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Abstract. This article discusses approximation methods for solving the strongly nonlinear Brinkman-Forscheimer
equation describing the unidirectional flow of fluid through a horizontal channel filled with porous medium. Comparisons
were made of approximations by semi-analytic methods and the finite difference method for this nonlinear problem. The
results indicated that the approximations by the finite difference method compared well with solutions by semi-analytic
methods in the literature.
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1. Introduction. The steady state and pressure driven unidirectional flow of fluid through a hor-
izontal channel filled with porous media is often modeled by the Brinkman-Forscheimer momentum
equations represented by the second-order nonlinear differential equation

µeff
du∗

dy∗2
=

µ

K
u∗ +

ρCf√
K
u∗2 +G (1.1)

where the variables Cf , G,K, ρ, µ, µeff denote respectively the drag coefficient, the pressure gradient, the
permeability, the fluid density, the fluid viscosity and the effective fluid viscosity inside the porous medium
[8]. The impermeable walls of the channel are assumed to be at the positions y∗ = ±h. By introducing
the similarity variables

x =
x∗

PeH
, y =

y∗

h
, u =

Gh2u∗

µ

the dimensionless form of (1.1) is obtained as a

d2u

dy2
− s2u− Fsu2 +

1

M
= 0 (1.2)

subject to the boundary conditions

u(±1) = 0.

In the above, the variables

M =
µeff

µ
, F =

CfρGH
3

µeffµ
, Da =

K

H2
, s =

(
1

MDa

) 1
2

where Pe, Da and H denote respectively the Peclet, the Darcy number and the total width of the channel.
Several numerical methods abound for approximating the solution of the above nonlinear two-point

boundary value problem. These methods include, but not limited to, the shooting method, finite difference
method, Green’s function, etc. Over the years, semi-analytical methods and series solution methods like
the Adomian decomposition method (ADM) [3] and Variational Iteration Method (VIM) [6, 7] have
been employed to obtain semi-analytical solution of general two-point boundary value problem which
covers problem (1.1). It is well known that ADM handles nonlinear boundary value problems quite very
effectively [1, 4, 2]. The VIM has also been applied to solve both linear and nonlinear BVP over the
years, and it has been reported that solutions obtained via the VIM compare well with those of the ADM.
However, due to ease of application, the ADM remains a preferred method over the VIM [6]. Research
results have also indicated that the ADM is preferred over the shooting method [5].

In this article, we apply finite difference method to obtain approximations to the solution of the BVP
(1.1). In addition, we discuss the variational iteration method as well as the Adomian decomposition
method applied to (1.1). More, precisely, in Section 2.1, we discuss the variational iteration method
applied to (1.1) and pointed out why the method is not attractive to solving this model problem. Since
there is no closed form solution of problem (1.1) in general, numerical solutions are also computed via
the Matlab routine BVP4c as reference solution. Our numerical results in Section 3 indicated that finite
difference method handles Problem (1.1) better than the ADM for certain combination of the parameters
in which case, solution by ADM is not available.
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2. Numerical Methods for Problem (1.2). In this section we shall consider popular methods for
finding approximate solutions of (1.2), namely the semi-analytical methods: the Adomian Decomposition
method and the Variational Iteration method, and the finite difference method as a numerical method
among the three. We will provide brief description of the methods, and their applications to (1.2).

2.1. Variational Iteration Method. Here, we discuss the variational iteration method - a semi-
analytical method that can be used to solve the model problem (1.1). More specifically, we highlight
challenges in applying the method to the present problem.

Let us consider a general nonlinear problem

Lu(y) +Nu(y) = f(y)

where L,N, f denote a linear operator, nonlinear operator and a forcing term respectively. The basic
idea of the variational iteration technique applied to the above problem is to is to construct a correction
functional

un+1 = un +

∫ y

0

λ(Lun(ε) +Nũn(ε)− f(ε))dε

for the nonlinear problem. In the above, λ represents a Lagrange multiplier which can be identified
optimally through variation theory, un denotes the nth approximate solution and ũn denotes a restricted
variation in the sense that δũn = 0 holds true. The series solution to the problem is then obtained from
the approximate solutions u1, u2, ... via

u(y) = lim
n→∞

un.

