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Abstract 

 

Many authors have investigated the possibility of predictability in asset returns, but very 

little supportive evidence has so far been found in exchange rate returns. This empirical 

study uses the econometric model ARIMA (1,0,0) to study  three different foreign exchange 

rates, namely the euro and the dollar, the euro and the Hungarian forint and the euro and 

the Korean won. It is worth mentioning that ARIMA (1,0,0) model is the same as the 

autoregressive model AR(1), as both of them are made up of one autoregressive parameter 

and no moving average parameters. The results show that it is not possible to explain and 

predict all three foreign exchange rates using the autoregressive model. Specifically, the 

technical rule on transactions ARIMA(1,0,0) is not  effective in the case of euro vs dollar 

but it is effective in the case of euro vs the Hungarian forint and euro v-s the Korean won. 

Fairly accurate predictions can be made regarding the last two foreign exchange 

relationships.  
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1 Introduction 

 

During recent years, volatility predictions of time series, like for example on foreign 

exchange, have been the subject of extensive discussions and research. Volatility is a very 

important aspect of financial markets as it reflects uncertainty and therefore currency or 

investment portfolio risk. The greater the volatility the greater the currency exchange risk 

between a pair of currencies. Investors, fund managers and investment analysts use 

different volatility models in order to predict maximum returns on foreign currency 

exchange (Engle and Patton, 2001). Currency exchanges are largely influenced by 

interrelationships of economic, political and psychological factors (Yao and Tan, 2000). 

Prediction of foreign exchange movements is very difficult and professionals make serious 

attempts to explain such movements thus establishing fundamental and technical analysis 

as the most basic and important financial prediction methodologies. 

 

Fundamental analysis evaluates wealth based on national economic conditions without 

taking into account price fluctuations (DAILYFX, 2014). Technical Analysis studies past 

price behavioural patterns in order to arrive at optimum asset allocation decisions. These 

decisions are usually based on the application of simple rules using historical price data 

(Neely, 1997). Technical analysis predicts foreign exchange rate fluctuations or other asset 

price fluctuations through inductive analysis of past movements using quantitative and 

qualitative techniques or a combination of the two. During the last 20 years, economists 

pay more attention to technical analysis in an attempt to comprehend the foreign exchange 

fluctuation patterns as well as the behavioural patterns of foreign exchange market 

participants (Menkhoff and Taylor, 2007). As a result, literature on the application of 

technical analysis on FOREX markets has been adequately developed although on certain 

occasions this literature is about the application of technical analysis on financial markets 

and more specifically on equity markets. Yet foreign exchange markets are significantly 

different to equity markets. Firstly, the total daily volumes on FOREX are much higher 

than those of the largest equity markets in the world, exceeding four trillion dollars per 

day. Additionally, the foreign exchange market is made up, almost exclusively, of 

professional traders and therefore any impact is merely affecting private investors rather 

than the whole (Sager and Taylor, 2006). Finally, one may claim that there is less 

confidence among traders in fair value models in FOREX than in equity markets (Taylor, 

1995). Lack of trust in fair value models by FOREX participants and the main emphasis 

on transactions with a short-term time horizon, would lead to the conclusion that the use of 

technical analysis is far more popular in foreign exchange markets although the high 

percentage of professional traders and the bigger liquidity in the foreign exchange market 

could suggest the opposite (Menkhoff and Taylor, 2007).  

 

This empirical study investigates the predictive capacity of one of the most popular and 

important time series prediction models, the ARIMA (Autoregressive Integrated Moving 

Average) model. It also considers the various types of technical analysis used in the 

FOREX industry, both by FOREX companies, academics and practitioners. The purpose is 

to examine whether technical analysis, through the application of the ARIMA(1,0,0) 

model, is sufficiently rewarding for the participants of FOREX trading. The methods and 

models used by FOREX companies in predicting currency fluctuations are also examined. 

It is worth mentioning that based on our literature review this is the first time of applying 

the autoregression model. The testing of how efficiently the future foreign exchange prices 

of the dollar (USD), the Hungarian forint (HUF) and the South Korean won(KRW) against 
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the euro (EUR) can be predicted is carried out using data for the five year period 2009-

2014 extracted from the Archives of the European Central Bank.  

 

The various conclusions regarding the application of technical analysis in FOREX trading 

give rise to a number of questions. The technical approach reflects the principle that prices 

move in trends that are established by the changing attitudes of investors according to 

various economic monetary policies but also psychological factors. Given that technical 

analysis is based on the theory that prices reflect investor psychology, it attempts to 

predict the movement of prices in the future, assuming that crowd psychology moves 

between panic, fear and pessimism on the one hand and self confidence, optimism and 

greed on the other hand.  

 

Analysing and predicting future exchange rates using a single isolated model (ARIMA) 

raises a number of questions. This is because there should have been comparison between 

the results of the model under examination and the results obtained using some other 

model, like for example the econometric model GARCH(1,1). Comparing the two models 

one can conclude which is more appropriate to predict future prices but also which of the 

two gives a higher return. Similar questions arise regarding predictions over two time 

periods. In the current research a time period of 5 years is used. However, the results from 

this time period could have been compared to those from a bigger time period (e.g. 10 

years) or even from a short term period (e.g. 1 year) to add confidence in these results.  

 

The remainder of the paper is organized as follows. In the second section various 

econometric methods are examined that could be used for the prediction of the movement 

of exchange rates of various foreign currencies. In the third section, the ARIMA model is 

applied to predict foreign exchange rates of the US dollar and the Hungarian and the S. 

Korean currencies against the euro in order to extract results. In a final section this study 

draws some conclusions from the various findings.   
 

