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Abstract. This study attempts to quantify the shocks to a banking network and analyze the 

transfer of shocks through the network. We consider two sources of shocks: external shocks due 

to market and macroeconomic factors which impact the entire banking system, and idiosyncratic 

shocks due to failure of a single bank. The external shocks we considered in this study are due to 

exchange rate shocks. An ARMA/GARCH model is used to extract i.i.d. residuals for this 

purpose. The effect of external shocks will be estimated by using two methods: (i) bootstrap 

simulation of the time series of shocks that occurred to the banking system in the past, and (ii) 

using the extreme value theory (EVT) to model the tail part of the shocks. In the next step, the 

probability of the failure of banks in the system is studied by using the Monte Carlo simulation. 

We also introduce the importance sampling technique in the EVT modeling to increase the 

probability of failure in the simulation. We calibrate the model such that the network resembles 

the Canadian banking system. 
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1. Introduction 

This study attempts to quantify the shocks to a banking network and analyze the transfer 

of shocks through the network. We consider two sources of shocks: external shocks due to 

market and macroeconomic factors which impact the entire banking system, and idiosyncratic 

shocks due to failure of a single bank. The effect of external shocks will be estimated by using 

two methods: (i) bootstrap simulation of the time series of shocks that occurred to the banking 

system in the past, and (ii) using the extreme value theory (EVT) to model the tail part of the 

shocks. In the next step, the probability of the failure of banks in the system will be studied. 

Graph 1 presents a schematic view of a banking network. In this graph, each node 

represents a bank, and the links between the banks represent interbank loans and their directions. 

The banking network is subject to external shocks. This banking network could represent a 

network of domestic banks or a network of international banks. In either case, the network 

receives shocks that could cause the failure of a bank, and potentially through contagion, the 

failure of the entire network. In this study, we calibrate the model such that the network 

resembles the Canadian banking system3. Then, we analyze the contagion in this context. 

The contribution of this study to the literature is two-fold. First, instead of assuming 

random/exogenous idiosyncratic shocks to the banking system, we simulate shocks to the 

banking system as extremes of the stresses to the Canadian banking system using the bootstrap and 

by using extreme value theory. We present the advantages of using a parametric model suggested 

by the extreme value theory over the empirical distributions used in the previous studies. Second, 

we will combine importance sampling with this process to improve the estimate of the 

                                                           
3
 The main objective of this study is to show different methods that can be used to simulate the failure of a banking 

system. Therefore, more emphasis was given to the procedure and methods, and less to the accuracy of the numbers 

used to resemble the Canadian banking system. Paying attention to this issue is important when interpreting the 

results. 
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probability of failure. Since contagion is a rare event in the system, the usual Monte Carlo 

approach used in previous studies is not an efficient way to estimate its likelihood in the banking 

system.  

Graph 1- Schematic view of a banking network 

 

 

 

 

 

 

 

 

 

 

 

The structure of this paper is as follows. Section 2 presents a short introduction to the 

modes of failure of the banking system and related literature. Section 3 presents the theoretical 

backgrounds of the study which include GARCH/ARMA modeling of time series data, extreme 

value theory (EVT), and importance sampling. Section 4 presents the application of these 

theories to the US-Canada exchange rates. The objective of Section 4 is to use GARCH/ARMA 

to fit shocks to the banks leaving i.i.d. residuals. Section 5 presents the simulation results. The 

first part of this section presents a non-parametric Monte Carlo simulation of bank failure based 

External shocks 

External shocks 
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on bootstrapping the i.i.d. residuals obtained in Section 4. The second part of Section 5 improves 

this simulation by using EVT and importance sampling techniques. Section 6 concludes. 

 

2. Literature review of failures in the banking system 

This section reviews the literature on failure of the banking system and the way the 

probability of failure is estimated. The section consists of two parts. In the first part, we explain 

the shocks to the banking system and the way failure happens. The second part discusses the 

process of failure and contagion, and the way their probabilities are estimated. 

2.1. External shocks and bank failure 

As mentioned earlier, bank failure may happen due to losses from market shocks or due 

to contagion as a consequence of other banks’ failure. We follow the terminology of Elsinger et 

al. (2006) to call the former type of failure a fundamental default and the latter a contagious 

default. Identifying and capturing these two sources of failure are the main modeling challenges. 

Contagion defaults are not independent of fundamental ones since contagion is more likely to 

happen in situations where the banking system has already been weakened by external shocks. In 

what follows, we first identify the external shocks the market may impose to the system, and 

then, we will show how these shocks may be spread out in the system. Section 2.1 takes a closer 

look at the mechanism through which contagion happens. 