2.2. Application to problem (1.2). In order to apply the variational iteration technique described
above to(1.2), the Lagrange multiplier λ has to be firstly identified. By defining the correction functional
associated with (1.2) as

un+1 = un +

∫ y

0

λ(y, ε)
(
u′′n(ε)− s2un(ε)− Fs ũ2

n(ε) +
1

M

)
dε (2.1)

the Lagrange multiplier λ can then be obtained as the solution of the following stationary conditions:

δun(ε) : λ′′ − s2λ(y, ε) = 0, (2.2)

δun(y) : 1− λ′(ε)
∣∣∣
ε=y

= 0, (2.3)

δu′n(y) : λ(ε)
∣∣∣
ε=y

= 0. (2.4)

Now solving the stationary conditions (2.2)- (2.4) yields

λ(y, ε) =
1

2s

(
es(ε−y) − e−s(ε−y)

)
=

1

2s
sinh(s(ε− y)). (2.5)

Substituting (2.5) into (2.1), we obtain the iterative scheme

un+1 = un +
1

2s

∫ y

0

sinh(s(ε− y))
(
u′′n(ε)− s2un(ε)− Fsu2

n(ε) +
1

M

)
dε. (2.6)

2.2.1. Slow convergence of VIM for problem (1.1). As hinted in [7] the Lagrange multiplier for
nonlinear problem is difficult to identify in general. In the immediate previous discussion, this parameter
has been identified using the idea of restricted variation. It is well known that inexact identification of
the Lagrange multiplier this way results in slow convergence of the iteration (2.6).

Typically, the first iteration of variational iteration method gives a very accurate approximation [7].

However, for this present problem, the second iteration of (2.6) with initial solution u0(y) = u0 = y2−1
3

that obviously satisfies the boundary conditions u(±1) = 0 yields an inaccurate approximation involving
almost 160 terms! The iterative procedure therefore become unmanageable coupled with a very slow
convergence. It is therefore not surprising (see [7] and references therein) that in spite of the popularity
of the method for more than a decade, no attempt was made to apply variational iteration method to
the Brinkman-Forscheimer model equation (1.2).

As we shall see in Section 3, the Adomian decomposition method, which otherwise is a method of
choice for two-point boundary value problem is also sometimes too sensitive to the model parameters F, s
and M.
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2.3. Adomian Decomposition Method. To illustrate this method, let us consider a general
nonlinear problem

Lu(y) +Ru(y) +Nu(y) = f (2.7)

where L,R,N denote respectively the linear, linear remainder and non-linear operators, e.g. for (1.2) we

could choose Lu(y) = d2u(y)
dy2 , Ru(y) = −s2u(y), Nu(y) = Fsu(y)2 and f = 1

M . In the case L = dk

dyk
then

the inverse operator L−1 represents a k−fold definite integration from y0 to y such that L−1Lu = u−Φ
where Φ is a function incorporating the boundary conditions. Applying the inverse operator L−1 to both
sides of (2.7) yields

u(y) = γ(y)− L−1[Ru(y) +Nu(y)] (2.8)

with γ(y) = Φ + L−1f.
The Adomian decomposition method now assumes a series solution

u =

∞∑
n=0

un

while assuming a decomposition of the form

Nu =

∞∑
n=0

An (2.9)

for the nonlinear term. In the above, the coefficients An are called the Adomian polynomials which are
given by

An =
1

n!

∂dn

∂λn

[
N

( ∞∑
k=0

ukλ
k

)]
λ=0

for n = 0, 1, 2, ... Now plugging in the decompositions (2.3) and (2.9) into (2.8), we obtain

u =

∞∑
n=0

un = γ(y)− L−1

(
R

∞∑
n=0

un +

∞∑
n=0

An

)
.

By choosing u0(y) = γ(y) we obtain the solution components un through the classical Adomian recursive
scheme

u0(y) = γ(y), (2.10)

un+1(y) = −L−1(Run +An), n ≥ 0. (2.11)

Subsequently, the n-th order approximation of the solution of (2.7) can be obtained as

ψ(y) =

n−1∑
i=0

uk(y). (2.12)

2.3.1. Application to Problem (1.2). To apply the decomposition method described above to
(1.2), we choose

Lu =
d2u

dy2
, Ru = −s2u, Nu = Fsu2, f =

1

M

so that

L−1(·) =

∫ y

−1

∫ y

−1

(·) dydy.

The term Φ incorporating the boundary condition is obtained by employing the condition u(−1) = 0 as

Φ = u(−1) + (y + 1)u′(−1) = (y + 1)A
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where A := u′(−1), a constant to be determined later on using the other boundary condition u(1) = 0.
Consequently,

u0 = γ(y) = A(y + 1)−
∫ y

−1

∫ y

−1

(
1

M

)
dydy.