2 Econometric Models 

 

2.1 The Autoregressive Integrated Moving Average (ARIMA) model 

 

In general, the ARIMA(p,q) procedure is written as follows: 

 

qtqtttptpttt uuuuzzzz     22112211    (1) 

 

It is worth noting that the specific procedure can be expressed in different ways. Firstly, it 

is possible to be formulated as a function of its past values and the values of the 

disturbance term of the past and present. In other words, the difference equation form is 

used. For example, if , the difference equation for the ARIMA(p,1,q) model 

is: 

 

qtqttptpptppttt uuuYYYYY     111122111 )()()1(  

(2) 

 

This relation is the result of the ARMA(p,q) equation that replaces zt with its equivalent, 

that is .  
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Furthermore, this procedure can also be a function of its past values and the current value 

of the disturbance term, in other words to be inverted (Inverted form). For example, the 

inverted form of the ARIMA(0,1,1) model is as follows: 

 

tttttt uYYYYY   41

3

131

2

121111 )1()1()1()1(    (3) 

 

The relation is based on the difference equation with consecutive substitutions of ut-1, ut-2, 

etc. 

 

In addition, the ARIMA(p,d,q) procedure is possible to be expressed as a function only of 

the values of the disturbance term, past and present. The specific form is the random shock 

form. For example, the ARIMA(0,1,1) model assumes the following form: 

 

  2111 )1()1( tttt uuuY        (4) 

 

The relation is based on the difference equation with consecutive substitutions of  Yt-1, Yt-2 

etc. 

 

As the present work is a study of the first-order autoregressive model, AR(1), it is 

important to note that this is the ARIMA(1,0,0) model in the form of: 

 

ttt YY   110          (5) 

 

where  και  

 

2.2 The Autoregressive Conditional Heteroscedasticity (ARCH) model 

 

ARCH is the simplest model where AR stems from the fact that this type of model is 

autoregressive in squared returns. Conditionality results from the fact that in these models 

the variability of the following period is based on data of this period. In a standard linear 

regression analysis where, 

 

tiiy            (6) 

 

when the variation of residuals  is stable, there exists homoscedasticity and the Ordinary 

Least Squares (OLS) method is employed for the estimation of α and β parameters. On the 

other hand, if the variation of residuals is unstable, there is heteroscedasticity and in this 

case the Weighted Least Squares (WLS) method is used for the estimation of the 

regression coefficients.  

 

2.3 Generalized AutoRegressive Conditional Heteroskedasticity GARCH(1,1) model 

 

The GARCH(1,1) model is widely used as a parametric test for predicting the variability 

of foreign exchange rates. This model is an extension of the ARCH model (Bollerslev, 

1986). The equation of this model is  
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where  and  

 

The GARCH modeling assumes a two period conditional relationship where returns are 

auto-correlated (Gencay, 1999). In other words, periods of high variability are possible to 

be followed again by periods of high variability. The same is true in times of low 

variability that are followed by periods of low variability. In his research during 1994, 

Taylor applied the exchange rule ARIMA(1,0,2), which is usually used for in-sample data 

where the expected return exceeds the «band of inactivity». Taylor selected the ARIMA 

series and chose the size of the band so as to maximize the in-sample profitability (Taylor, 

1994). Brailsford and Faff, used various complicated fluctuation prediction models for 

shares listed on the Australian Stock Exchange (Brailsford and Faff, 1996). Although the 

various rankings of the model are sensitive to the statistical error, they are used for 

assessing the forecasting accuracy. Their results indicate that the ARCH model and the 

simple regression model provide the best prediction of fluctuations.  (Brailsford and Faff, 

1996). 

 

Wang and Leu in 1996, developed a useful prediction system for medium term trends of 

stock prices on the Taiwanese stock exchange based on a repetitive neural network data 

extracted from the ARIMA sample analysis (Wang and Leu, 1996). Analyzing differences 

of primary data from the Taiwan stock exchange weighted stock index-TSEWSI and then 

studying the auto regressions and partial auto regressions of the time series led to the 

conclusion that this series follows the ARIMA(1,2,1) model. Subsequently, applying 

second differences on the data, led to improved predictions compared to previous ones 

(Wang and Leu, 1996). In conclusion, the econometric model ARIMA is efficient and 

relatively accurate in predicting market trends.  

 

In 1999 Gencay predicted the returns on current exchange rates using historical buy-sell 

signals of simple technical transaction rules, applying the GARCH(1,1) model (Gencay, 

1999). He arrived at the conclusion that in the case of the GARCH(1,1) model, the mean 

squared error of the prediction is close to 1 and the observed confidence level of the 

prediction is 0,5 in the case of the British pound and the Swiss Franc and 0,51 in the case 

of the German mark, the French franc and the Japanese Yen (Gencay το 1999).  

 

Yao and Tan in 2000, using neural networks and the ARIMA model compared their 

prediction results for various currencies. The results looked promising for most currencies 

except for the Japanese yen (Yao and Tan, 2000). With the use of neural networks in 

applying technical prediction rules more accurate results were obtained for the Australian 

dollar, the Swiss franc and the pound sterling. Results for the Japanese yen were not 

statistically significant and this may be due to technical analysis not being the appropriate 

prediction tool for this specific currency (Yao and Tan, 2000). They concluded that 

concentrating on gradients is only 50% correct as opposed to neural networks that exceed 

70% (Yao and Tan, 2000).  

 

Professionals have a different opinion to the above. They believe that returns are more 

important than gradients (Yao and Tan, 2000). Neural networks provide better results 
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irrespective of the normalized mean squared error (NMSE), the gradient or the profit. 

Thus, in the case of foreign currency predictions, researchers concluded that neural 

networks can function as an alternative prediction tool. 

 

Appiah and Adetunde in 2011, using time series analysis attempted to predict future rates 

of exchange (Appiah and Adetunde, 2011). They collected data on the rate of exchange of 

Ghanaian Cedi in relation to the dollar from January 1994 to December 2010 using the 

ARIMA method. Applying the Box-Jenkins methodology, they concluded that the most 

appropriate prediction model for future prices is the ARIMA(1,1,1) model.  

 

3 Data and Results 

 

In this section the degree of predictability in the intertemporal structure of daily exchange 

rates (returns) is analysed using the econometric auto-regressive AR(p) method, one of the 

most important time series models. Additionally, AR(p) models are examined in relation 

to their performances and their effectiveness regarding time series prediction. The data 

used in this study consist of observations of daily frequency for the rate of exchange of the 

dollar, the Hungarian and Korean currencies in relation to the euro for the period 

01/09/2009 - 29/08/2014 (N = 1282). The time series included observations on a five day 

basis covering this period.
2
 Initially, the data were transformed into continuously 

compounded returns by taking the first logarithmic difference as such type of time series 

are usually exposed to exponential growth. So, the logarithms can smooth out 

(linearization) the series and the differences help stabilize the variance of the time series. 

