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Abstract  

 

A traveling wave solution, using the proposed Tan-Cot Function Method for Nonlinear Partial 

Differential Equations, has been established in this paper. This method is used to obtain new 

solitary wave solutions for nonlinear partial differential equations such as the Coupled Klein-

Gordon system of equations, Huxley equation, Dispersive Long Wave Equation and Korteweg-

dVries (KDV) equation.  
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1.0 Introduction  

 

Nonlinear partial differential equations govern many physical, biological, chemical and other 

area of study. One of the most exciting advances of nonlinear science and theoretical physics has 

been the development of methods to look for exact solutions of nonlinear partial differential 

equations as discussed by Mahmood Jawal Abdul Rasool Abu Al-Shaeer[4]. Nonlinear partial 

differential equations can provide much physical information and more insight into the physical 

aspects of problems, and therefore can lead to further applications  

In particular, nonlinear wave phenomena of dispersion, dissipation, diffusion, reaction and 

convection are very important in nonlinear wave equation as discussed by Mahmood Jawal 

Abdul Rasool Abu Al-Shaeer [4].  

As discussed by Mahmood Jawal Abdul Rasool Abu Al Shaeer[4], he used the Tan-Cot function 

method to establish solitary wave exact solutions for the (1+1)-dimensional Ito equation of 

Pochhamner-Chree (PC) equation, MIKP equation, Konopelchenko and Dubrovsky (KD) system 

of equations.  

Also, as discussed by Anwar Ja’far Mohammed Jawal [1] used the Tan-Cot function method to 

solve the (2+1)-dimensional nonlinear Schrodinger equation, Gardner equation, modified KDV 

equation, Perturbed Burger Benjamine-Bona Mahony (BBM) equation.  

The Coupled Klein-Gardon equation as discussed by Nasir Taghizadeh, Mohammad Mirzaza and 

Faroozon Farahrooz [5], using the infinite series method and exact solition solutions were 

obtained for the Huxley equation as discussed by N. Taghizadeh et al [6], by applying the 

modified (
  

 
) –expansion method. Anwar Ja’afar Mohammad Jaw[1] used the tanh and sine-

cosine methods to obtain exact solition solutions for the nonlinear dispersive long wave equation.  

 

In this paper, we applied the new Tan-Cot function method to solve the Klein-Gordon system of 

equations, Huxley equation, nonlinear Dispersive Long Wave equation and Korteweg-dVries 

equation, all now given respectively by:  

                   
            

⟧ ……………………………(1) 

        (   )(   )………………………………….(2) 

        
 

 
(  )    

   (        )   
 ⟧…………………………………..(3) 
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              ………………………………………...(4)  

 

2.0 Materials and Methods  

2.1 The Tan-Cot Function Method  

A nonlinear partial differential equations in the form as discussed by Mahmood Jawal Abdul 

Rasool Abu Al-Shaeer [4]  

 (                            )    …………………….(5),  

 

where u(x, y, t) is a traveling wave solution of the nonlinear partial differential equations given 

in (5). We use the transformations,  

 (     )   ( )  ………………………………………………(6), 

Where            ………………………………………(7) 

This enables us to use the following changes:  

 

  

  
   

  

  
 

  

  
   

  

  
 

  

  
   

  

  
  ……………………….(8) 

Using (8) to transform the nonlinear partial differential equation (5) to an ordinary  

differential equation,  

 (               )    ………………………………………(9) 

 

The  ordinary differential equation (9) is then integrated as long as all terms contain derivatives, 

where we neglect the integration constants. The solution of many nonlinear equations can be 

represented or expressed in the form [4],  

 

  ( )       (  ) | |  
 

  
………………………………………(10) 

 ( )       (  ) | |  
 

  
 ……………………………………….(11) 
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Where  , µ and ß are parameters to be determined,   and µ are the wave number and wave speed 

respectively.  

Accordingly, we now use,  

 

 ( )       (  )    

      [      (  )        (  )]                

         [(   )      (  )        (  )  (   )      (  )] 

         [(   )(   )      (  )  (        )      (  )  (   )(  

 )    (  )           (  )  (   )(   )      (  )]  

 

Let the expressions of ( ) ,          and      constitute our equation 12, or we may choose to use 

 ( )       (  )  

       [      (  )        (  )]  

         [(   )      (  )        (  )  (   )      (  )] , 

 

 and so on. Again let the expression of   ( ) ,        and so on for the tan and Cot be equation 

(12) and (13) respectively.  