In terms of market shocks, Illing and Liu (2003) have identified highly stressful financial 

events in the Canadian banking system. They define financial stress as “the force exerted on 

economic agents by uncertainty and changing expectations of loss in financial markets and 

institutions”. In their study, financial stress is measured with an index called the Financial Stress 
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Index (FSI). The extreme values of FSI are called financial crises. According to them, the four 

main sources of stress in the Canadian banking system are as follows: 

 Banking crises/stress 

 Foreign exchange crises/stress 

 Debt crises/stress 

 Equity crises/stress 

This study formulates the US-Canada exchange rate shocks by using time series and EVT 

techniques. The US-Canada exchange rate constitutes 86% of the Canadian exchange rate index. 

Therefore, it can be a proxy measure for a foreign exchange crisis. If the shocks are strong 

enough, they may cause a bank, and eventually, the entire banking system to fail. Sections 4 and 

5 use the US-Canada exchange rates to show how bootstrap simulation and extreme value theory 

could be used to simulate failure in the banking system. 

Considerable effort has been made by academia and the central banks to model banking 

crises and predict financial contagion in recent years. The aim of these studies is to better 

understand the nature of banking crises and mitigate their impacts at the national and 

international levels. Examples of this kind of research include Allen and Gale (2000, 2007), 

Eisenberg and Noe (2001), Santor (2003), Li (2009), May (2010), and Gai and Kapadia (2010). 

Moreover, Boss et al. (2004), Elsinger et al.  (2006), and Gauthier (2010) are examples of 

empirically applying these theories to national banking systems. 

Financial contagion means the transmission of financial shocks from one financial entity 

to other interdependent entities. The transfer of shocks among banks could normally occur 

through financial linkages.  However, banking contagion is possible even when the banks are 
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independent (Santor 2003). This study assumes contagion happens through interbank linkages, 

i.e. through interbank loans and borrowings. 

Most studies rely on “counterfactual simulations” to estimate the likelihood of contagion 

arising from a default in repaying interbank loans. One reason is that troubled banks are often 

bailed out by central banks rather than letting them fail. This limits the use of other methods of 

study, including event analysis to estimate the probability of failure. The down side of 

counterfactual simulation is the implication of strong assumptions we have to make to define 

different scenarios. Upper (2007) has done a survey on these studies, their methodologies, and 

the results. He concludes that though contagions in banking systems are unlikely, their 

possibility cannot be fully ruled out. This needs authorities’ attention since the cost of contagion 

default to society could be very high.  

Moreover, Upper (2007) mentions that most studies focus only on the contagion that 

results from the failure of individual banks (for example due to a fraud). However, this 

represents only a small fraction of all bank failures. Most failures happen when several banks are 

hit by an external shock at the same time and become insolvent since their net value becomes 

negative. This is in contrast to the former models that consider only one source of risk, i.e. 

interbank linkages, and ignore other sources, e.g. macroeconomic factors. Elsinger et al. (2006) 

and Gauthier et al. (2010) are among the few studies that integrate both idiosyncratic (e.g. a 

fraud) and aggregate shocks (i.e. economy wide shocks) to analyze contagion in the banking 

system.  

This study will follow a similar approach as Gai and Kapadia (2010) and May (2010). 

However, contrary to these models, we also consider both idiosyncratic and aggregate shocks to 
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estimate the probability of failure. In this sense, our approach will be similar to Elsinger et al. 

(2006).  

2.2. Contagion in banking system 

This section establishes a simple system of a banking network and the way shocks are 

transferred within the system. This representation is based on Gai and Kapadia (2010) and May 

(2010). As before, we assume each node in Graph 1 represents a bank and arrows show the 

direction and magnitude of interbank loans. Graph 2 presents the structure of assets and 

liabilities of each bank.  

Graph 2- Financial structure of a bank 

Liabilities Assets 

Deposits di 

External assets ei 

Interbank loans li 

Interbank borrowing bi 

Reserves yi 

 

Assume interbank borrowing bi comes from j other banks and interbank loans li goes to k 

other banks. If a bank fails (i.e. it goes bankrupt), it will impact the entire network by being 

unable to repay its debts. A bank is insolvent if its net value becomes negative, i.e., ei + li + yi < 

di + bi. We assume each bank keeps a proportion of its assets, yi, as a reserve to protect itself 

against shocks. The external assets ei could consist of q subclasses of assets with different 

interest rates and risk degrees. In this study, we divide external assets into foreign assets, loans, 

and other assets. 
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To analyze the impact of external shocks, we assume when an external asset is hit by the 

shock, its value will drop to ei
’
. Then, the bank survives if ei

’
 + li + yi ≥ di + bi . However, if the 

bank fails due to the shock to its external assets, a second (internal) shock will be generated 

through the interbank linkages: since the bank is bankrupt, the creditor banks lose an amount f of 

their interbank loans. The value of f depends on our recovery assumption (zero recovery or the 

resale price of the bankrupt bank’s assets) and the amount of the creditor bank’s loan to the 

failed bank. In this case, the creditor bank j survives if ej
’
 + lj + yj – fj ≥ dj + bj. If the creditor 

bank does not survive, the shock will spread out to the network through the same interbank 

linkage mechanism to generate a second round of shocks. This process continues until the 

network gets to a steady-state position, i.e. all banks fail or no more banks fail. 

