05, 0.15), (0.005, 0.008, 5, 0.15, 0.05), (0.009, 0.02, 10, 0.15, 0.15),

(0.04, 0.02, 20, 0.05, 0.15), (0.003, 0.02, 5, 0.15, 0.05) for the Einstein image,

(0.003, 0.008, 15, 0.15, 0.15), (0.003, 0.009, 15, 0.15, 0.15), (0.04, 0.02, 20, 0.05, 0.15),

(0.005, 0.02, 10, 0.15, 0.05), (0.003, 0.02, 5, 0.15, 0.05) for the Lena image, and

(0.003, 0.008, 15, 0.05, 0.15), (0.003, 0.008, 15, 0.15, 0.05), (0.02, 0.02, 10, 0.15, 0.15),

(0.01, 0.02, 5, 0.15, 0.05), (0.05, 0.02, 5, 0.15, 0.05) for the Cameraman image for

the noise levels 20%, 30%, 40%, 50% and 60% respectively. The restored Cam-

eraman images by all two methods are shown in Figure 5(f)-(o) and the SSIM

maps of the restored images in Figure 5(p)-(y).

Table 3

PSNR(dB) values, SSIM and ReErr for various methods for the test images

corrupted by random-valued noise levels from 20% to 60%, blurred by,

Gaussian kernel of size 7× 7 and standard deviation 5.

Images Noise levels
FTVd Proposed method

PSNR SSIM ReErr PSNR SSIM ReErr

20% 31.164 0.819 0.057 34.298 0.902 0.041

30% 30.771 0.812 0.060 32.731 0.879 0.048

Einstein 40% 30.087 0.797 0.065 31.716 0.848 0.056

50% 27.299 0.757 0.089 28.823 0.794 0.080

60% 26.250 0.667 0.153 26.669 0.709 0.125

20% 28.445 0.860 0.080 31.956 0.930 0.053

30% 27.940 0.848 0.085 30.588 0.890 0.073

Lena 40% 27.448 0.835 0.090 28.099 0.861 0.083

50% 26.313 0.772 0.127 26.298 0.800 0.113

60% 23.686 0.640 0.212 24.894 0.662 0.194

20% 28.554 0.857 0.079 32.681 0.935 0.048

30% 26.594 0.832 0.092 29.950 0.904 0.065

Cameraman 40% 26.250 0.810 0.101 27.935 0.855 0.089

50% 23.741 0.725 0.145 23.808 0.735 0.130

60% 20.122 0.618 0.186 20.248 0.608 0.183

In the last experiment, the image is blurred by a Average blur 9 and then
corrupt with random-valued noise with noise levels 20%, 30%, 40%, 50% and
60%. The parameters (µ, β1, β2) in FTVd v4.1 are set to be (25, 1, 20), (25, 1, 20),
(13, 1, 20), (13, 1, 20), (13, 1, 20), for the Einstein image, (13, 1, 20), (13, 1, 20),
(13, 1, 20), (13, 1, 20), (10, 10, 20) for the Lena image, and (25, 1, 20), (25, 1, 20),
(25, 1, 20), (8, 5, 20), (4, 10, 10), for the Cameraman image. For the proposed
Algorithm 1, we set (α, β, γ1, γ2, γ3) to be (0.003, 0.008, 15, 0.05, 0.15),(0.003, 0.008,
15, 0.05, 0.15),(0.003, 0.02, 15, 0.15, 0.15),(0.03, 0.009, 5, 0.05, 0.05),(0.003, 0.02, 5,
0.15, 0.05) for the Einstein image, (0.005, 0.008, 15, 0.05, 0.15), (0.005, 0.008, 15,
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Figure 5: Recovered images of different methods on the Cameraman image

corrupted by Gaussian blur G([7, 7], 5) and random-valued noise with noise

levels from 20% to 60%.
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0.05, 0.15), (0.005, 0.008, 15, 0.15, 0.05), (0.03, 0.009, 5, 0.05, 0.05), (0.03, 0.02, 5,
0.05, 0.05) for the Lena image and (0.003, 0.008, 15, 0.15, 0.15), (0.003, 0.008, 15,
0.15, 0.15), (0.003, 0.008, 10, 0.15, 0.05), (0.1, 0.005, 10, 0.05, 0.05), (0.1, 0.05, 20,
0.15, 0.15) for the Cameraman image for the noise levels 20%, 30%, 40%, 50%
and 60% respectively. The restored images by all two methods are shown in
Figure 6(f)-(o) and the SSIM maps of the restored images in Figure 6(p)-(y).

Table 4

PSNR(dB) values, SSIM and ReErr for various methods for the test images

corrupted by random-valued noise levels from 20% to 60%,

blurred by Average kernel of size 9.

Images Noise levels
FTVd Proposed method

PSNR SSIM ReErr PSNR SSIM ReErr

20% 30.326 0.795 0.063 33.735 0.889 0.044

30% 30.018 0.787 0.065 32.548 0.876 0.050

Einstein 40% 29.386 0.779 0.070 31.319 0.845 0.057

50% 27.407 0.750 0.088 28.365 0.780 0.079

60% 24.969 0.674 0.131 25.268 0.711 0.113

20% 27.927 0.843 0.085 31.240 0.916 0.058

30% 27.538 0.833 0.089 30.491 0.899 0.065

Lena 40% 26.831 0.813 0.097 28.040 0.861 0.084

50% 25.393 0.776 0.114 25.791 0.794 0.109

60% 23.557 0.661 0.190 22.347 0.685 0.166

20% 29.545 0.841 0.087 31.872 0.929 0.052

30% 27.353 0.841 0.090 30.251 0.901 0.068

Cameraman 40% 26.310 0.821 0.097 27.856 0.861 0.086

50% 23.453 0.734 0.130 23.200 0.739 0.130

60% 20.123 0.606 0.186 20.218 0.611 0.184

From Figures 3-6(f)-(0), we observe that the images restored by the pro-

posed method have much smoother background than the FTVd-v4.1 method,

and at the same time the edges can be preserved as well. After a visual in-

spection of the images, it is easy to check that compared with the FTVd-v4.1

method, the proposed approach yields better results since it avoids the stair-

case effect and preserves edges. In all experiment, we use the SSIM map to

reveal areas of high or low similarity between two images. We present the

SSIM maps of the restored images in Figures 3-6(p)-(y). The reason for that

choice is that in contrast with traditional quality measures like PSNR, the

SSIM index also assesses the conservation of the structural information of the

reconstructed image. We see from Figures 3-6(p)-(y) that the SSIM map of the

restored images by the proposed method is whiter than those by the FTVd-v4.1
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Figure 6: Recovered images of different methods on the Einstein image

corrupted by Average(9) and random-valued noise with noise levels from 20%

to 60%.
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method, i.e., our method can get better restoration results.

From the recovered quantities shown in Tables 1-4, we can judge the re-

covered PSNRs, SSIM and relative errors by the proposed method are much

better than those obtained by the FTVd-v4.1 method.
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