The main motivation to work with logs, instead of levels is that they are usually stationary 

(covariance-stationary) and they represent the behaviour of the conditional volatility of the 

series in a more intuitive manner.  

 

Table 1 presents the descriptive statistics of the dollar, Hungarian and Korean currencies 

against the euro. 

 

Table1: Descriptive Statistics of the three Exchange Rates Descriptive Measures 
Descriptive Measures USD DLUSD HUF KRW 

Mean 1.346 -0.000064 287.281 1500.767 

Median 1.343 0.0002 286.975 1485.630 

Max 1.512 0.018 320.780 1784.750 

Min 1.194 -0.027 261.920 1336.710 

Standard Deviation 0.063 0.006 14.536 86.267 

Skewness 0.300 -0.280 0.107 1.221 

Kurtosis 2.839 3.935 1.837 4.775 

Jurgue-Bera 20.621 63.501 74.688 486.679 

p-value 0.000 0.000 0.000 0.000 

N-observations 1282 1281 1282 1282 

 

The sample consists of 1282 observations respectively. The mean exchange rate for the 

dollar vs euro is 1.346, with a standard deviation of 0.063. The corresponding values for 

the Hungarian currency are 287.281 and 14.536 and for the Korean currency, 1500.767 

and 86.267. From the table, we can also detect skewness and kurtosis for the three 

exchange rates. In all three cases there is positive asymmetry as skewness is greater than 

zero. It can also be established that the variables are not in line with normal distribution by 

                                                           
2
 All data series were obtained from the European Central Bank’s database. 
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observing the Jarque-Bera statistic and also the p-value which in all three cases is close to 

zero thus rejecting the null-hypothesis of normality. Regarding kurtosis, the Korean 

currency exhibits leptokyrtosis in its distribution (positive kyrtosis) as the kyrtosis 

coefficient is 4.775 (kurtosis > 3). On the other hand, the other two exchange rates show 

platykyrtosis (negative kyrtosis) as the kyrtosis coefficients are 2.839 και 1.837, 

respectively (kurtosis < 3).  

 

Table 1 also shows the statistical measures of the first logarithmic differences of the 

original USD (DLUSD) series. This is because the time series that is important in 

determining the results is not the original one but the first logarithmic differences. It is 

made up of 1281 data points as compared to 1282 of the other two series. This can be 

explained by the equation Δ(Y)t = Yt – Yt-1. Therefore, the time series has one less 

observation. The average value approaches zero with a standard deviation of 0.006. 

Furthermore, there exists negative asymmetry as the indicator of asymmetry is less than 

zero (skewness = -0.28). Regarding kyrtosis there is leptokyrtosis as the coefficient of 

kyrtosis is 3.935 (kurtosis > 3).  

 

3.1 ARIMA(1,0,0) MODEL 

 

3.1.1 Dollar vs Euro 

 

Table 1 in appendix gives the unit root test of the USD series that covers the time period 

01/09/2009-29/08/14. It can be observed that at statistical significance level of 5% (α = 

0.05), the null hypothesis is not rejected. In other words, as the p-value is greater than 0.05 

(p-value = 0.388) the unit root alternative hypothesis of the USD series is true. The 

existence of a unit root, i.e. no stationarity in the time series is due to the fact that the time 

series exhibits strong tendency. For this reason it is useful to transform the original series 

by using logarithms. The table of the stationarity test of the transformed series is given in 

appendix where the series continues to exhibit strong tendency. Specifically, it shows that 

the null hypothesis is not rejected since the p-value is still greater than 0.05 (p-value = 

0.388).  

 

Table 3 of appendix shows the stationarity test results of the first differences of the 

logarithms of the exchange rate between dollar and euro (DLUSD) over time where it is 

obvious that series DLUSD exhibits stationarity since the p value approaches zero (p-

value < 0.05). Hence, the first differences of the logarithms of the exchange rate between 

dollar and euro can be analyzed using ARMA, applying the Box-Jenkins procedure.  

 

According to diagram 1 of appendix Β΄ which depicts auto-correlations and partial auto-

correlations of the first differences of the logarithm of the exchange rate between dollar 

and euro and specifically the statistical function Q, it is concluded that there is no auto-

correlation. This can be explained by the fact that function Q has a value of 14.488 for the 

first auto-correlation coefficients (m = 22). This value is less than the critical X
2 

value 

which is 33.9 for significance level α = 0.05 και m = 22 degrees of freedom. Moreover, by 

observing the p-value, which is equal to 0.88 and therefore greater than the significance 

level α = 0.05, it can be concluded that the null hypothesis is not rejected for the existence 

of auto-correlation.  
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Table 2 shows the results of applying various ARIMA models, regarding the significance 

of the model’s parameters. The estimated parameters are not statistically significant since 

the absolute value of the t statistic is less than 1.96 for a significance level α = 0.05  

 

Table 2: Estimated ARIMA Model – DLUSD 

 
Constant 

Term 
AR(1) AR(2) MA(1) MA(1) 

ARIMA(0,1,0) 
-0.00006 

(-0.39) 
- - - - 

ARIMA(0,1,1) 
-0.00006 

(-0.40) 
- - 

-0.026 

(-0.93) 
- 

ARIMA(0,1,2) 
-0.00006 

(-0.39) 
- - 

-0.027 

(-0.98) 

0.027 

(0.96) 

ARIMA(1,1,0) 
-0.00006 

(-0.37) 

-0.027 

(-0.98) 
- - - 

ARIMA(1,1,1) 
-0.00006 

(-0.38) 

-0.537 

(-1.52) 
- 

0.515 

(1.43) 
- 

ARIMA(1,1,2) 
-0.00006 

(-0.38) 

-0.57 

(-1.47) 
- 

0.546 

(1.41) 