We may make two assumptions when a bank fails. A simplifying assumption is zero 

recovery, meaning that the value of the insolvent bank will become zero and creditors will lose 

all of their loans to the bank. The other assumption is that the insolvent bank sells its assets, 

probably in a lower market price, to repay its creditor. In this study, we follow the second 

approach and assume the depositors are cleared first, and then, the rest of the asset is distributed 

proportionally to the creditor banks.  

We should note that when a bank sells its assets, prices drop, which causes a depreciation 

of other banks’ assets and net value. This feedback effect increases the probability of the bank’s 

default as its net value decreases. Gauthier et al. (2010) assumed that illiquid assets at each bank 

can lose 2% at most in value even when banks sell all their holdings. Cyclical interdependence 

among the banks is another factor that could increase the probability of contagion. We ignore 

these two effects in this study. 
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Matrices are a convenient way to show interbank loans when it comes to the simulation 

of contagion (Upper 2007; Boss et al. 2004). If there are N banks in the system that may lend to 

each other, interbank loans can be represented by an N N matrix as follows: 

   

[
 
 
 
 
     

   
     

    

    

  
    

   
       

      
  
  ]

 
 
 
 

 

where xij represents the loan of bank i to bank j. The sum of rows    ∑      represents bank i’s 

total loans to other banks and    ∑       is bank j’s total liabilities to other banks.  

The construction of matrix X is straightforward if the data on interbank loans are 

available.  Otherwise, we need to make some assumptions on banks’ balance sheets to fill in this 

matrix. Banks’ balance sheets are usually accessible, though they show only total interbank 

borrowing and lending. A simple assumption in this case is that interbank lending and borrowing 

is equally distributed among other banks (Upper 2007). Another assumption is that interbank 

lending and borrowing are proportional to other banks’ assets (for example, Gauthier et al. 

2010). We have used the second approach in constructing interbank loans in this study. For this 

purpose, we selected the six largest Canadian banks and estimated the interbank borrowing and 

lending among them as well as their deposits, foreign assets and loans based on their public 

balanced sheets in 2009. These six banks account for 90.3% of all banking assets in Canada. 

When the matrix of interbank loans has been constructed, we need to specify the shock to the 

system and its impacts. Based on these shocks and their impacts, the probability of contagion is 

estimated. We assume that the portfolio of bank holdings do not change during this process.  

This study extends previous literature in two directions. First, instead of assuming a 

random/exogenous idiosyncratic shock to the banking system, we define shocks to the banking 

system as extremes of the stresses to the Canadian banking system suggested by Illing and Liu 
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(2003) either using the bootstrap or by applying the extreme value theory to their measures. 

Then, the impacts of these shocks on each bank’s asset will be calculated. Banks that default in 

the first round of shocks are fundamentally insolvent. We argue that using the extreme value 

theory gives us a better estimate of the shocks to the system than the empirical distributions used 

in Elsinger et al. (2006) and Gauthier et al. (2010) since we can also include out-of-sample 

shocks in the estimation. Second, we will combine importance sampling with the extreme value 

theory to improve the estimate of the probability of failure. The next section introduces time 

series and EVT modeling. 

 
3. GARCH/ARMA modeling and EVT 

This section explains the theoretical background and techniques we will use later in this 

study. The section starts with a short introduction to times series modeling and how these 

techniques can be applied to exchange rates to obtain i.i.d. residuals. The objective is to use these 

residuals in EVT modeling in Section 4 and the Monte Carlo simulation in Section 5. Then, the 

extreme value theory and its applications will be discussed. Finally, there will be a short 

introduction to importance sampling and its application in simulation of rare events. 

3.1.Time series modeling 

An autoregressive-moving average (ARMA) model is a type of random process which is 

used to model time series processes. An ARMA(p,q) representation of a time series is as follows: 

     ∑       
 
    ∑       

 
      .  (1) 

where εt ~ iid(0, σ
2
).  
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A property many financial time series possess is that their variance conditional on their 

past history may change over time. In other words, they may show time varying conditional 

heteroskedasticity. The “generalized autoregressive conditional heteroskedasticity” (GARCH) 

modeling is a method to capture this volatile behaviour of the maximum of financial time series.  

A formulation of a GARCH(p,q) model is as follows: 

       ,        (2) 

       ,  

   
     ∑       

  
    ∑       

  
   , 

where c is the mean of yt, εt is the residual of the series, and zt ~ iid (0,1) is the standardized 

residual of the series. The coefficients ai, i = 0, · · · , p, and bj, j = 1, · · · , q, are all assumed to 

be positive to ensure that the conditional variance σ
2

t is always positive. A GARCH(p,q) model 

may be combined with an ARMA(r,s) model as follows: 

     ∑       
 
    ∑       

 
      ,    (3) 

       ,  

   
     ∑       

  
    ∑       

  
   . 

In Section 4 we filter the US exchange rate with a GARCH(1,1)/ARMA(1,1) to obtain 

standardized i.i.d. residuals. 