We now substitute equation (12) or (13) into equation (9), balance the tan and Cot  

functions and solve the resulting system of algebraic equations. 

  

Next we collect all terms with the same power in  

    (  ) or     (  ) and set to zero their coefficients to get a system of algebraic equations 

with the unknowns  , ß and µ, and solve the subsequent system of equations.   
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2.1.1 Applichation of the Tan-Cot Function Method to solve different Nonlinear Partial 

Differential Equations  

2.1.1.1: The Coupled Klein-Gordon System of Equations as discussed Elsewhere  

[5,7].  

It is as follows: 

                   
            

⟧  ……………………………….(14) 

We use the transformations 

 (   )   ( )  (   )   ( )         ………………(15) 

 

and from equation (8), we have equation (14) transformed into the ordinary differential equations 

 ( ) and  ( )   

(    )     ( )     ( )    ( ) ( )   
(   )  ( )     ( )  ( )   

 ⟧  ……………………(16) 

 

By integrating the second equation in (16) with respect to   and neglecting the constant of 

integration, we have 

 

 ( )  
   

   
  ( )…………………………………..(17) 

Substituting (17) into the first equation of (16) and integrating the resulting equation, we have 

(    )   ( )   ( )   
(   )

   
  ( )    ………………………..(18), 

 

which is an ordinary differential equation. Now to solve (18), we choose to use 

       (  )   where 

      [      (  )        (  )]  

        [(   )      (  )        (  )  (   )      (  )]. 
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where the expression for  ,    and     constitute equation (19). Substituting (19) into (18), we 

have  

(    )      (   )      (  )        (  )  (   )      (  )       (  )  

 
(   )

   
       (  )    ………………………………………(20) 

Equating exponents of each pair in equation (20), we have  

 

              

Substituting ß =1 into equation (20) and simplify, then we get  

  (    )      ]   (  )  * (    )      
(   )  

   
+     (  )    …………….(21) 

 

Equating the coefficient of a pair of      (  ) to zero in (21), we have for     (  ),  

 (    )           

    
 

√ (    )
 
 

 ………………………………………………(22) 

and for     (  ),  (    )      
(   )  

   
   

   
 (   )

 
 

√ (    )
 
 

………………………………………………………….(23) 

ß =1,    
 

√ (    )
 
 

  and    
 (   )

 
 

√ (    )
 
 

  into (17) and (19) we have 

 (   )   
 (   )

 
 

√ (    )
 
 

   ( 
 

√ (    )
 
 

 )  

 (   )   (   )
 

    ( 
 

√ (    )
 
 

(    ))………………………………….(24) 

2.1.1.2 The Huxley Equation as discussed by N. Taghizadeh et al [6]  

We now consider the Huxley equation,  

        (   )(   )……………………………………….(26), 
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where k 0 and    (   ) is the solution of equation (26). We use the transformations  

 (   )   ( ), Where        and equation (8) to transform equation (26) to the ordinary 

differential equation 

            (   )        …………………………………(27) 

 

 The solution of (27) can be expressed as  

 ( )       (  ), where 

      [      (  )        (  )]  

        [(   )      (  )        (  )  (   )      (  )]   

 

and we represent the expressions of  ( ),    and      by equation (28). Substitute equation (28) 

into (27), we have, after simplification  

 

[         ]    (  )            (  )      (   )      (  )  

          (  )      (   )      (  )  (   )       (  )         (  )  

  ………………………………………………………………………………………………..(29) 

Equating the exponents of each pair of the tan function in equation (29) we obtain  

             

Substituting     into equation (29) and simplify, we have 

       ]    (  )         (  )               (  )  (   )      (  )  

      (  )    ………………………………………………………………………………(30) 

 

In equation (30), equating the coefficients of each pair of the tan function, we get for 

    (  )               √
 

 
 

and for     (  ), -(6     (   )  )     

     
   

 (   )
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Substituting    √
 

 
 and    

   

 (   )
 into 

 ( )       (  )  we get 

 ( )   (   )  
   

 (   )
    (√

 

 
(     )) ………………………………(31) 

 

2.1.1.3 The Dispersive Long Wave System of Equations as discussed by Anwar  

Ja’afar Mohammed Jawal [2] 