-0.006 

(-0.20) 

ARIMA(2,1,0) 
-0.00006 

(-0.40) 

-0.025 

(-0.91) 

0.024 

(0.88) 
- - 

ARIMA(2,1,1) 
-0.00006 

(-0.40) 

-0.284 

(-0.53) 

0.011 

(0.34) 

0.259 

(0.48) 
- 

ARIMA(2,1,2) 
-0.00009 

(-0.54) 

0.439 

(1.16) 

0.415 

(1.20) 

-0.463 

(-1.20) 

-0.384 

(-1.09) 

 

3.1.2 Hungarian Forint to Euro Foreign Exchange Rates 

 

Table 4 of appendix shows the results of the stationarity test (unit root test) of the time 

series HUF which consist of 1282 observations and spans the period 01/09/2009 - 

29/08/14. Based on these observations and at a significance level α = 0.05 the null 

hypothesis is rejected. In other words, as the p-value is less than 0.05 (p-value = 0.029) the 

stationarity hypothesis of the HUF time series holds. The non-existence of a unit root, ie 

the stationarity of the time series, is due to the fact that the series does not exhibit some 

form of tendency. 

 

Observing diagram 2 of appendix, depicting auto-correlations and partial auto-correlations 

of the exchange rate between the Hungarian currency and the euro and more specifically 

the Q statistical function, leads to the conclusion that there exists auto-correlation. This is 

simply because the Q function has a value of 23856 for the first coefficients of 

autocorrelations (m = 22). This value is much higher than the critical Χ
2
 value which 

equals 33.9 for a significance level of α = 0.05 and m = 22 degrees of freedom. 

Furthermore, the autocorrelations of time series HUF diminish geometrically approaching 

zero and the partial auto-correlations become zero after a time lag of 1. This behavior is 

characteristic of the auto-regressive AR(1)model. In other words the HUF time series 

follows the ARIMA(1,0,0) model.  

 

Table 3 shows the results relating to the significance of the model parameters. The first 

column of the table relates to ARIMA(1,0,0) model for the time series under examination. 

The second and fourth columns show the estimation of the parameters and more 
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specifically the constant term and the auto-regressive parameter respectively. Also the 

table provides the p-values of the parameters and the t values in brackets.  

 

Table 3: Estimated ARIMA Model – HUF 

ARIMA(1,0,0) 

Constant 

Term 
p-value AR(1) p-value QLS DW 

292.481 

(34.83) 
0.0000 

0.994 

(295.21 
0.0000 60.007 1.976 

 

As was established by the absolute values of the t statistic, the estimated parameters are 

statistically significant since the absolute vales of the t statistic are greater than the critical 

t value (ǀt > 1.96) for a significance level α = 0.05. The same result can be obtained from 

the p-values, given in the third and fifth columns of the table. As a result the parameters of 

the ARIMA(1,0,0) model are statistically significant. 

 

However, for the hypothesis testing of the model parameters to be valid, the assumption of 

the independence of the residuals of the estimated model must hold. The auto-correlation 

testing of the residuals can be carried out using a diagram of auto-correlations and partial 

auto-correlations given as diagram 3 in appendix. For the first 22 auto-correlation 

coefficients the value of the QLB statistic is 29.957 which is less than the X
2 

value which 

equals 33.9 for a significance level of α = 0.05 and m = 22 degrees of freedom. 

 

Also, based on the p-value that is greater than the level of significance (p-value > 0.05), 

the null hypothesis is not rejected, i.e. the residuals are not auto-correlated. The Durbin-

Watson value in the table is 1.976 which is very close to a value of 2 which means that the 

residuals are not auto-correlated.  

 

The testing for the order of the model can be done by comparing the model under 

examination against another model of higher order. In this case the ARIMA(1,0,0) model 

is compared against ARIMA(2,0,0) και ARIMA(1,0,1) models. From table 5 in appendix 

it can be observed that the addition of a second auto-regressive term as well as moving 

average term is statistically insignificant since the absolute t values of the two parameters 

are smaller than the critical t value of 1.96 for a significance level of α = 0.05. In other 

words the additional coefficients in the higher order models are statistically insignificant 

and therefore the original model is the one that can describe the procedure that produces 

the estimates.   

 

On the basis of the above findings and as the assumption of the independence of residuals 

holds, the model can be validly used to predict future exchange rates. The predictions 

relate to the period 01/09/2009 - 29/08/2014, and also to September which is an out-of-

sample month and spans the period 01-30/09/2014. It is worth mentioning that these 

predictions are based on the static approach, in other words actual and not anticipated 

values are used as the actual data is available.  

 

Table 4 shows the square root of the mean square error (RMSE), the mean absolute error 

(MAE), the mean absolute percentage error (MAPE), the Theil coefficient of inequality, as 

well as its biasness, variance and co-variance. 

 

Table 4: Forecasts Assessment 

ARIMA(1,0,0 HUF 
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RMSE 1.748 

MAE 1.301 

MAPE 0.453 

Theil Statistic 0.003 

Components:  

a. Bias 0.000 

b. Variance 0.004 

c. Covariance 0.996 

 

The errors are insignificant and the Theil coefficient approaches the value of zero (0.003). 

This indicates that the predicted values match the actual values. On the basis of non-

existent biasness in combination with the variance of 0.004 it can be claimed that there are 

no systematic errors. Therefore, the largest percentage of the error (99.6%) is due to co-

variance. Based on these criteria the ARIMA(1,0,0) model is appropriate and able to 

predict future exchange rates.  

 

3.1.3 The exchange rate between the Korean won and the euro  

 

Using the exchange rate of the Korean won as compared to the euro, the same time period 

(01/09/2009-29/08/2014) is analyzed, where the sample consists of 1282 observations. As 

evidenced by the examination of the time series HUF, the time series KRW (see table 6 in 

appendix) is also characterized by stationarity without strong tendency. 