3.2. Extreme value theory 

Extreme value theory (EVT) is a framework to analyze the tail behaviour of a 

distribution. The majority of parametric methods use a normal distribution approximation to 

model time series data. One of the drawbacks of using a normal approximation to model the 

extreme values of financial data is that the probability of high quantiles are underestimated since 
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financial data are usually fat-tailed. Using a fat-tailed distribution such as Student-t or log-

normal improves the approximation, but may not still fully capture the tail behaviour of the 

series. On the other hand, non-parametric methods to model extreme values show another 

disadvantage by being unable to estimate out-of-sample quantiles. EVT attempts to overcome 

these problems by parameterizing the tail part of the data series.  EVT is analogous to the central 

limit theorem (CLT) in this sense but for the extremes of a distribution.  

This section includes a short introduction to EVT based on Embrechts et al. (1997), Coles 

(2001), and Smith (2002). Schafgans et al. (1990), Hols and de Vries (1991), Danielsson and de 

Vries (1997), Gilli and Kellezi (2006), and Gencay and Selcuk (2006) are examples of studies 

that used EVT to model the extreme values of exchange rates and financial data.  

Graph 3 – Block maxima (left panel) and exceedances over a threshold (right panel) 

approaches 

 

 

 

 

 

 

There are two approaches to model extreme values of a data series. In the first approach, 

the data is partitioned into successive blocks, where the block maxima represent extreme values. 

Theorem 1 shows the limiting distribution of these maxima. In the second approach, the 

exeedances over a selected threshold are considered to be extreme values. Theorem 2 models the 

2 3 1 

u 



12 

 

limiting distribution of these exeedances. These two approaches are presented in Graph 3. The 

second approach is more efficient in modeling exceedances in time series and financial data. 

Theorem 1
4
 (Fisher and Tippett, 1928; Gnednko, 1943) - Let        {        }, where X1, 

… , Xn are i.i.d. from an arbitrary distribution F. If there exist sequences of constants {an > 0} 

and {bn} such that  {(          ⁄ }    (   as       for a non-degenerate distribution 

function G, then G is a member of the “generalized extreme value” (GEV) family, 

  (      {- *   (
 - 

 
)+

-
 

 
},  (4) 

defined on {     (     ⁄   }, where -     ,     , and -     .  

In the above equation,   and   are the location and scale parameters, and   is called the 

shape parameter. G belongs to one of the three standard extreme value distributions of Frechet, 

Weibull, or Gumbel as    ,    , or     after some change of parameters: 

Frechet:     (   {
                                              

   (                         
 (5) 

Weibull:   (   {
   ( (                   
                                                    

 (6) 

Gumbell:  (       (    (              (7) 

We should note that Theorem 1 states that if the (normalized) sequence of maxima has a 

limit, that limit will be a member of the GEV family. However, it does not guarantee the 

existence of a limit. 

The Frechet distribution is heavy-tailed and the one that is usually used in financial 

modeling as exchange rates and other financial data have usually shown to be fat-tailed. Roughly 

speaking, the tail distribution function of a light-tailed random variable decays at an exponential 

                                                           
4
 For proofs and further explanations readers may refer to Leadbetter et al. (1983), Coles (2001), and Resnick 

(2007).  
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rate or faster, while it decays at a slower rate for heavy-tailed random variables. Rare events 

occur differently in light-tailed and heavy-tailed random variables. It can be shown that the most 

likely way for the sum of heavy-tailed random variables to become large is by one of the random 

variables to become large. In contrast in the light-tailed case, all of the random variables in the 

sum contribute to the sum becoming large (Juneja and Shahabuddin 2006). That means a large 

deviation in a light-tailed setting happens most likely due to small occurrences in a specific path 

instead of having a big event. Studies show that bank failures usually happen due to a single bad 

event and not a series of consecutive smaller negative returns that may add up to the same highly 

negative result (Danfelsson and de Vries 1997). The reason is that during a gradual decline of the 

market or negative returns, banks and other financial institutes can react and adjust themselves 

rather than letting the losses accumulate until a failure happens.  

In a different approach, we may model the behaviour of extreme events over a threshold 

given by the following conditional probability: 

    (    ( -   |   )  
 (    - (  

 - (  
          . (8) 

where x0 is the (finite or infinite) right endpoint of F. Graph 4 presents the relationship between 

the tail part of a distribution and the original distribution. 

Theorem 2
5
 (Pickands 1975; Balkema and de Haan 1974)- Let X1, X2, X3, … be a sequence of 

independent random variables from F. Let        {        }. Suppose F satisfies the EVT, 

meaning that for large n,   (       (  , where G is defined as in Theorem 1. Then, for 

large enough u, the distribution function of ( -  , conditional on      , can be approximated 

by the “generalized Pareto distribution” (GPD), 

                                                           
5
 For proofs and further explanations readers may refer to Leadbetter et al. (1983) and Coles (2001). 
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  (   {
  (  

  

 ̃
)
 

 

 
          

     ( 
 

 ̃
)              

  (9) 

defined on {          (      ̃   }, where  ̃     (    . Note that the shape 

parameter   is the same in G and H. 