The solution components are then computed using the iteration (2.10), for example

u1(y) = −
∫ y

−1

∫ y

−1

(
−s2u0 + Fsu2

0

)
dydy

and n-th order approximation of the solution is obtained using (2.12). In Section 3, we will report on
numerical results of the above implementation as computed in [10].

2.4. Finite Difference Method. The finite difference method is a popular method for approxi-
mating solutions of boundary value problems. The basic idea of the finite difference method for boundary
value problems is to approximate the differential operator(s) occurring in the equation by appropriate
difference schemes that are easily derived via Taylor expansion of the solution u.

Let us briefly describe the finite difference method for a general nonlinear two-point boundary value
problem of the form

u′′ = f(y, u, u′), a ≤ y ≤ b, u(a) = α, u(b) = β. (2.13)

In the above, it is assumed that the function u is smooth enough to allow a valid Taylor expansion.
Firstly, we discretize the interval [a, b] by inserting N equally spaced grid points or nodes yi = a+ iτ, i =
0, 1, .., N + 1 in the interval [a, b] where the step size τ = b−a

N+1 . As a next step, we approximate the
differential operator(s) appearing in the equation, namely here, the first and second derivatives u′ and u′′

respectively. If we assume that the solution u possess a bounded fourth derivative, then simple algebraic
manipulations of the Taylor expansions of u(y ± τ)

u(y + τ) = u(y) + τu′(y) +
τ2

2
u′′(y) +

τ3

3!
u′′′(y) +

τ4

4!
u′′′′(η), η ∈ (y, y + τ),

u(y − τ) = u(y)− τu′(y) +
τ2

2
u′′(y)− τ3

3!
u′′′(y) +

τ4

4!
u′′′′(η), η ∈ (y, y + τ)

yield different approximations of the first and second derivatives of function u e.g. forward difference
scheme, backward difference scheme and centered difference scheme.

Typically, the first and second derivatives are approximated by the centered difference formula. This
common choice is mostly due to its second order convergence in the error. That is

u′ =
du

dy
=
ui+1 − ui−1

2τ
− τ2

6
y′′′(ηi), ηi ∈ (yi−1, yi+1) (2.14)

u′′ =
d2u

dy2
=
ui+1 − 2ui + ui−1

τ2
− τ2

6
y′′′′(εi), εi ∈ (yi−1, yi+1) (2.15)

where we have adopted the notation ui := u(yi) and the index i = 1, 2, .., N + 1. Finally, by omitting the
error terms, the relations (2.14)-(2.15) become approximations to the first and second derivatives of u
and are inserted into the equation (2.13) to obtain a differencing scheme

ui+1 − 2ui + ui−1

τ2
− f

(
yi, ui,

ui+1 − ui−1

2τ

)
= 0, i = 1, 2, .., N with u0 = α, uN+1 = β. (2.16)

Equation (2.16) is a system of N + 1 nonlinear equations which can be solved, for example by Newton’s
method, to obtain the unknown solutions ui, i = 1, 2, .., N. The nonlinear finite difference scheme (2.16)
has been established to be second order convergent, see [9, p. 433].

Let us write (2.15) as F (ũ) = 0 where ũ = (u1, u2, ..., uN )T . With a good choice of the initial value
ũ0, Newton’s method solves (2.15) iteratively by the scheme

ũk+1 = ũk + J(ũk)−1F (ũk) (2.17)

where J represents the Jacobian of the nonlinear system (2.16). It is a well known fact that the Newton’s
iterative scheme above converges to the zero of the nonlinear function F as stated below.

Proposition 2.1. Let the initial condition be chosen close enough to the true solution and assume
that J(ũ0), the Jacobian of the system at ũ0 is nonsingular, then the approximate solutions obtained via
the iterative formula (2.17) converge to the true solution of (2.13).

For the proof of the above proposition, we refer the reader to [9, Section 3.2].
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2.5. Application to the Brinkman-Forscheimer BVP. Comparing the Brinkman-Forscheimer
model (1.2) with (2.13) gives

f(y, u, u′) = Fsu2 + s2u− 1

M
,

with α = β = 0, a = −1, b = 1. Therefore, the corresponding difference scheme based on (2.16) is
obtained as

ui+1 − 2ui + ui−1

τ2
− Fsu2

i − s2ui +
1

M
= 0, i = 1, 2, ..., N (2.18)

with u(−1) = u0 = 0, u(1) = uN+1 = 0. This translates to the system

2u1 − u2 + τ2Fsu2
1 + τ2s2u1 −

τ2

M
= 0,

−u3 + 2u2 − u1 + τ2Fsu2
2 + τ2s2u2 −

τ2

M
= 0,

...

