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Abstract

In this paper, we prove a common �xed point theorem with contactive
condition in M - complete fuzzy metric spaces and we give an application
of an integral type.
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1 Introduction

In 1965, the concept of fuzzy sets was introduced by Zadeh [17]. Since then many
authors have expansively developed the theory of fuzzy sets and applications. In
1975, Kramosil and Michalek [9] �rst introduced the concept of a fuzzy metric
space, which can be regarded as a generalization of the statistical (probabilis-
tic) metric space and it provides an important basis for the construction of �xed
point theory in fuzzy metric spaces. After that, Wenzhi [16] and many others
initiated the study of probabilistic 2-metric spaces which is a real valued function
of a point triples on a set X, whose abstract properties were suggested by the
area function in Euclidean spaces. Afterwards, Grabiec [7] de�ned the complete-
ness of the fuzzy metric space or what is known as a G-complete fuzzy metric
space in [8], and extended the Banach contraction theorem to G-complete fuzzy
metric spaces. Following Grabiec�s work, Fang [3] further established some new
�xed point theorems for contractive type mappings in G-complete fuzzy metric
spaces. Soon after, Mishra et al. [10] also obtained several common �xed point

1



theorems for asymptotically commuting maps in the same space, which gener-
alize several �xed point theorems in metric, fuzzy, Menger and uniform spaces.
Besides these works based on the G-complete fuzzy metric space, George and
Veeramani [5] modi�ed the de�nition of the Cauchy sequence introduced by
Grabiec [7] because even R is not complete with Grabiec�s completeness de�n-
ition. George and Veeramani [5] slightly modi�ed the notion of a fuzzy metric
space introduced by Kramosil and Michalek [9] and then de�ned a Hausdor¤
and �rst countable topology on this fuzzy metric space which has important ap-
plications in quantum particle physics in connection with string and E-in�nity
theory. Since then, the notion of a complete fuzzy metric space presented by
George and Veeramani [5], which is now known as an M-complete fuzzy metric
space (as in [15]) has emerged as another characterization of completeness, and
some �xed point theorems have also been constructed on the basis of this metric
space.
Recently, Fang [4] gave some common �xed point theorems under �' - con-

tractions�for compatible and weakly compatible mappings in Menger probabilis-
tic metric spaces. Moreover, Rao et al. [11] have proved two unique common
coupled �xed point theorems for self maps in symmetric G-fuzzy metric spaces.
Recently, Shen et al. [14] have proposed a new class of self-maps by altering
the distance between two points in fuzzy environment, in which the '-function
was used, and on the basis of this kind of self-map, they have proved some �xed
point theorems in M-complete fuzzy metric spaces and compact fuzzy metric
spaces.
From the above analysis, we can see that there are many studies related to

�xed point theory based on the above two kinds of complete fuzzy metric spaces,
namely: G-complete and M-complete fuzzy metric spaces. Note that every G-
complete fuzzy metric space is M-complete; and the construction of �xed point
theorems in M-complete fuzzy metric spaces seems to be more valuable.
The purpose of this work is to propose a new class of self-maps, by using

a '- function. More importantly, we prove the existence and uniqueness of a
common �xed point for these self-maps in M-complete fuzzy metric spaces. For
more details about results of �xed point in fuzzy metric spaces, the reader can
see for instance [18-26].

2 Preliminaries

We begin with some basic concepts on fuzzy metric spaces.

De�nition 1 ([12]; [5]): A binary operation � : [0; 1]� [0; 1]! [0; 1] is called a
continuous t-norm if it satis�es the following conditions:
(TN � 1) � is commutative and associative
(TN � 2) � is continuous;
(TN � 3) a �1 = a for every a 2 [0; 1];
(TN � 4) a � b � c � d whenever a � c, b � d and a; b; c; d 2 [0; 1]:
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De�nition 2 ([5]). A fuzzy metric space is an ordered triple (X;M; �) such
that X is a nonempty set, � is a continuous t�norm and M is a fuzzy set on
X �X � (0;1), satisfying the following conditions, for all x; y; z 2 X; s; t > 0 :
(FM � 1) M(x; y; t) > 0;
(FM � 2) M(x; y; t) = 1 if and only if x = y;
(FM � 3) M(x; y; t) =M(y; x; t);
(FM � 4) M(x; y; t) �M(y; z; s) �M(x; z; t+ s);
(FM � 5) M(x; y;�) : (0;1)! (0; 1] is continuous.