Graph 4- Original distribution function and estimation of the tail part  

 

 

 

 

 

 

 

It is worth mentioning that analyzing data commonly shows that extreme conditions 

persist over several consecutive periods. This phenomenon is also observed frequently in 

financial time series data. It is worth recalling that the EVT theories assume the observations are 

i.i.d. and stationary. With respect to the high volatility and dependency of exchange rate time 

series data, some authors suggest using a GARCH model to remove the volatility and long-term 

dependency of the data before using an EVT model (McNeil and Frey 2000; Smith 2003, and 

Andersen et al. 2009). However, we may still need to deal with the short-term dependency in the 

data. As mentioned before, we will use a combination of GARCH and ARMA models in Section 

4 to remove the long- and short-term dependencies in the data to obtain i.i.d. residuals to which 

EVT may be applied. 

  

1 
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3.3. Importance sampling 

Another technique we will use in simulation is importance sampling. Importance 

sampling is a change of measure to increase the probability of events of interest in a Monte Carlo 

simulation. The probability will then be adjusted to reflect this change of measure. Importance 

sampling can be explained as follows. Suppose we want to evaluate the following integral: 

  [ (  ]  ∫  (   (    
 

.    (10) 

Under the normal Monte Carlo approach, we generate a sample (X1, …, Xm) from the 

density f to approximate (10) by  ̅  
 

 
∑  (   

 
    since  ̅  converges almost surely to 

  [ (  ] by the SLLN. However, this approach is not efficient if the events of interest happen 

rarely. To improve the result, we may make the events of interest occur more frequently than it 

would happen in the normal Monte Carlo method. This can happen by generating random 

variables from another distribution g that oversamples from the portion of the state space that 

receives lower probability under f. Later, importance weights correct for this bias. The new 

estimator will then be  ̅ 
  

 

 
∑  (  )

 
     (   , where xj ~ g, and   (     (    (   ⁄  are 

importance weights. This approach is called importance sampling and is based on an alternative 

representation of   [ (  ]: 

  [ (  ]  ∫  (   (     ∫ (  
 (  

 (  
 (    .  (11) 
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4. Application of GARCH/ARMA and EVT to exchange rates 

This section is an analysis of the nominal US exchange rate versus Canadian dollars by 

using EVT. Since the US dollar constitutes 86% of the value of the “Canadian effective 

exchange rate”, we concentrate on modeling this variable to analyze the impact of foreign 

exchange rate shocks on the banking system in this study. The link of a change in exchange rates 

to the change in bank assets is as follows. Suppose A is the bank’s foreign assets in foreign 

currency. Let Rt be the exchange rate of the foreign currency at time t. Then, the value of the 

foreign assets in Canadian dollars will be St = A.Rt. Consequently, the change in the value of 

foreign assets due to a change in exchange rate will be ΔSt = A. ΔRt, where ΔRt = Rt - Rt-1. If the 

value of the foreign exchange rate depreciates, i.e. ΔRt < 0, the bank will lose part of its value, 

ΔSt, which may lead to its bankruptcy. We assume all other variables are constant to simplify the 

analysis. Since we are interested in the maximum of losses, we model the negative changes in the 

exchange rate. 

4.1. Application of EVT to exchange rates 

The data covers the daily noon spot US exchange rate from November 2, 1950 to June 

24, 2010. The data set contains 15031 observations. In what follows, we first re-express the 

exchange rate as a product of returns and then use GARCH/ARMA to obtain i.i.d. residuals. Let 

Rt be the nominal daily exchange rate of US versus Canada (denoted by USXch in the graphs). 

Consistent with the literature, we define the negative returns of exchange rate as rt = -log(Rt/Rt-1) 

= - [log(Rt) – log(Rt-1)]. 

Graph 5 presents the plots of the exchange rate Rt and the negative returns rt. Unit root 

tests suggest that the exchange rate Rt is not mean stationary, but the negative return rt is. 
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However, the ARCH test, the autocorrelation function (ACF) and partial autocorrelation 

functions (PACF) in Graph 6 suggest that there are long- and short-term dependencies in rt. As 

explained in Section 3, the EVT modeling cannot be applied on this series. Graph 6 also presents 

the histogram and qq-plot of rt against the normal distribution. The mean, standard deviation, and 

skewness of rt are zero, 0.0032, and 0.303. The kurtosis of rt is 26, which suggests the negative 

returns of the exchange rate are heavy-tailed. 