The system of equation 

        
 

 
(  )    

   (        )   
 ⟧………………………………………………………..(32) 

Now, using the traveling wave transformations  

 (     )   ( )  (     )   ( )                ……………………….(33) 

and also using equation (8), the nonlinear system of partial differential equation (32) is  

transformed to the system of ordinary differential equations 

 
    ( )          (   )   

     (   )           
 ⟧………………………………………………..(34) 

 

By integrating the first equation in (34) twice with zero constant, then it reduce to 

        
  

 
     ………………………………………………..(35)  

Secondly, integrate the second equation of (34) once with zero constant, we have  

                   ………………………………………………….(36) 

From equation (35),   
     

   
 

   

  
  substitute   into (35), and simplify, we get 

[-    ] *
          

   
+             ………………………………(37) 

which is an ordinary differential equation. We now seek the solution of (37) as,  
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  ( )       (  )  where 

        [(   )      (  )        (  )  (   )      (  )] 

and we represent the expressions of    and     by equation (38). Substitute equation (38) into  

(37) and simplify, we get   

*             
    

  +     (  )  *
    

 
 

    

 
+      (  )         (  

 )      (  )      (   )      (  )  
   

 
     (  )   .. ……………………(39)  

In (39), equating the exponents of each pair of the Cot function, we get 

              

Substituting     into equation (39) and simplify, we have 

 

*           
    

 
+    (  )            (  )             (  )  

   

 
    (  )  

  ………………………………………………………………………..(40) 

In equation (40), equating the coefficients of each pair of the     (  ) to zero for each pair, we 

get for Cot(  ),  

           
    

 
  , which gives 

   *
  

    
 

   
+

 

 
 and for 

    (  )                      which gives 

 

  
 

 
*
  

  
 

 

 
+   Substitute values of µ,   and   into equation (38), we obtain 

 (     )  
 

 
*
  

  
 

 

 
+    ( *

  

   
 

 

   
+

 

 
 )  

where             

And also using equations (33), (38) and    
   

  
 

   

  
  we have  
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 (     )  
 

   
*
  

   
 

 
+
 

    ( *
  

    
 

   
+

 

 
 )  

  

   *
  

   
 

 
+    ( *

  

    
 

   
+

 

 
 ) .(42) 

where               

 

2.1.1.4 The Korteweg-dVries(Kdv) Equation as discussed by Arfken and Weber[3]  

The nonlinear Kuortweg-dVries equation, models the lossless propagation of shallow water 

waves and other phenomena. It is as follows: 

             ………………………………………………………..(43) 

 

Again, we use the transformations. 

 (   )   ( )         with equation (8) to transform (43) to the linear ordinary  

differential equation 

              ……………………………………………(44) 

Integrating (44) once, we obtain,  

              ……………………………………………………..(45) 

We seek the solution of (45) as 

 ( )       (  )  where 

        [(   )      (  )        (  )  (   )      (  )]  

 

and let the expression of  , and     be represented by equation (46). 

Substituting equation (46) into (45) and simplify, we have  

      [(   )      (  )        (  )  (   )      (  )]          (  )  

      (  )   …………………………………………………………………….(47) 

  

Equating the exponents of each pair of the tan function, we get 
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Substituting      into equation (47) and simplify, we have  

                 ]    (  )             ]    (  )    ………………………..(48) 

Equating coefficients of each     (  ) to zero, we get for     (  )  

              

    
 √ 

    ⁄  and for     (  ) 

              

    
   

  
 

Substituting values of     and   into equation (46), we get 

 (   )         (
    ⁄

    ⁄  )……………………………………………….(49) 

Where         

 

3.0 Results/ Discussion  

The new Tan-Cot Function Method has been applied successfully in this paper, to establish new 

solitary wave solutions for coupled and non coupled non linear partial differential equations.  

 

However, the new method could not establish exact solutions for the coupled nonlinear partial 

differential momentum equations of Navier-Stokes’ and the convection heat transfer equation, 

because the linear parts of these nonlinear partial differential equations cannot be separated from 

the nonlinear parts  

 

 

4.0 Conclusion  

We can therefore say that the new method can be extended to solve the problems of nonlinear 

partial differential equations which may arise in the theory of solitons and other area of nonlinear 

science.  
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