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Abstract. This paper is concerned with application of Euler-Lagrange equation
in Edgeworth expansion. The method is proposed and error analysis shows that
the method is accurate.

1. Introduction and Main Results

Let {Xi, i ≥ 1} be a sequence of independent and identically distributed ran-
dom variables with zero mean and unit variance and E(X3

1 ) = γ and E(X4
1 ) = τ.

Let Sn = n−1/2
∑n

i=1 Xi. The Edgeworth technique is a true asymptotic expan-
sion for approximating the distribution function (df) of Sn (denoted by G). The
first and second order of this expansion has a general form given by

Ĝ(x) = Φ(x)− Φ′(x)u(x),

where u(x) = γH2(x)
6
√

n
, and it is

γ

6
√

n
H2(x)− τ − 3

24n
H3(x) +

γ2

72n
H5(x),

for the first and second orders cases, respectively (see [G02]). Here, Φ is the
df of standard normal distribution and Φ′ is the related density function. Also,
H2 (for example) is the second order Hermite polynomials. The sum of squared
errors is given by ∫ b

a

E2(x)dx =
∫ b

a

|G(x)− Ĝ(x)|2dx

=
∫ b

a

H(x,Φ(x),Φ′(x))dx.

which we hope that it is negligible over every interval [a, b] of support G. The
approach in the usual applications of Edgeworth method is to include more
terms into the asymptotic expansion or to increase the sample size n to make
sure that the errors are vanished. However, it this paper we use an alternative
method, which is described as follows.

Here, we replace Φ by an arbitrary df say F. Let y = F (x). Then, we
search for a F which minimizes the sum of squared errors. The Euler-Lagrange
equation implies that

∂H

∂y
=

d

dx
[
∂H

∂y′
].
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This equation (see [P02]) states that E(x) = − d
dx [u(x)E(x)]. Therefore,

E(x) =
c

u(x)
exp{−

∫ x

a

dt

u(t)
},

where c is a constant. As follows, we show that this error is negligible under
some mild conditions.

Proposition 1. Suppose that for every x ∈ [a, b], we have M1 ≤ |u(x)| ≤
M2,then

sup
a≤x≤b

|E(x)| = O(
|c|
M1

).

Proof. Let
q(x) = exp{−

∫ x

a

dt

u(t)
}.

For simplicity reasons, suppose that u(x) is positive on [a, b]. then using the
mean value theorem for integrals, we have

q(x) = exp{− (x− a)
u(t0)

},

for some t0 ∈ [a, x]. Therefore, q(x) ≤ exp{− (x−a)
M2

} ≤ 1. Thus, we have |E(x)| ≤
|c|
M1

. This completes the proof.
As follows, we propose a method for finding F. Suppose that a function u(x)

with two suitable upper and lower bounds is chosen and the E(x) is computed.
Proposition 2. For given u(x) and E(x), then

F (x) =
−1
q(x)

∫ x

a

G(t)q(t)
u(t)

dt +
F (a)
q(x)

.

Proof. One can note that

F ′(x)− 1
u(x)

F (x) +
G(x)
u(x)

= 0.

This differential equation has solution of F (x) presented in the above proposi-
tion.

However, the expression for F contains unknown G. here, we suggest to
replace G with its the bootstrap estimate.
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