Graph 5 – US exchange rate versus Canadian dollars 

 

We use a GARCH(1,1) with ARMA(1,1) model to remove the long-and short-term 

dependencies in rt. Table 1 presents the estimated results. As shown in Table 1, all coefficients 

are highly significant. The model can be represented as follows: 

rt = c + αrt-1 + βεt-1 + εt,   (12) 
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where  

εt = σtzt,     (13) 

σt
2
 = a + λε

2
t-1 + μσ

2
t-1,   (14) 

zt ~ iid (0, 1).     (15) 

Graph 6 – Histogram, qq-plot, ACF, and PACF of rt (nlogUSXch.ts) 

  

  
 

The estimated parameters are as follows: c = 0.0001, α = -0.3526, β = 0.4205, a = 

0.0000002, λ = 0.1207, and μ = 0.8592. We denote the residuals and standardized residuals of the 

model by εt and zt. Graph 7 compares these two series. Graph 8 presents the histogram, qq-plot 

against the normal distribution, ACF, and PACF of zt. As the graphs suggest, there is no 
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autocorrelation left in the data and the moving average effect has been significantly reduced. 

Also, the ARCH test suggests that no ARCH effect is left in zt. Therefore, we can conclude that 

the GARCH(1,1)/ARMA(1,1) model filtered out all long- and short-term dependencies in the 

data. The mean, standard deviation, skewness, and kurtosis of zt are -0.035, 0.95, 2.2, and 133. 

We will use these i.i.d. residuals in the following sections for the Monte Carlo and EVT analysis. 

Table 1- GARCH(1,1) with ARMA(1,1) filtering of rt 

 
Estimated Coefficients: 

---------------------------------------------------- 

               Value  Std.Error  t value   Pr(>|t|)  

   c      9.091e-005 2.067e-005    4.399 5.487e-006 

   α     -3.526e-001 1.057e-001   -3.337 4.246e-004 

   β      4.205e-001 1.028e-001    4.089 2.178e-005 

   a      1.936e-007 5.132e-009   37.730 0.000e+000 

   λ      1.207e-001 3.421e-003   35.286 0.000e+000 

   μ      8.592e-001 3.616e-003  237.583 0.000e+000 

 

Graph 7- Residuals (εt) and standardized residuals (zt) of the model 
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Graph 8- Properties of the standardized residuals (zt) 
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the residuals of the US-Canada exchange rates we obtained in Section 4.1. A method to 
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distribution as a reference distribution. If the exeedances over thresholds are from an exponential 
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Graph 9 presents the qq-plots of the exeedances of zt under two cases where the outlier on 

06/01/1970 is included (Graph 9-left) and excluded (Graph 9-right). We see a departure from the 

straight line when the outlier is included, but the qq-plot suggests an exponential distribution 

when we exclude this outlier (also, leaving this outlier out transform the heavy-tailed residuals to 

an exponential distribution).  

Graph 9- qq-Plot of zt against the exponential distribution 

  
 

It is worth mentioning that on 06/01/1970, Canada went off fixed exchange rates with the 

US. After capturing all short and long run dependencies in the data by a GARCH/ARMA model, 
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explained before, a right choice of the threshold is critical because if it is too low, we may violate 

the asymptotic basis of the model which leads to bias in estimation, and if it is too high, few 

observations will be left which will lead to a high variance. Examining different value for the 

threshold suggests that a threshold equal of 1.5 is appropriate for the estimation. Also, we 

remove the four right end points of the data one by one to examine the stability of the 

estimations. Graphs 10 present the estimated parameters and fitted models for u = 1.5. The first 

column presents the fitted models, and the second column compares the exeedances with the 

quantiles of an exponential distribution. As these graphs suggest, the exeedances fit the model 

quite well when the outlier of 06/01/1970 is excluded. The estimated parameters are also stable 

after removing this outlier. 

Graph 11 presents the stability of the shape parameter. This plot shows how the 

maximum likelihood estimator (MLE) of the shape parameter ξ varies with the selected threshold 

u. We should choose u from a region where the shape parameter ξ remains relatively stable. The 

upper-right graph belongs to the case where all exeedances are included, and the other three 

graphs present the cases when we remove the outliers one by one. According to Graph 11, the 

MLE of the shape parameter ξ is stable when we remove the outlier of 06/01/1970 and we keep 

over 250 exeedances. 

These estimations suggest that when the outlier of 06/01/1970 is taken out, the estimated 

shape parameter is not statistically different from zero, and the scale parameter is around 0.59. 

The models fit the data fairly well. This suggests an exponential distribution with mean 0.59 for 

the tail part of zt. A Kolmogorov-Smirnov test also confirms that the exeedances are from an 

exponential distribution with mean 0.59. 
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Graph 10- Exeedances over a threshold estimation; u = 1.5 
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Graph 11- The shape parameter for u = 1.5 when removing the outliers 
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the system, we find the probability of failure and contagion. We assume the reserve value of 

banks varies from 1% to 10% of their total assets
6
.  