 

Next, diagram 4 of appendix depicts the autocorrelations and partial autocorrelations of 

the time series KRW, for the period 01/09 / 09-29 / 08/14. Function Q has a value of 

22522 for the first autocorrelation coefficients (m = 22) of the sample. This value is 

greater than the critical X
2
 value which, for significance level α = 0.05 and m = 22 degrees 

of freedom, is 33.9, which proves autocorrelation. Meanwhile, the autocorrelation of the 

time series KRW declines geometrically approaching zero and the partial autocorrelation 

approaching zero with time lag 1. Thus, the time series under examination also follows the 

model ARIMA (1,0,0). 

 

Table 5 shows the results of the ARIMA model for the time series KRW during the 

relevant period. In the second and fourth columns the estimates of model parameters are 

given, namely the constant term and the autoregressive parameter. Additionally, the values 

of the t statistic are shown below the coefficients of the models, which serve to test the 

statistical significance of the model coefficients. 

 

Table 5: Estimated ARIMA Model – KRW 

ARIMA(1,0,0) 

Constant 

Term 
p-value AR(1) p-value QLS DW 

1459.144 

(42.44) 
0.0000 

0.992 

(336.5) 
0.0000 31.554 2.087 

 

In addition to the statistical values t, the testing of the statistical significance of the 

parameters can be done using the p-value, which can be seen in the third and fifth columns 

of table 5. As noted, the p-value approaches zero which means that the parameters of the 

model ARIMA (1,0,0) are statistically significant. Subsequently, the testing of the 

autocorrelation of residuals of the estimated model is applied. In diagram 5 of appendix it 

can be seen that for the first  22 autocorrelation coefficients (m = 22) the value of 
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statistical QLB for the period in question is 31.55, which is less than the value of the 

distribution X
2
, which for a significance level = 0.05 and degrees of freedom m = 22, is 

33.9. Also, based on the p-value of 0.065 which is greater than the significance level (p-

value> 0.05), the null hypothesis cannot be rejected. In other words, the hypothesis that 

the residuals are not autocorrelated holds true. The same result can be obtained using the 

Durbin-Watson test. As the values of the test are close to 2 (2.087), it can be inferred that 

there is no autocorrelation of the residuals. 

 

Next, a test of the ordering of the model is performed, comparing the model under 

consideration with another of higher order. As in the case of time series HUF, so in this 

case the model ARIMA (1,0,0) is compared with the model ARIMA (2,0,0) and ARIMA 

(1,0,1). From Table 7 of Appendix, it can be observed that the addition of a second 

autoregressive term and a moving average term are statistically insignificant as the 

absolute values of the two parameters are less than the critical value 1.96 with a 

significance level a = 0.05. In other words, additional coefficients in the higher-order 

models are not statistically significant for the model, so the original ARIMA (1,0,0) model 

defines the process that produced the data. 

 

As the process of over-adjustment has been applied and the requirement of independence 

of the residuals holds true, the model may be used reliably to forecast future exchange 

rates. Forecasts relate to the above mentioned periods of time and the immediately 

following month, namely September, which is a month out of sample. In these forecasts 

too, the static approach is applied as the actual data are available. 

 

Using the results in table 6 to assess forecasts, the errors are very small. Also, the Theil 

coefficient is close to zero (0.003), which indicates that the predicted values coincide with 

the actual. This lack of biasness, in conjunction with the variance (0.003), is an indication 

of non-systematic errors. Therefore, the greatest part of the error is due to the covariance 

of 99.7%, which represents the unsystematic (random) factor that cannot be avoided. 

 

Table 6: Forecasts Assessment 

ARIMA(1,0,0 KRW 

RMSE 9.080 

MAE 6.736 

MAPE 0.446 

Theil Statistic 0.003 

Components:  

d. Bias 0.000 

e. Variance 0.003 

f. Covariance 0.997 

 

Based on the above results the ARIMA (1,0,0) model can be used to reliably predict future 

prices in the foreign exchange market. 

 

4  Conclusions 

 

Technical analysis according to the Box-Jenkins methodology, namely the application of 

the model AR(1), is efficient in trading foreign exchange. By using 2009 - 2014 data it has 

been proved that for some currencies it is feasible to predict future exchange rates using 

values of the past. As already mentioned, Yao and Tan, while investigating the predictive 
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ability of the ARIMA model for various exchange rates, concluded that in relation to the 

Japanese yen no reliable predictions can be made. In this research, using the exchange rate 

of the dollar against the euro proved from the start that applying the ARIMA model cannot 

give reliable future predictions, as coefficients of the estimated models are statistically 

insignificant. In other words, technical analysis is not an appropriate tool for forecasting 

currency trends. That is because the exchange rate of the dollar against the euro is 

impacted by various economic, political, social, and psychological factors, which makes it 

quite difficult to forecast. In contrast, the autoregressive AR model with an autoregressive 

parameter is able to predict future values of the Hungarian Forint and the Korean won 

against the euro, as the coefficients of the model are statistically significant and residuals 

not autocorrelated. In other words, the residuals are white noise.  

 

It is important to note that in order to conclude that the model is appropriate and able to 

make forecasts certain criteria have to be satisfied. The most important is that the Theil 

inequality coefficient is close to zero. In both cases, namely in the exchange rates of the 

Hungarian and Korean currencies relative to the euro the value of the coefficient is 0.003. 

Additionally, the biasness and variance, which make up the systematic error, are almost 

nonexistent and therefore the greatest percentage of the error is due to non-systematic 

error as the covariance equals 99.6% and 99.7% respectively. This indicates that the 

predicted values coincide with the real.  

