## A Note on Edgeworth Expansion

## REZA HABIBI ${ }^{1}$

Abstract. This paper is concerned with application of Euler-Lagrange equation in Edgeworth expansion. The method is proposed and error analysis shows that the method is accurate.

## 1. Introduction and Main Results

Let $\left\{X_{i}, i \geq 1\right\}$ be a sequence of independent and identically distributed random variables with zero mean and unit variance and $E\left(X_{1}^{3}\right)=\gamma$ and $E\left(X_{1}^{4}\right)=\tau$. Let $S_{n}=n^{-1 / 2} \sum_{i=1}^{n} X_{i}$. The Edgeworth technique is a true asymptotic expansion for approximating the distribution function (df) of $S_{n}$ (denoted by $G$ ). The first and second order of this expansion has a general form given by

$$
\widehat{G}(x)=\Phi(x)-\Phi^{\prime}(x) u(x)
$$

where $u(x)=\frac{\gamma H_{2}(x)}{6 \sqrt{n}}$, and it is

$$
\frac{\gamma}{6 \sqrt{n}} H_{2}(x)-\frac{\tau-3}{24 n} H_{3}(x)+\frac{\gamma^{2}}{72 n} H_{5}(x)
$$

for the first and second orders cases, respectively (see [G02]). Here, $\Phi$ is the df of standard normal distribution and $\Phi^{\prime}$ is the related density function. Also, $H_{2}$ (for example) is the second order Hermite polynomials. The sum of squared errors is given by

$$
\begin{aligned}
\int_{a}^{b} E^{2}(x) d x & =\int_{a}^{b}|G(x)-\widehat{G}(x)|^{2} d x \\
& =\int_{a}^{b} H\left(x, \Phi(x), \Phi^{\prime}(x)\right) d x
\end{aligned}
$$

which we hope that it is negligible over every interval $[a, b]$ of support $G$. The approach in the usual applications of Edgeworth method is to include more terms into the asymptotic expansion or to increase the sample size $n$ to make sure that the errors are vanished. However, it this paper we use an alternative method, which is described as follows.

Here, we replace $\Phi$ by an arbitrary df say $F$. Let $y=F(x)$. Then, we search for a $F$ which minimizes the sum of squared errors. The Euler-Lagrange equation implies that

$$
\frac{\partial H}{\partial y}=\frac{d}{d x}\left[\frac{\partial H}{\partial y^{\prime}}\right]
$$

[^0]This equation (see [P02]) states that $E(x)=-\frac{d}{d x}[u(x) E(x)]$. Therefore,

$$
E(x)=\frac{c}{u(x)} \exp \left\{-\int_{a}^{x} \frac{d t}{u(t)}\right\}
$$

where $c$ is a constant. As follows, we show that this error is negligible under some mild conditions.

Proposition 1. Suppose that for every $x \in[a, b]$, we have $M_{1} \leq|u(x)| \leq$ $M_{2}$,then

$$
\sup _{a \leq x \leq b}|E(x)|=O\left(\frac{|c|}{M_{1}}\right)
$$

Proof. Let

$$
q(x)=\exp \left\{-\int_{a}^{x} \frac{d t}{u(t)}\right\}
$$

For simplicity reasons, suppose that $u(x)$ is positive on $[a, b]$. then using the mean value theorem for integrals, we have

$$
q(x)=\exp \left\{-\frac{(x-a)}{u\left(t_{0}\right)}\right\}
$$

for some $t_{0} \in[a, x]$. Therefore, $q(x) \leq \exp \left\{-\frac{(x-a)}{M_{2}}\right\} \leq 1$. Thus, we have $|E(x)| \leq$ $\frac{|c|}{M_{1}}$. This completes the proof.

As follows, we propose a method for finding $F$. Suppose that a function $u(x)$ with two suitable upper and lower bounds is chosen and the $E(x)$ is computed.

Proposition 2. For given $u(x)$ and $E(x)$, then

$$
F(x)=\frac{-1}{q(x)} \int_{a}^{x} \frac{G(t) q(t)}{u(t)} d t+\frac{F(a)}{q(x)}
$$

Proof. One can note that

$$
F^{\prime}(x)-\frac{1}{u(x)} F(x)+\frac{G(x)}{u(x)}=0
$$

This differential equation has solution of $F(x)$ presented in the above proposition.

However, the expression for $F$ contains unknown $G$. here, we suggest to replace $G$ with its the bootstrap estimate.

## REFERENCES

[G02] J. E. Gentle Elements of computational statistics, (2002), Springer.
[P02] P. N. Paraskevopoulos Modern control engineering, (2002), Marcel Dekker.

Department of Statistics, Central Bank of Iran, Tehran, Iran.
rezahabibi2681@yahoo.com


[^0]:    ${ }^{1} 2000$ Mathematics Subject Classiffication. 62G20, 62E20.
    Key words and phrases. Edgeworth expansion, Error analysis, Euler-Lagrange equation. Author is partially supported by Central Bank of Iran