This process can be explained more precisely as follows. Consider the 

GARCH(1,1)/ARMA(1,1) model we estimated for the negative returns on US-Canada exchange 

rates in Section 4: 

 ̂t = c + α ̂t-1 + β ̂t-1 +  ̂t,   (16) 

where  

 ̂t =  ̂t ̂t,     (17) 

 ̂t
2
 = a + λ ̂2t-1 + μ ̂2

t-1,   (18) 

 ̂t ~ iid (0, 1)         (19) 

with c = 0.0001, α = -0.3526, β = 0.4205, a = 0.0000002, λ = 0.1207, and μ = 0.8592. We start 

from equation (19) and move backward to equation (16) to reconstruct the negative returns on 

exchange rate.  

Suppose we are at time t. First, we sample with replacement from the i.i.d. standard 

residuals we obtained in Section 4 and will call it  ̂t. At the same time, we construct  ̂t
2
 using

  ̂t-1 

and  ̂t-1 (equation 18). Then, we rebuild the residual  ̂t by using Equation 17. Finally, the 

negative returns on exchange rates will be constructed by Equation 16. We set the initial values 

of ε and σ ( ̂0 and  ̂0) as the means of these two variables in the original series evaluated in 

Section 4.  

                                                           
6
 As mentioned earlier, we are interested in showing the procedure of estimating the probability of failure and 

contagion, not the actual estimates. Therefore, the probabilities obtained in this section may not be true in reality. 

Estimating the correct probabilities needs more rigorous estimates of bank assets and considering all shocks to the 

banking system. 
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After constructing  ̂t, we calculate the level change in the exchange rate Δ ̂t =  ̂t -  ̂t-1, 

where  ̂t =  ̂t-1exp(- ̂t).  ̂0 is set to be the mean of Rt in the original series. At this point, we 

assess whether this change makes a failure and contagion in the banking system: if -Ai.Δ ̂t is less 

than the reserve value bank i keeps to cover the shocks, a failure happens. Ai is the value of 

foreign asset at bank i. If at least one of the banks fails, we test for the possibility of contagion: 

first, we update the assets of all banks. This includes two steps. In the first step, we calculate the 

remaining assets of the failed bank(s). After paying off the deposits, the remaining assets will be 

distributed among other banks according to their interbank loan ratios. In the next step, the net 

asset of all non-failed banks will be calculated with respect to the current exchange rate and 

interbank losses. If the net asset of one of the banks becomes negative at this time, contagion 

happens. Since the exchange rate has dropped and the value of banks’ assets is lower, contagion 

due to default in repaying interbank loans is more probable now.  

If no failure happens at time t, we assume the assets will return to the same level as 

before and the same process will be followed at time t+1. However, if a failure happens, we 

record it and will start a new series. This way, we can bootstrap new replications of 

counterfactual time series of exchange returns and assess whether there would a failure or not.  

Graph 12 presents the probability of failure and contagion for n = 1000 replications. B1 

to B6 are the six largest Canadian banks considered for this study. As expected, the probability 

of failure and contagion decreases as banks increase their reserve ratio. When the reserve rate is 

as low is 1% of bank assets, we see failures in the network over 80% of time. The probability of 

failure and contagion reduces significantly as banks keep 10% of their assets in reserve. 
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Graph 12- Probability of failure and contagion by reserve value 

Probability of failure Probability of contagion 

  
 

Graph 13- Histogram of failure and contagion by bank 

Histogram of failed banks Histogram of contagious banks 

  
 

Graph 13 presents the distribution of the failed and contagious banks. B2 is always the 

first bank that fails. The reason is that B2 has the largest ratio of international assets to total 

assets. In fact, there is a negative relationship between a bank’s ratio of foreign assets to total 

assets and the probability of failure of the bank. On the other hand, B3 fails due to contagion 

whenever there is contagion in the system. B3 has the highest ratio of interbank loans to total 

assets.  
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One disadvantage of Monte Carlo simulation in estimating failure in the banking system 

is that failure and contagion are rare events by nature (reserve levels are kept high enough to 

cover the shocks). Therefore, estimating the probability of failure will be very computer 

intensive when the reserve ratio is high. In the next section, we show how the extreme value 

theory and importance sampling could improve the Monte Carlo simulation in this context. 

5.2. Monte Carlo simulation using EVT 

This section combines the Monte Carlo analysis of Section 5.1 with the EVT and 

importance sampling techniques introduced in Section 3. The idea is to increase the probability 

of failure in the network, and then adjust the probability with an appropriate change of measure. 

This task is done in two steps. First, the tail of the empirical distribution of the exchange rates 

will be substituted with the equivalent exponential distribution we estimated in Section 4 using 

the EVT. Then, we will use importance sampling to increase the probability of failure. In what 

follows, we explain this process in more details on how to use the EVT and importance sampling 

in the simulation.  