 

Appiah and Adetude, using the Box-Jenkins methodology concluded that the most 

appropriate model for future price prediction is the ARIMA (1,1,1) model with an absolute 

mean percentage error of 0.915 and a square root of mean squared error of 93.873. Instead, 

this empirical work proves that the most appropriate model for the Hungarian and Korean 

currencies is the ARIMA (1,0,0). The future exchange rate forecasts for the Hungarian 

forint have absolute mean percentage error 0.453 and square root of mean squared error 

1.748. For the Korean currency the absolute mean percentage error and the square root of 

the mean squared error is 0.446 and 9.08 respectively. In both cases of the above 

mentioned currencies, errors are smaller than those derived by Appiah and Adetunde with 

the ARIMA (1,1,1) model.  Hence the predictions of this research are better as the errors 

are smaller. In conclusion, there is strong evidence to suggest that the ARIMA (1,0,0) 

model is the most suitable and reliable to forecast future exchange rates of the Hungarian 

forint and the Korean won against the euro for the period 2009 - 2014. 
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APPENDIX 

 

 

Table 1: Stationarity test of the USD time series 
 

Null Hypothesis: USD has a unit root  

Exogenous: Constant, Linear Trend  

Lag Length: 0 (Automatic - based on SIC, maxlag=22) 

     
        t-Statistic   Prob.* 

     
     Augmented Dickey-Fuller test statistic -2.384004  0.3878 

Test critical values: 1% level  -3.965226  

 5% level  -3.413323  

 10% level  -3.128691  

     
     *MacKinnon (1996) one-sided p-values.  

     

 

Table 2: Stationarity test of the LUSD logarithmic time series 

 
Null Hypothesis: LUSD has a unit root  

Exogenous: Constant, Linear Trend  

Lag Length: 0 (Automatic - based on SIC, maxlag=22) 

     
        t-Statistic   Prob.* 

     
     Augmented Dickey-Fuller test statistic -2.383062  0.3883 

Test critical values: 1% level  -3.965226  

 5% level  -3.413323  

 10% level  -3.128691  

     
     *MacKinnon (1996) one-sided p-values.  

 

 

Table 3: Stationarity test of the first differences of the DLUSD time series 

 
Null Hypothesis: DLUSD has a unit root  

Exogenous: Constant, Linear Trend  

Lag Length: 0 (Automatic - based on SIC, maxlag=22) 

     
        t-Statistic   Prob.* 

     
     Augmented Dickey-Fuller test statistic -36.74499  0.0000 

Test critical values: 1% level  -3.965231  

 5% level  -3.413326  

 10% level  -3.128692  

     
     *MacKinnon (1996) one-sided p-values.  

 

Table 4: Stationarity test of the HUF time series 

 
Null Hypothesis: HUF has a unit root  

Exogenous: Constant, Linear Trend  

Lag Length: 0 (Automatic - based on SIC, maxlag=22) 
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        t-Statistic   Prob.* 

     
     Augmented Dickey-Fuller test statistic -3.616744  0.0288 

Test critical values: 1% level  -3.965226  

 5% level  -3.413323  

 10% level  -3.128691  

     
     

*MacKinnon (1996) one-sided p-values.  

 

 

Table 5: Over-adjusting the  ARIMA(1,0,0) model  for the HUF time series 

 

  Constant Term AR(1) AR(2) MA(1) 

ARIMA(2,0,0) 
292,131 1,005 -0,011 - 

(34,79) (35,93) (-0,39) - 

ARIMA(1,0,1) 
292,343 0,994 - 0,012 

(35,45) (289,48) - (0,43) 

 

 

Table 6: Stationarity test of the KRW time series 

 
Null Hypothesis: KRW has a unit root  

Exogenous: Constant, Linear Trend  

Lag Length: 0 (Automatic - based on SIC, maxlag=22) 

     
        t-Statistic   Prob.* 

     
     Augmented Dickey-Fuller test statistic -3.596457  0.0304 

Test critical values: 1% level  -3.965226  

 5% level  -3.413323  

 10% level  -3.128691  

     
     *MacKinnon (1996) one-sided p-values.  

 

 

Table 7: Assessed ARIMA models for the KRW time series 

 

  Σταθερός Όρος AR(1) AR(2) MA(1) 

ARIMA(2,0,0) 
1456,644 0,948 0,044 - 

(41,21) (33,92) (1,56) - 

ARIMA(1,0,1) 
1456,637 0,992 - -0,042 

(41,21) (349,52) - (-1,50) 
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Figure 1: Autocorrelations and partial autocorrelations – DLUSD 

 

  Autocorrelation Partial Correlation AC PAC Q-Stat Prob 

                            

                            

      

  

  

  

  

  

  

  

  

1 -0.027 -0.027 0.9568 0.328                 

                      2 0.025 0.024 1.7717 0.412   

                      

3 0.012 0.014 1.9646 0.580 

  

                        

                      

4 -0.015 -0.015 2.2375 0.692 

  

                        

                      

5 0.020 0.019 2.7588 0.737 

  

                        

                      

6 -0.004 -0.003 2.7826 0.836 

  

                        

                      

7 -0.006 -0.006 2.8226 0.901 

  

                        

                      

8 0.014 0.013 3.0755 0.930 

  

                        

                      

9 -0.001 0.001 3.0764 0.961 

  

                        

                      

10 0.044 0.043 5.6110 0.847 

  

                        

                      

11 -0.008 -0.006 5.6865 0.893 

  

                        

                      

12 0.034 0.032 7.1598 0.847 

  

                        

                      

13 -0.039 -0.039 9.1322 0.763 

  

                        

                      

14 0.005 0.003 9.1637 0.820 

  

                        

                      

15 0.002 0.001 9.1667 0.869 

  

                        

                      

16 -0.005 -0.002 9.1931 0.905 

  

                        

                      

17 0.012 0.009 9.3657 0.928 

  

                        

                      

18 0.028 0.029 10.375 0.919 

  

                        

                      

19 -0.041 -0.040 12.515 0.862 

  

                        

                      

20 -0.005 -0.012 12.543 0.896 

  

                        

                      

21 0.028 0.031 13.549 0.888 

  

                        

                      

22 0.027 0.027 14.488 0.883 
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Figure 2: Diagram of autocorrelations and partial autocorrelations - HUF 

  Autocorrelation Partial Correlation AC PAC Q-Stat Prob 

                                

                                

        

  

  

  

  

  

  

1 0.991 0.991 1261.9 0.000                 

                    2 0.982 0.003 2502.4 0.000   

                    

3 0.974 0.034 3723.1 0.000 

  

                      

                    

4 0.966 0.033 4926.0 0.000 

  

                      

                    

5 0.959 -0.002 6111.2 0.000 

  

                      

                    