−uN + 2uN−1 − uN+2 + τ2Fsu2
N−1 + τ2s2uN−1 −

τ2

M
= 0,

−uN+1 + 2uN − uN−1 + τ2Fsu2
N + τ2s2uN −

τ2

M
= 0

whose Jacobian is given by

J(ũ) =



ju1
−1 0 · · · · · · 0

−1 ju2
−1 0 · · ·

...

0
. . .

. . . 0
... juN−1

−1
0 · · · 0 −1 juN


where

juk
:= 2 + τ2(2Fsuk + s2).

In view of Proposition 2.1, it is obvious that the choice of the initial condition for (2.18) is important for
the convergence or otherwise of the approximate solutions ui’s. In general for the BVP (2.13), we choose
ũ0 = (ui,0), i = 1, 2, .., N where ui,0 = α + i

(
β−α
b−a

)
τ. This translates to ũ0 = (0, 0, ..., 0). It is then clear

that the Jacobian for the above system of equations is non-singular at ũ0.

3. Numerical Results and Discussion. Here, we shall report on the numerical implementation
of the methods described in the previous section. For the purpose of comparison and as a reference
solution, problem (1.2) is also solved using the Matlab package bvp4c.

The first step in solving (1.2) by bvp4c is writing (1.2) as a system of first-order differential equations
which is achieved by setting u(y) = p1,

du
dy = p2 so that

dp1

dy
= p2,

dp2

dy
= s2p1 + Fsp2

1 −
1

M

subject to the boundary conditions p1(±1) = 0. The resulting system of first-order ordinary differential
equation is then solved by Matlab.

Let us now report on our numerical implementations.
Table 3.1 shows the result of numerical approximations of u(0) by the finite difference method (FDM)

and the reference solution by the Matlab routine bvp4c. As can be seen in the table and in Figure 3,
the solutions obtained by FDM compare well with those of the reference solutions. On the other hand,
Table 3.2 shows comparison of the approximations of u(0) by the FDM and the Adomian decomposition
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F M s Approximation of u(0) by FDM Approximation of u(0) by bvp4c
1 1 1 0.32380 0.32383

1.2 1 1 0.31911 0.31915
1.8 1 1 0.30640 0.30642
2.0 1 1 0.30255 0.30258
1 2 1 0.16837 0.16841
1 3 1 0.11384 0.11389
1 4 1 0.08600 0.08606
1 1 2 0.17438 0.17445
1 1 3 0.09754 0.09759
1 1 4 0.05941 0.05941

Table 3.1
Comparison of numerical solutions obtained by finite difference method (FDM) for u(0) with those obtained through

bvp4c for different values of the parameters F, s,M

F M s Approximation of u(0) by FDM Approximation of u(0) by ADM [10]
1 1 1 0.32380 0.32385

1.2 1 1 0.31911 −
1.8 1 1 0.30640 −
2.0 1 1 0.30255 −
1 2 1 0.16837 0.16840
1 3 1 0.11384 0.11385
1 4 1 0.08600 0.08601
1 1 2 0.17438 0.17443
1 1 3 0.09754 −5.00495
1 1 4 0.05941 −4.87769

Table 3.2
The obtained approximations to u(0) as computed by finite difference method, compared with solutions obtained through

Adomian Decomposition method (ADM).

method (ADM). The table depicts the oversensitivity of the ADM to the parameter F, s and M. As can
be seen in the table, for F > 1, ADM iteration failed to converge and therefore, no solution was returned.
Furthermore, for s > 1 ADM returned a completely misleading results. However, FDM always return
fairly accurate solutions for various choices of the parameters as seen in Table 3.1. The case F = 2,M = 1
and s = 1 is shown in Figure 3.

Therefore, in view of the failed implementation of the variational iteration method for (1.2) and
oversensitivity of the preferred semi-analytical method Adomian decomposition method, it appears that
finite difference based methods are method of choice for this nonlinear problem.
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Fig. 3.1. Velocity profile for the case F = 1, M = 1, s = 4
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Fig. 3.2. Velocity profile for the case F = 2, M = 1, s = 1
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