As Section 5.1, the negative exchange rate changes are reconstructed by using equations 

(16) - (19).  ̂t’s are sampled again with replacement from the i.i.d. standard residuals we obtained 

in Section 4.1. The only difference with Section 5.1 is that if  ̂t is larger than the threshold u = 

1.5
7
, we replace it with an exponential(λ) random variable. This replacement is justified by the 

EVT estimation we did in Section 4.2 where we showed the tail part of the residuals exhibits an 

exponential distribution with rate λ = 1/0.59. We also propose that with an appropriate change of 

measure, we could use another exponential distribution with a rate  ̂    to increase the 

probability of failure in the system. This is justified with the assumption that most failures 

                                                           
7
 In fact we do this replacement if 1.5 <  ̂t < 34, since we exclude the outlier from the model. 
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happen with larger shocks (i.e. in the tail of residual distribution). The rest of the process is the 

same as Section 5.1: we calculate the level changes in the exchange rate Δ ̂t =  ̂t -  ̂t-1 and will 

assess whether a failure and contagion will happen in the system. We did two types of tests on 

this method as follows: 

i) In the first step, we ran some simulations with λ = 1/0.59 to verify if this method works. The 

simulation results confirm that this change works quite well and the estimated results under this 

approach are very close to the non-parametric results obtained in Section 5.1 for all reserve rates. 

The only difference is that since we rely on a parametric model – versus the empirical 

distribution in Section 5.1 – we may also receive larger, out-of-sample shocks since the 

counterfactual shocks are not bound by the previous empirical shocks anymore. This 

improvement is one of the advantages of replacing the tail of the empirical distribution with a 

parametric distribution (EVT).  

ii) In the second step, we want to increase the failure rate in the system to have an estimate of the 

probability of failure and contagion when the reserve ratio is high. The approach we took was to 

replace  ̂t > 1.5 with an exponential(λ
’
 < 1/0.59), and then use the likelihood ratio   (   

 (            (     ⁄  to adjust for the change of measure whenever this replacement 

happens in the reconstructed series. At the end, if a failure happens under this series, these 

likelihood ratios are multiplied to obtain the probability of this series to occur.  

The first result we obtained was that the number of failures and contagions in the system 

increased as we increased the mean of the distribution λ
’
. This result is consistent with theory and 

one of the advantages of adding importance sampling to this type of modeling. However, when 

the probability of failure was corrected for this change of measure, two problems happened. On 
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one hand, the probability of failure was usually under-estimated. On the other hand, the 

estimated probabilities were too volatile. The conclusion of this section is that although 

combining EVT and importance sampling techniques with the Monte Carlo method can 

significantly increase the number of failures in the system and also include out-of-sample shocks, 

finding an appropriate change of measure would be difficult. 

There can be different reasons why the probability of failures is underestimated under 

this approach. First, the shocks created under this method are sometimes unnecessarily too large. 

Even though these large shocks cause a failure in the system, since the probability of them are 

very low, the twisted measures will be very low as well. This could also significantly increase 

the variance of the shocks which could affect the change of the measure estimates when the 

simulation is based on low iterations. Second, consistent with other studies, we did not create a 

dynamic model of bank assets and the changes that occur in the system due to the changes in the 

exchange rates. This means if a failure does not happen in the system, the bank assets remain the 

same. Even though this set up simplifies the modeling of the banking system significantly, we 

may miss the cases where the failure may happen due to incremental shocks to the system. These 

modifications keep the door open for further research on this type of modeling. 

 

6. Conclusion 

This study simulated the shocks to a banking network and estimated the probability of 

failure and contagion in the system. We considered two sources of shocks: external shocks due to 

market and macroeconomic factors which impact the entire banking system, and idiosyncratic 

shocks due to failure of a single bank. We used bootstrap simulation and the extreme value 
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theory to model the shocks. In doing so, we also used different techniques such as GARCH and 

importance sampling. GARCH modeling and other time series techniques have been used to 

convert the shocks to an i.i.d. sequence. Later, we showed that importance sampling could be 

used to accelerate the probability of failure in the system. We calibrated the model such that the 

banking network resembles the Canadian banking system. 

One of the interesting findings of the empirical section of the paper is that the 

GARCH/ARMA model could identify large shocks to the US-Canada exchange rates, especially 

the one that happened on 06/01/1970 when Canada went off fixed exchange rates.  

Moreover, the simulation results confirm that the probability of failure and contagion in 

the system decreases as the reserve ratio increases. The simulation results also show that the 

failure of banks due to exchange rate shocks has a positive relationship with the ratio of foreign 

assets to total assets. Similarly, having a high ratio of interbank loans increases the probability of 

contagion. 

Another result is that the exeedances over a threshold can be replaced with the estimated 

EVT model and obtain the same simulated results. The advantage of using an EVT model is that 

importance sampling or other techniques could then be used to generate larger shocks and 

increase the number of failures in the system to obtain more accurate estimates or to reduce the 

number of iterations in the Monte Carlo simulation in the case of high reserve ratios (i.e. rare 

events). Also, out-of-sample shocks can be included in the model. Preliminary results show that 

combining importance sampling and EVT can significantly increase the number of failure and 

contagion in the system, though the standard deviation of the estimator can be large if the change 
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of measure is naive. Finding a good change of measure could be one of the extensions of this 

study. The model can also be improved by better calibrating the banking system and the shocks. 
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