6 0.952 0.016 7279.4 0.000 

  

                      

                    

7 0.945 0.034 8432.4 0.000 

  

                      

                    

8 0.938 -0.024 9569.3 0.000 

  

                      

                    

9 0.931 -0.028 10689. 0.000 

  

                      

                    

10 0.923 0.007 11792. 0.000 

  

                      

                    

11 0.916 0.018 12880. 0.000 

  

                      

                    

12 0.909 -0.012 13951. 0.000 

  

                      

                    

13 0.902 -0.039 15006. 0.000 

  

                      

                    

14 0.894 0.010 16044. 0.000 

  

                      

                    

15 0.887 -0.002 17066. 0.000 

  

                      

                    

16 0.880 0.048 18074. 0.000 

  

                      

                    

17 0.875 0.043 19070. 0.000 

  

                      

                    

18 0.869 -0.033 20052. 0.000 

  

                      

                    

19 0.863 0.009 21022. 0.000 

  

                      

                    

20 0.857 0.012 21979. 0.000 

  

                      

                    

21 0.851 -0.008 22924. 0.000 

  

                      

                    

22 0.845 0.006 23856. 0.000 
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Figure 3: Autocorrelations and partial autocorrelations for the residuals of the 

ARIMA(1,0,0) model 

  Autocorrelation Partial Correlation AC PAC Q-Stat Prob 

                                  

                                  

      

  

  

  

  

  

  

  

  

1 0.011 0.011 0.1510 

    

                  

                      2 -0.043 -0.043 2.5397 0.111   

                      

3 -0.044 -0.043 5.0662 0.079 

  

                        

                      

4 -0.002 -0.003 5.0734 0.167 

  

                        

                      

5 -0.027 -0.031 5.9970 0.199 

  

                        

                      

6 -0.045 -0.047 8.6148 0.125 

  

                        

                      

7 0.041 0.039 10.784 0.095 

  

                        

                      

8 0.040 0.033 12.873 0.075 

  

                        

                      

9 -0.009 -0.011 12.983 0.112 

  

                        

                      

10 -0.029 -0.023 14.037 0.121 

  

                        

                      

11 0.007 0.008 14.097 0.169 

  

                        

                      

12 0.043 0.040 16.466 0.125 

  

                        

                      

13 -0.018 -0.015 16.863 0.155 

  

                        

                      

14 0.005 0.011 16.899 0.204 

  

                        

                      

15 -0.064 -0.067 22.145 0.076 

  

                        

                      

16 -0.065 -0.067 27.576 0.024 

  

                        

                      

17 0.035 0.038 29.180 0.023 

  

                        

                      

18 0.001 -0.007 29.180 0.033 

  

                        

                      

19 0.000 -0.009 29.180 0.046 

  

                        

                      

20 0.004 0.002 29.203 0.063 

  

                        

                      

21 0.008 -0.000 29.286 0.082 

  

                        

                      

22 -0.023 -0.021 29.957 0.093 
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Figure 4: Autocorrelations and partial autocorrelations – KRW 

  Autocorrelation Partial Correlation AC PAC Q-Stat Prob 

                                  

                                  

        

  

  

  

    

  

  

1 0.989 0.989 1257.0 0.000                   

                      2 0.979 0.020 2488.6 0.000   

                      

3 0.968 -0.029 3693.8 0.000 

  

                        

                      

4 0.957 -0.007 4872.8 0.000 

  

                        

                      

5 0.946 0.015 6026.9 0.000 

  

                        

                      

6 0.936 -0.015 7155.9 0.000 

  

                        

                      

7 0.925 0.010 8260.9 0.000 

  

                        

                      

8 0.915 0.015 9343.1 0.000 

  

                        

                      

9 0.906 0.032 10405. 0.000 

  

                        

                      

10 0.897 -0.010 11445. 0.000 

  

                        

                      

11 0.888 0.022 12467. 0.000 

  

                        

                      

12 0.879 -0.021 13468. 0.000 

  

                        

                      

13 0.870 0.008 14451. 0.000 

  

                        

                      

14 0.862 0.015 15415. 0.000 

  

                        

                      

15 0.854 0.005 16362. 0.000 

  

                        

                      

16 0.845 -0.020 17291. 0.000 

  

                        

                      

17 0.837 0.017 18202. 0.000 

  

                        

                      

18 0.829 -0.019 19097. 0.000 

  

                        

                      

19 0.821 0.025 19974. 0.000 

  

                        

                      

20 0.813 -0.001 20837. 0.000 

  

                        

                      

21 0.807 0.061 21686. 0.000 

  

                        

                      

22 0.800 -0.011 22522. 0.000 
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Figure 5: Autocorrelations and partial autocorrelations for the residuals of the 

ARIMA(1,0,0) model 

  Autocorrelation Partial Correlation AC PAC Q-Stat Prob 

                                

                                

      

  

  

  

  

  

  

  

  

1 -0.043 -0.043 2.4187 

    

                  

                      2 0.020 0.018 2.9227 0.087   

                      

3 0.048 0.050 5.8676 0.053 

  

                        

                      

4 -0.028 -0.025 6.8979 0.075 

  

                        

                      

5 -0.011 -0.015 7.0428 0.134 

  

                        

                      

6 -0.021 -0.023 7.5956 0.180 

  

                        

                      

7 -0.034 -0.033 9.0613 0.170 

  

                        

                      

8 -0.068 -0.070 15.090 0.035 

  

                        

                      

9 0.008 0.005 15.173 0.056 

  

                        

                      

10 -0.046 -0.042 17.958 0.036 

  

                        

                      

11 0.048 0.049 20.982 0.021 

  

                        

                      

12 0.003 0.003 20.991 0.033 

  

                        

                      

13 -0.054 -0.055 24.729 0.016 

  

                        

                      

14 0.023 0.007 25.407 0.020 

  

                        

                      

15 -0.000 -0.000 25.407 0.031 

  

                        

                      

16 0.003 0.002 25.420 0.045 

  

                        

                      

17 0.026 0.022 26.273 0.050 

  

                        

                      

18 0.007 0.006 26.334 0.069 

  

                        

                      

19 -0.027 -0.023 27.316 0.073 

  

                        

                      

20 -0.048 -0.059 30.346 0.048 

  

                        

                      

21 0.006 0.000 30.388 0.064 

  

                        

                      

22 -0.030 -0.024 31.554 0.065 

  

                        

                                  

 



20 
 

 

References 

 

[1] Appiah, S.T. and Adetunde, I. A. (2011) ‘Forecasting exchange rate between the 

Ghana cedi and the US dollar using time series analysis’, Current Research Journal of 

Economic Theory, 3(2), pp.76-83. 