Note that M(x; y; t) denotes the degree of nearness between x and y with
respect to t:

De�nition 3 Let (X;M; �) be a fuzzy metric space. Then:

1. A sequence fxng in X is said to be convergent ([5]; [7]) to a point x in X;
denoted by limn!1 xn = x (or xn ! x), if and only if limn!1M(xn; x; t) =
1 for all t > 0, i.e. for each r 2 (0; 1) and t > 0, there exists n0 2 N such
that M(xn; x; t) > 1� r for all n � n0:

2. A sequence fxng in X is called a Cauchy sequence [7] if and only if
limn!1M(xn+p; xn; t) = 1 for all t > 0 and p > 0.

3. A sequence fxng in X is called anM�Cauchy sequence ([5]; [8]) if and only
if for each " 2 (0; 1); t > 0, there exists n0 2 N such that M(xm; xn; t) >
1� " for any m;n > n0:

4. The fuzzy metric space (X;M; �) is called complete ([5]; [7]) if every Cauchy
sequence is convergent.

5. The fuzzy metric space (X;M; �) is called M-complete ([5]; [8]) if every
M -Cauchy sequence is convergent.

Lemma 4 ([7]). For all x; y 2 X, M(x; y;�) is nondecreasing.

Remark 5 Since � is continuous, it follows from (FM � 4) that the limit of a
sequence in a fuzzy metric space is uniquely determined.

De�nition 6 ([13]). A function M is continuous in fuzzy metric spaces if,
whenever xn ! x; yn ! y, then limn!1M(xn; yn; t) =M(x; y; t) for all t > 0:

Lemma 7 ([6]). Let M(x; y; ) be a fuzzy metric space. Then M is a continuous
function on X �X � (0; 1):

3 Main Result

Theorem 8 Let (X;M; �) be anM�complete fuzzy metric space and ' : [0; 1]!
[0; 1] be a strictly decreasing and left continuous mapping. Furthermore, let f
and g be maps that satisfy the following condition:
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(i) g(X) � f(X),
(ii) f is continuous,

' (M(gx; gy; t)) � '(�M(fx; fy; t) + �M(gy; fy; t)) (1)

where x; y 2 X , � 2 R+ and � < 1 � � and t > 0, then f and g have a unique
�xed point provided f and g commute.

Proof. Let x0 be a point in X. By hypothesis (i), we can �nd x1 in X such
that fx1 = g x0, by induction, we can de�ne a sequence fxng in X such that
fxn = g xn�1: By induction again and by (1) we have

' (M (fxn; fxn+1; t)) = ' (M (gxn�1; gxn; t))
� '(�M (fxn�1; fxn; t) + �M(fxn; fxn+1; t)

�
(2)

Since ' is strictly decreasing, then

M (fxn; fxn+1; t) > �M (fxn�1; fxn; t) + �M(fxn; fxn+1; t)

which implies that

1� �
�

M (fxn; fxn+1; t) > M (fxn�1; fxn; t)

Since 0 � � < 1 < �, then, we have

M (fxn�1; fxn; t) <
1� �
�

M (fxn; fxn+1; t) < M (fxn; fxn+1; t) (3)

Setting n (t) = M (fxn; fxn+1; t). From (3), the sequence fn (t)g is strictly
increasing and bounded, then n (t) converges to  (t) for all t > 0: Assume that
 (t) 2]0; 1[. Since n (t) > n�1 (t) for all t > 0; then

' (n (t)) � '
�
(�+ �) n�1 (t)

�
for every t > 0:

Letting n!1; since ' is left continuous and 1 < �+ �; we have

' ( (t)) � ' ((�+ �)  (t)) < ' ( (t)) for every t > 0

which is a contradiction. Thererfore lim
n!1

n�1 (t) = 1 =  (t) ; that is the

sequence fn (t)g converges to 1 for every t > 0: Next, we show that the sequence
ffxng is an M-Cauchy sequence. Assume that it is not, then there exist 0 <
" < 1 and two sequences fp(n)g and fq(n)g such that

p(n) > q(n) � n;
M(fxp(n); fxq(n); t) � 1� "

M(fxp(n)�1; fxq(n)�1; t) > 1� "
M(fxp(n)�1; fxq(n); t) > 1� "

9>>=>>; (4)

for each n 2 N [ f0g; we set Sn(t) = M(fxp(n); fxq(n); t), then we have
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1� " � Sn(t) = M(fxp(n); fxq(n); t)
� M(fxp(n)�1; fxp(n);

t
2 ) �M(fxp(n)�1; fxq(n);

t
2 )

> p(n)�1(
t
2 ) � (1� ")

9=;
(5)

since p(n)�1(
t
2 ) ! 1 as n ! 1 for every t > 0: Supposing that n ! 1, we

note that the sequence fSn(t)g converges to 1 � " for any t > 0: Moreover by
(1), we have