[2] Bollerslev, T. (1986) ‘Generalized autoregressive conditional heteroskedasticity’, 

Journal of Econometrics, 31(3), pp.307–327. 

[3] Brailsford, T. J. and Faff, R. W. (1996) ‘An evaluation of volatility forecasting 

techniques’, Journal of Banking &  Finance, 20(3), pp.419-438. 

[4] DAILYFX (2014) DailyFX Home: DailyFX For Beginners: Trading Tips: Weekly 

Trading Lesson: Technical Versus Fundamental Analysis in Forex 

http://www.dailyfx.com/forex/education/trading_tips/daily_trading_lesson/2012/01/20/Tec

hnical_Versus_Fundamental_Analysis_in_Forex.html (accessed October, 2015). 

[5] Dueker, M and Neely, C. J. (2007) ‘Can Markov switching models predict excess 

foreign exchange returns?’, Journal of Banking & Finance, 31(2), pp.279-296. 

[6] Engle, R. F. and Patton, A. J. (2001) ‘What good is a volatility model’, Quantitative 

Finance, 1(2), pp.237-245. 

[7] Fama, E. F. and Blume, M. E. (1966) ‘Filter rules and stock market trading profits’, 

Journal of Business 39(1), pp.226–241.  

[8] Gencay, R. (1999) ‘Linear, non-linear and essential foreign exchange rate prediction 

with simple technical trading rules’, Journal of International Economics, 47(1), 91–107. 

[9] Kuan, C-M. and Liu, T. (1995) ‘Forecasting exchange rates using feedforward and 

recurrent neural networks’, Journal of Applied Econometrics 10(4), pp.347–364. 

[1] LeBaron, B. (1999) ‘Technical trading rule profitability and foreign exchange 

intervention’, Journal of International Economics, 49(1), pp.125-143. 

[10] Lyons, R. K. (2001) ‘The Microstructure Approach to Exchange Rates’. Cambridge: 

MIT Press. 

[11] Malkiel, B. G. (1996) ‘A random walk down Wall Street’. New York: W.W. Norton. 

[12] Marshall, B. R., Young, M. R. and Cahan, R. (2008) ‘Are candlestick technical 

trading strategies profitable in the Japanese equity market?’, Review of Quantitative 

Finance and Accounting, 31(2), pp.191-207. 

[13] Martin, A. D. (2001) ‘Technical trading rules in the spot foreign exchange markets of 

developing countries’, Journal of Multinational Financial Management, 11(1), pp.59–68. 

[14] Menkhoff, L. and Taylor, M. P. (2007) ‘The Obstinate Passion of Foreign Exchange 

[15] Professionals: Technical Analysis’, Journal of Economic Literature, 45(4), pp.936-

972. 

[16] Murphy, J. J. (1986) ‘Technical Analysis of the Futures Markets’. New York: Prentice 

Hall. 

[17] Neely, C. J. (1997) ‘Technical analysis in the foreign exchange market: a layman’s 

guide’, Federal Reserve Bank of St. Louis, 79, pp.23-38.  

[18] Neely, C. J. and Weller, P. A. (2011) ‘Technical analysis of the foreign exchange 

market’, Working Paper 2011-001B, Research Division, FEDERAL RESERVE BANK OF 

ST. LOUIS. 

[19] Neely, C., Weller, P. and Dittmar, R. (1997) ‘Is technical analysis in the foreign 

exchange market profitable? A genetic programming approach’, Journal of Financial and 

Quantitative Analysis, 32(4), pp.405-426. 

[20] Park, C-H. and Irwin, S. H. (2007) ‘What do we know about the profitability of 

technical analysis?’, Journal of Economic Surveys, 21(4), pp.786–826. 



21 
 

[21] Rodriguez, F.,  Rivero, S. and Felix, A. (2003) ‘Technical analysis in foreign 

exchange markets: evidence from the EMS’, Applied Financial Economics, 13(2), pp.113-

122. 

[22] Rosillo, R., de la Fuente, D. and Brugos, J. A. L. (2013)
  
‘Technical analysis and the 

Spanish stock exchange: testing the RSI, MACD, momentum and stochastic rules using 

Spanish market companies’, Applied Economics, 45(12), pp.1541-1550. 

[23] Sager, M. J. and Taylor, M. P. (2006) ‘Under the microscope: the structure of the 

foreign exchange market’, International Journal of Finance & Economics, 11(1), pp.81-

95. 

[24] Taylor, S. J. (1994) ‘Trading futures using a channel rule: A study of the predictive 

power of technical analysis with currency examples’, Journal of Futures Markets, 14(2), 

pp.215-235. 

[25] Taylor, M. P. (1995) ‘The Economics of Exchange Rates’, Journal of Economic 

Literature, 33(1), 13-47. 

[26] Taylor, M. P. and Allen, H. (1992) ‘The use of technical analysis in the foreign 

exchange market’, Journal of international Money and Finance, 11(3), pp.304-314. 

[27] Taylor, A. M. and Taylor, M. P. (2004) ‘The Purchasing Power Parity Debate’, 

Journal of Economic Perspectives, 18(4), pp.135-158. 

[28] Wang, J. H. and Leu, J. Y. (1996) ‘Stock market trend prediction using ARIMA-

based neural networks’, IEEE International Conference, vol. 4, 2160 – 2165. 

[29] Yao, J. and Tan, C-L. (2000) ‘A case study on using neural networks to perform 

technical forecasting of Forex’, Neurocomputing, 34(1-4), pp.79-98.  