'
�
M(fxp(n); fxq(n); t)

�
� '

�
�M(fxp(n)�1; fxq(n)�1; t) + �M(fxq(n); fxq(n)�1; t

�
(6)

According to the monotonicity of ', we known that

M(fxp(n); fxq(n); t) > �M(fxp(n)�1; fxq(n)�1; t) + �M(fxq(n); fxq(n)�1; t)

for each n: Thus, on the basis of formula(6), we can obtain

1� " � M(fxp(n); fxq(n); t) > �M(fxp(n)�1; fxq(n)�1; t) + �M(fxq(n); fxq(n)�1; t)(7)

> � (1� ") + �
�
M(fxq(n); fxp(n)�1;

t

2
) �M(fxp(n)�1; fxq(n)�1;

t

2
)

�
> � (1� ") + � [(1� ") � (1� ")] = (�+ �) (1� ") > (1� ")

Clearly, this leads to a contradiction. Hence ffxng is an M-Cauchy sequence.
By the completeness of X, ffxng converges to y, so gxn�1 = fxn tends to y:
It can be seen that from (1) and the left continuous of ', that the continuity
of f implies the continuity of g: So g(f(xn)) ! g(y): However, g(f(xn)) =
f(g(xn)) by the commutativity of f and g. So f(g(xn)) converges to f(y):
By the uniqueness of the limit , we get f(y) = g(y): So f (f(y)) = f (g(y)) by
commutativity

' (M(gy; g (gy) ; t)) � ' [�M(fy; f (gy) ; t) + �M(g (gy) ; f (gy) ; t)]

� ' [�M(gy; f (gy) ; t) + �M(g (fy) ; f (gy) ; t)]

� '([�+ �]M(gy; f (gy) ; t)

< '(M(gy; f (gy) ; t)

then if gy 6= g (gy) ; we have a contradiction, hence gy = g (gy). Thus gy =
g (gy) = f (gy). So gy is a common �xed point of f and g: Now we prove the
uniqueness of the common �xed point of f and g: If y and z are two common
�xed points to f and g respectively, and if y 6= z, then

' (M(y; z; t)) = ' (M(gy; gz; t))

� ' [�M(fy; gz; t) + �M(gz; fz; t)]

� ' (�M(y; z; t) + �M(z; z; t))

� ' (�M(y; z; t) + �)

< ' (�M(y; z; t))

then M(y; z; t) > �M(y; z; t); which is a contradiction. So y = z:
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Corollary 9 Let (X;M; �) be an M�complete fuzzy metric space and g a self
- map of X and assume that ' : [0; 1] ! [0; 1] a strictly decreasing and left
continuous mapping such that :

' (M(gx; gy; t)) � '(�M(x; y; t) + �M(gy; fy; t))

where x; y 2 X , � 2 R+ and � < 1 � � and t > 0, then g has a unique
�xed point .

4 APPLICATION

Let Y = f� : [0; 1[! [0; 1[; � is a Lebesgue integrable mapping which is sum-
mable, nonnegative, and satis�es

R 1
1�" �(t)dt > 0 for each 0 < " < 1g

Theorem 10 Let (X;M; �) be an M�complete fuzzy metric space and T a
self - map of X and assume that ' : [0; 1] ! [0; 1] a strictly decreasing and
left continuous mapping . Furthermore, let f and g be maps that satisfy the
following condition:
(i) g(X) � f(X),
(ii) f is continuous,Z 1

1�'(M(gx;gy;t))

�(s)ds �
Z 1

1�'(�M(gx;gy;t)+�M(gy;fy;t))

�(s)ds for � 2 Y (8)

where x; y 2 X , � 2 R+ and � < 1 � � and t > 0, then f and g have a unique
common �xed point.

Proof. for � 2 Y; we consider the function � : [0; 1] ! [0; 1]; by � (") =R 1
1�" �(s)ds: � is continuous, � is strictly increasing. (8) becomes

� (' (M(gx; gy; t))) � � ('((�M(gx; gy; t) + �M(gy; fy; t))) : (9)

Setting, '1 = � � ' and '1 is strictly decreasing, left continuous for any t > 0;
then by theorem (8), f and g have a unique common �xed point.

5 Conclusion

In this work, we proposed a new class of self-maps by altering the distance be-
tween two points in fuzzy metric spaces. On this kind of self-map, we proved the
existence and uniqueness of a common �xed point in M-complete fuzzy metric
spaces and we applied the results on maps satisfying a contractive condition of
an integral type.
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